
1Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

www.nature.com/scientificreports

A distributed algorithm to maintain
and repair the trail networks of
arboreal ants
Arjun Chandrasekhar1, Deborah M. Gordon2 & Saket Navlakha1

We study how the arboreal turtle ant (Cephalotes goniodontus) solves a fundamental computing
problem: maintaining a trail network and finding alternative paths to route around broken links in the
network. Turtle ants form a routing backbone of foraging trails linking several nests and temporary food
sources. This species travels only in the trees, so their foraging trails are constrained to lie on a natural
graph formed by overlapping branches and vines in the tangled canopy. Links between branches,
however, can be ephemeral, easily destroyed by wind, rain, or animal movements. Here we report a
biologically feasible distributed algorithm, parameterized using field data, that can plausibly describe
how turtle ants maintain the routing backbone and find alternative paths to circumvent broken links in
the backbone. We validate the ability of this probabilistic algorithm to circumvent simulated breaks in
synthetic and real-world networks, and we derive an analytic explanation for why certain features are
crucial to improve the algorithm’s success. Our proposed algorithm uses fewer computational resources
than common distributed graph search algorithms, and thus may be useful in other domains, such as for
swarm computing or for coordinating molecular robots.

Distributed algorithms allow a collection of agents to efficiently solve computational problems without central-
ized control1. Recent research has uncovered such algorithms implemented by many biological systems, including
slime molds during foraging2 and neural circuits during development3. Ants are a diverse taxon of more than
14,000 species that have also evolved distributed algorithms to establish trail networks4. Investigating the algo-
rithms used by biological systems can reveal novel solutions to engineering problems3,5.

Here we present the first computational analysis, parameterized using data from field observations, of trail
networks of an arboreal ant species. The arboreal turtle ant C. goniodontus nests and forages in the trees in the
tropical dry forest of western Mexico6,7. Because the ants never leave the trees, their foraging trails are constrained
by a natural graph: branches and vines form the edges in the graph, and junctions at overlapping branches form
the nodes (Fig. 1A–C). Each colony has several nests, located in dead tree branches, that are connected to each
other in a circuit or network routing backbone4,8,9. Moving on the trails along this backbone, the ants distribute
resources among the juveniles, workers, and reproductives in all of the nests, while additional temporary trails
split from the backbone and lead to food sources. The backbone trail network can be large, often extending over
50 meters in circumference, and encompassing numerous trees6. The ants use many junctions in dense vegetation,
so trails can be tortuous; each meter of linear distance typically requires ants to traverse approximately 2–5 meters
of vegetation6. The colony thus chooses paths in the network from a myriad of potential routes, dictated by the
graph structure of the vegetation. Ants lay trail pheromone as they move along the edges, and ants use pheromone
when choosing edges.

We present a distributed algorithm that can plausibly describe how turtle ants maintain and repair breaks to
their routing backbone. Links between branches or vines can be ephemeral, often disrupted by wind, rain, or the
movement of an animal through the vegetation. To re-establish connectivity of the routing backbone after a break,
the ants must establish a new path that reconnects the two sides of the broken trail. This is an important problem
in many network applications10 and can be solved efficiently using numerous graph algorithms, such as Dijkstra’s
algorithm or the Bellman-Ford algorithm11. However, these classic algorithms require significantly more com-
putation and memory than is likely available to simple biological agents such as turtle ants, who regulate their
behavior using local interactions rather than central control12.

1The Salk Institute for Biological Studies, Integrative Biology Laboratory, La Jolla, CA, 92037, USA. 2Department
of Biology, Stanford University, Stanford, CA, 94035, USA. Correspondence and requests for materials should be
addressed to D.M.G. (email: dmgordon@stanford.edu) or S.N. (email: navlakha@salk.edu)

Received: 7 March 2018

Accepted: 24 May 2018

Published: xx xx xxxx

OPEN

mailto:dmgordon@stanford.edu
mailto:navlakha@salk.edu

www.nature.com/scientificreports/

2Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Repairing breaks requires overcoming three challenges. First, the ants must succeed in finding an alternative
path by exploring new edges that currently have no pheromone and avoiding dead-ends in the network. One
hypothesis for how this could be achieved is to first generate many candidate alternative paths and then converge
to one or a few of them over time — a process we call “pruning”. Such a strategy, also employed by slime molds2
and neural circuits3, has been shown to help quickly discover new paths in distributed settings, in which no agent
is aware of the topology of the entire network. Second, all ants must converge to the same new path in order to
optimally coordinate resource transport. Turtle ants travel in coherent trails that link nests and food sources7.
After the vegetation supporting the trail is ruptured, the ants explore outside the previous path, and eventually
commit again to a single path. Such convergence prevents ants from getting lost or separated from the rest of the
colony. This is also an important goal in computer routing networks, where convergence to a single path ensures
in-order delivery of data packets13. Third, it may be important to minimize the length of the new trail, which is
also a standard measure of efficiency used when evaluating transport network design. However, data from field
studies6,7 suggest that turtle ant paths are often not the shortest globally. It appears that the second objective,
successful convergence, is more important than minimizing trail length, presumably because ants getting lost or
separated has a higher cost than the energy spent in walking7. A common strategy to increase robustness to edge
failures in a graph is to include loops in the path. Prior work7 showed that loops do form in turtle ant trail net-
works; however, loops tend to get pruned over time, perhaps reducing the number of foragers needed to maintain
the path.

The distributed algorithm used to maintain and repair trail networks must be robust across varying planar
network topologies. The forest canopy is highly complex and dynamic, and it is unlikely that turtle ants use dif-
ferent algorithms to accommodate different network structures. Thus, we seek an algorithm that, while likely not
“optimal” for any single planar topology, performs well across different planar topologies. The algorithm must
also use very limited memory of individual agents, as ants are not capable of remembering many of their steps
along the graph structure.

Our work seeks to uncover a biologically plausible distributed algorithm that corresponds with field observa-
tions of turtle ant behavior in response to experimentally-induced edge breaks (Fig. 1B)7. We ask:

	 1.	 What model is most likely to explain how turtle ants at a node select which edge to traverse next?
	 2.	 How well can the algorithm repair broken trails in simulated breaks in synthetic and real-world network

topologies when parameterized by the most biologically realistic parameter values?

Figure 1.  Turtle ant habitat and trail network. (A) The photograph shows the highly tangled forest canopy in
which turtle ants forage. (B) Experiments were performed in which an edge in the path was cut, to observe how
the ants respond and repair the break7. (C) Modeling the trail network as a graph, with junctions as nodes and
connecting branches and twigs as edges. The diagram on the right from7 shows a detailed depiction of a large
portion of the trail network. Each day’s path is shown in a different color (see legend), and additional repair
paths are shown in a distinct color. Solid lines connect two nodes that are on the same plant (e.g. node 36 and
node A are on the same plant). Dashed lines connect two nodes that are on a different plant (e.g. nodes B and C
are on different plants).

www.nature.com/scientificreports/

3Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

	 (a)	 Does the algorithm consistently converge to a single consensus path?
	 (b)	 Does the algorithm find short paths?
	 (c)	 Does bi-directional search, using ants from both sides of the broken path concurrently, improve the

performance of the algorithm relative to uni-directional search?
	 (d)	 How does allowing an ant to avoid going back to the node it previously visited (backtracking),

improve algorithm performance relative to performance when ants are not prevented from
backtracking?

	 (e)	 Can we provide any theoretical insights into why certain model features are necessary for any plausi-
ble turtle ant algorithm?

	 3.	 Can the same algorithm used to repair breaks also be used to keep the established routing backbone intact
in the absence of a break?

	 4.	 Do turtle ants form multiple alternative paths and then prune some of them over time, as also observed in
field studies?

A model that performs well on all of these criteria can be considered a plausible model of turtle ant behavior.
Our main contribution is to identify several plausible non-linear models; we also show why one common linear
model is likely implausible despite succeeding on some of the criteria listed above.

Related work
To our knowledge, this is the first computational analysis of trail networks of an arboreal ant species, whose
movements are constrained to a discrete graph structure rather than continuous space. Compared to previous
work, we attempt to solve the network repair problem using different constraints and fewer assumptions about
the computational abilities of individual ants.

Species-specific modeling of ant behavior.  Previous studies of ant trail networks have largely exam-
ined species that forage on a continuous 2D surface14, including Pharaoh’s ants15, Argentine ants4,16,17, leaf-cutter
ants18, army ants19, and red wood ants20. These species can define nodes and edges at any location on the surface,
and form trails using techniques such as random amplification19,21,22, or using their own bodies to form living
bridges23. Experimental work on these species sometimes uses discrete mazes or Y-junctions to impose a graph
structure; however, these species have evolved to create graph structures in continuous space, not to solve prob-
lems on a fixed graph structure, as turtle ants have evolved to do. Turtle ant movements are entirely constrained by
the vegetation in which they travel. They cannot form trails with nodes and edges at arbitrary locations; instead,
they can use only the nodes and edges that are available to them.

Further, to provide the simplest possible algorithm that is biologically realistic, we assume that turtle ants use
only one type of pheromone. There are more than 14,000 species of ants, and they differ in their use of chemical
cues. For example, Monomorium pharoensis uses several different trail pheromones24–28. There is, however, no
evidence that turtle ants lay more than one type of trail pheromone.

Ant colony optimization.  Models of ant colony optimization (ACO), first proposed in 1991, loosely mimic
ant behavior to solve combinatorial optimization problems, such as the traveling salesman problem29–31 and the
shortest path problem32. In ACO, individual ants each use a heuristic to construct candidate solutions, and then
use pheromone to lead other ants towards higher quality solutions. Recent advances improve ACO through tech-
niques such as local search33, cunning ants34, and iterated ants35. ACO, however, provides simulated ants more
computational power than turtle actually ants possess; in particular, ACO-simulated ants have sufficient memory
to remember, retrace, and reinforce entire paths or solutions, and they can choose how much pheromone to lay in
retrospect, based on the optimality of the solution.

Prior work inspired by ants provides solutions to graph search problems36,37, such as the Hamiltonian path
problem38 or the Ants Nearby Treasure Search (ANTS) problem. The latter investigates how simulated ants col-
laboratively search the integer plane for a treasure source. These models afford the simulated ants various compu-
tational abilities, including searching exhaustively around a fixed radius39, sending constant sized messages40, or
laying pheromone to mark an edge as explored41. Our work involves a similar model of distributed computation,
but our problem requires not only that the ants find an alternative path to a nest (a “treasure”), but also that all
the ants commit to using the same alternative path. This requires a fundamentally different strategy from that
required for just one ant to find a treasure.

Graph algorithms and reinforced random walks.  Common algorithms used to solve the general net-
work search and repair problem, including Dijkstra’s algorithm, breadth-first search, depth-first search, and A*
search11, all require substantial communication or memory complexity. For example, agents must maintain a large
routing table, store and query a list of all previously visited nodes, or pre-compute a topology-dependent heuristic
to compute node-to-node distances42. These abilities are all unlikely for turtle ants.

Distributed graph algorithms, in which nodes are treated as fixed agents capable of passing messages to neigh-
bors, have also been proposed to find shortest paths in a graph43,44, to construct minimum spanning trees45,46,
and to approximate various NP-hard problems47,48. In contrast, our work uses a more restrictive model of distrib-
uted computation, where agents communicate only through pheromone which does not have a specific targeted
recipient.

Finally, the limited assumptions about the memory of turtle ants invite comparison to a Markov process.
Edge-reinforced random walks49, first introduced by Diaconis and others50,51, proceed as follows: an agent, or
random walker, traverses a graph by choosing amongst adjacent edges with a probability proportional to their

www.nature.com/scientificreports/

4Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

edge weight; then the agent augments the weight (or pheromone) of each edge chosen. Our model expands
edge-reinforced random walks in two ways: first, we allow many agents to walk the graph concurrently, and
second, we decrease edge weights over time. Our work is similar to previous models of the gliding behavior of
myxobacteria52 that consider synchronous, node (rather than edge)-reinforced, random walks with decay. These
models seek to determine when bacteria aggregate on adjacent points or instead walk freely on the grid. By con-
trast, here we ask whether the random walkers converge to a single consensus path between two points on the grid
that are not necessarily adjacent.

Results
Our goals are to find an algorithm that can simultaneously explain the movement patterns of turtle ants on a trail
network and that can effectively solve the network repair problem. First, we describe a computational framework
for evaluating the collective response of turtle ants to edge ruptures. We evaluate the response according to three
objectives: the likelihood of finding an alternative path to repair the trail, how well the ants converge to the same
new trail, and the capacity to minimize the length of the trail. Second, we derive multiple candidate distributed
algorithms for network repair. We parameterize each algorithm using data from field experiments to determine
how the model would predict which edge a turtle ant would choose to traverse next from a node, given only
local information about adjacent edges and their edge weights. Third, we analyze via simulation how our algo-
rithms perform on different planar network topologies, including simulated breaks on a European road transport
network.

A graph-theoretic framework for modeling network repair by turtle ants.  We start with a
weighted, undirected graph G = (V, E, W), where V is the node set, E is the edge set, and W are the edge weights,
as well as two nest nodes u, v ∈ V, and a path P = (u, …, v) from u to v with pheromone along each edge in P.
Edges are undirected since turtle ants can walk in both directions over edges. Edge weights correspond to the
amount of pheromone on the edges, which can change over time. We mimic a break in the path by removing some
edge in P. The challenge for the ants is to find an alternative path that reconnects u and v. The alternative path
may build off the existing path, so that the initial and final path may share some edges. Communication among
simulated ants is limited to chemical signals, analogous to pheromone, left on edges traversed. Field observations
are consistent with the assumption that, like Argentine ants53, turtle ants lay trail pheromone continuously as they
walk6,7. Though this has not been observed directly, we hypothesize that there are certain exceptional situations
in which turtle ants discontinue laying pheromone (Methods). Each ant at a node senses the pheromone level on
adjacent edges to inform its next movement. Observations suggest that a turtle ant tends to keep moving in the
same direction, indicating that an ant is able to avoid the previous node it visited. We thus assume that simulated
ants have one time-step of memory, used to avoid going back and forth along the same edge. As is characteristic of
many species of ants54–56, simulated ants have no unique identifiers and can use only local information.

Parameters.  Our algorithm uses three biological parameters: qadd, qdecay, and qexplore.
The first parameter (qadd) determines how much pheromone is added when an ant traverses an edge. After

each time step, each edge (v1, v2) traversed increases its edge weight as:

← + .w v v w v v q(,) (,) (1)1 2 1 2 add

Without loss of generality, we fix qadd = 1, representing a unit of pheromone that an ant deposits on each edge
traversed.

The second parameter (qdecay) specifies how much pheromone evaporates on each edge in each time step due
to natural decay. We model pheromone decay as an exponential decrease in edge weight57,58; thus qdecay ∈ (0, 1),
and at each time step, for each edge (v1, v2), its weight is updated as:

← × − .w v v w v v q(,) (,) (1) (2)1 2 1 2 decay

Larger values of qdecay correspond to more rapid decay of pheromone on the edge.
The third parameter (qexplore) specifies the probability that an ant takes an “explore step”. The definition of an

“explore step” is algorithm-specific (see below), but intuitively, it involves choosing an edge with relatively less
or no pheromone. Such deviation is clearly required by any network repair algorithm, since after the routing
backbone is ruptured, edges not part of the existing path must be traversed to repair the break. Field observations
show that even in the absence of a break, turtle ants explore edges off the main trail. This allows them to discover
new food sources and incorporate them into the trail network7.

Performance metrics.  After T time steps, we evaluate the outcome of the algorithm using the following
measures (averaged over 50 repeat simulations):

	 1.	 Success rate: The probability that the simulated ants succeeded in forming a new path from u to v that does
not use the broken edge. In this new path, ants are not required to traverse edges of relatively low weight
(Methods). Higher values are better; for example, a success rate of 70% means that in 70% of the simula-
tions, the ants successfully formed an alternative path.

	 2.	 Path entropy: An information-theoretic measure of how well the ants converge to a single consensus path,
rather than creating multiple, potentially overlapping, u → v paths with pheromone. Lower values are
better, indicating that subsequent ants using the same algorithm on the resulting network will all follow a
common path, rather than dispersing along many different paths. This measure is computed only in the
simulations in which an alternative path was successfully found. Field observations show that turtle ants

www.nature.com/scientificreports/

5Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

consistently converge to a consensus path, and loops in the network are often pruned away over time7. This
reduces the numbers of lost ants and the numbers of ants traveling in circles.

	 3.	 Path length: The length of the new path. Although turtle ants do not always find the globally shortest path7,
we include this measure because it is commonly used to evaluate routing algorithms. Lower values are
better, indicating shorter paths. This measure is computed only in the simulations in which an alternative
path was successfully found.

A model of computation for individual ants.  We assume that all ants are identical and have the follow-
ing computational abilities:

•	 Each ant can avoid the node it immediately previously visited. It cannot, however, remember its entire path
from the nest up to its current point. The ant may also keep track of a binary state variable that determines
whether it is combing back from a dead end and should discontinue laying pheromone.

•	 In field observations, ants appear to pause at nodes and inspect more than one edge before choosing an edge
to take7. Thus, each ant can access all adjacent edge weights to decide which node to visit next. To choose its
next edge, we allow ants to perform any Turing-computable computation, although we show that a simple,
albeit non-linear, function will suffice.

See Methods for full technical details of the model and performance metrics.

Candidate distributed algorithms.  Below we introduce several biologically plausible algorithms that
attempt to describe how a turtle ant at a node s chooses which edge to traverse next among possible neighboring
edges t1, t2, ... tn. These algorithms build upon previous linear and non-linear models used to analyze ant trail for-
mation in other species, such as Argentine ants59–61 and pharaoh ants62. Let w(s, ti) be the current weight on edge
(s, ti), and let uniform() be a random value drawn uniformly from [0, 1].

In the Weighted random walk (Algorithm 1), each ant chooses the next edge to traverse with probability pro-
portional to the amount of pheromone on that edge: the more pheromone on an edge, the more likely an ant is to
traverse that edge. However, with probability qexplore, the ant takes an edge that has zero pheromone.

Algorithm 1. Weighted random walk.

1: X ← {ti : w(s,ti) > 0} # Explored edges
2: Y ← {ti : w(s,ti) = 0} # Unexplored edges
3: if uniform() < qexplore then
4: 	 return ti ∈ Y with probability 1/|Y|
5: else
6: 	 return ti ∈ X with probability w(s, ti)/Σj∈Xw(s, tj)
7: end if

Note: The algorithm excludes the previously visited node from the sets of candidate edges. If all neighboring edges
have weight 0, the ant chooses a zero-weight edge with probability 1 rather than probability qexplore. If none of the
neighboring edges have weight 0, then the ant chooses an edge with nonzero-weight with probability 1 rather
than probability q1 explore− .

In the RankEdge random walk (Algorithm 2), with probability 1 − qexplore, the ant chooses an edge with the
highest weight (ties are broken at random). With probability qexplore, it bypasses the highest weighted edges and
considers edges with the second highest weight. With probability qexplore(1 − qexplore), it chooses an edge with the
second highest weight. With probability qexplore

2 , it bypasses both the highest and second highest weighted edges
and considers edges with the third highest weight, and so on.

Algorithm 2. RankEdge random walk.

1: W ← [w1, w2,…,wk] # Sorted unique edge weights, in decreasing order
2: for i = 1…k do
3: 	 ← =X t w s t W i{ : (,) []}i

4: 	 if uniform() < (1 − qexplore) then
5: 	  return ti ∈ X with probability 1/|X|
6: 	 end if
7: end for

Note: The algorithm excludes the previously visited node from the sets of candidate edges. If all neighboring edges
are tied for the highest weight, then a maximally-weighted edge is chosen with probability 1 rather than probabil-
ity − q1 explore. If an ant keeps exploring until it gets to the lowest weight, it takes one of the edges tied for the
lowest weight with probability 1 rather than probability q1 explore− .

Each algorithm contains additional details inspired by field observations, including a queueing system so ants
traverse edges one at a time, the ability to traverse and return from an edge on an explore step in one time-step,
and the ability to discontinue laying pheromone on the way back from a dead-end. See Methods for full details.

www.nature.com/scientificreports/

6Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Other algorithms.  We compared these two candidate distributed algorithms to several other non-linear
algorithms (MaxEdgeA, MaxEdgeB, MaxEdgeC, MaxWeighted, and Deneubourg), as described in the
Supplement. We also compared to a null model, called the Unweighted random walk. The null model uses no
parameters; instead, the ants ignore edge weights and choose amongst candidate edges with equal probability.

Summary of conclusions.  Overall, we find that non-linear models perform the best at simultaneously
explaining field observations and providing a mechanism by which turtle ants could solve the network repair
problem. While the linear (Weighted) algorithm does perform well at explaining some aspects of field observa-
tions, and it repairs breaks with high probability, it also produces a very high path entropy, with poor convergence
to a consensus path. This departs strongly from field observations7 that show that when repairing broken paths,
the ants quickly converge to a single path.

In particular, we find that: (A) RankEdge outperforms all other non-linear algorithms, except for MaxEdgeA,
in the likelihood of explaining observed edge choices by turtle ants (Table 1). The log-likelihoods of RankEdge
and MaxEdgeA were nearly identical. (B) When parameterized by field data, RankEdge outperforms all other
non-linear algorithms in success rate (Table 2); and (C) RankEdge is equivalent to all other non-linear algorithms
in path entropy (Table 3). Compared to the linear Weighted algorithm, RankEdge has a lower likelihood of explain-
ing the observed edge choices and a lower success rate. However, RankEdge performs much better in path entropy,
path length, and maintaining the trail in the absence of a break. We emphasize that the strong success rate of
Weighted is because pheromone is left essentially on every edge in the graph. This guarantees high success but
very poor convergence to a single path. Field experiments show that turtle ants converge strongly to a single path.

Q1. Field observations to determine the best algorithm and parameter values.  We first deter-
mined what parameter values best allow each algorithm to match the data from field observations. We then used
these parameter values to test algorithm performance for the network repair problem.

The performance of each candidate algorithm is sensitive to the values chosen for the two free parameters, qex-

plore and qdecay (as previously mentioned, we set qadd = 1). For example, with low values of qexplore, the ants may take
a long time to explore enough new edges to find an alternative path; on the other hand, for high values of qexplore,
the ants will scatter throughout the network and may not converge to a single path. Similarly, for high values of
qdecay (pheromone decays rapidly), it may be difficult to build and reinforce a single path; for low values of qdecay,
it may be hard for the colony to eliminate unnecessary edges and commit to one path. These two parameters also
affect each other; for example, the higher the decay rate, the fewer edges with pheromone, and thus the more
possible edges to explore.

We used data from observations made in the field to evaluate the match between the choices of edges made by
turtle ants and the choices predicted by a candidate algorithm (with parameters qexplore, qdecay). Observations were
made at La Estacion Biologica de Chamela in Jalisco, Mexico6,7. Ants were observed traversing a junction (node)
along a foraging trail. We recorded the time at which an ant moved to or from that junction node, and the edge it
chose to traverse (Fig. 2A,B). Observations were made of six different colonies, with an average of 2.16 junctions
per colony, over three days in June 2015 and one day in June 2016. We observed 13 different junctions for time
periods ranging from 7 to 24 minutes (mean of 12.3 minutes per observation at a given colony on one day), for a
total of 773 edge choices made by turtle ants.

Maximum likelihood estimation.  We determined which algorithm and parameter values best explained the
observed edge choices made by turtle ants using maximum likelihood estimation (MLE). The data were used to
determine the likelihood that a given algorithm, with a given pair of parameter values, would have produced the
observed set of edge choices. Figure 2A,B shows an example of a likelihood calculation, and Fig. 2C,D illustrates
the results of the MLE for each algorithm over all pairs of parameter values.

Overall, for RankEdge, the maximum likelihood parameter values that best explained the observed turtle ant
behavior were: qexplore = 0.20, and qdecay = 0.02 (Table 1). For Weighted, the maximum likelihood parameter values
were qexplore = 0.05 and qdecay = 0.01. Both candidate algorithms were more likely to explain the data than the null
model (Table 1).

Algorithm qexplore qdecay log-likelihood

Unweighted N/A N/A −744.25

Weighted 0.05 ± 0.06 0.01 ± 0.10 −345.05

RankEdge 0.20 ± 0.04 0.02 ± 0.08 −405.42

MaxEdgeA 0.20 ± 0.04 0.02 ± 0.08 −402.63

MaxEdgeB 0.42 ± 0.04 0.01 ± 0.09 −424.61

MaxEdgeC 0.23 ± 0.01 0.02 ± 0.09 −586.87

MaxWeighted 0.22 ± 0.01 0.01 ± 0.09 −568.70

Deneubourg 0.78 ± 0.10 0.01 ± 0.03 −518.18

Table 1.  Maximum likelihood estimates for each algorithm. For each algorithm, we show the values of qexplore
and qdecay that maximize the likelihood of producing the observed choices made by turtle ants in the field.
Standard deviation is computed across 13 junctions, each corresponding to field observations of one junction
on a given day. All models are significantly more likely to explain the data than the null model (Unweighted).

www.nature.com/scientificreports/

7Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Consistency of the maximum likelihood estimation across colonies and days.  The maximum likelihood parameter
values were similar across colonies and days for the 13 junctions (Figure S2). This suggests that across six colonies,
there are similar chemical properties in the pheromone (related to qdecay), and that a similar search strategy is used
for choosing which edge to traverse next (related to qexplore).

Q2. Algorithm performance on synthetic and real-world planar networks.  Our goal here is to test
how well each algorithm solves the network repair problem on simulated and real-world networks. We were par-
ticularly interested in how well each algorithm performed when its parameters were set to the maximum likeli-
hood values derived from observations of turtle ants. Our main result is that the maximum likelihood parameters
for the RankEdge performed well in simulations for network repair across six networks (Fig. 3; the black rectangle
in both panels shows that the parameter values that best explain the turtle ants’ behavior also perform best for
solving the network repair problem). The latter result is substantiated below.

Simulation setup.  For all simulations, we ran each algorithm for T = 1000 steps using N = 100 ants, and
repeated each simulation 50 times. To initialize each simulation, we placed each of the N ants at a random node in
the original path. This means that at the start of the simulation there were likely ants at nodes on both sides of the
rupture in the path. No ants were placed at nodes not part of the original path. Each ant was randomly assigned
to walk in search of one of the two nests. All edges that were part of the initial path were initialized with 10 units
of pheromone. All other edges were initialized to 0 units of pheromone. When an ant reached its destination nest,
it attempted to return to the other nest, and repeated this, going back and forth between nests, for T time-steps.
The ants walk synchronously for T time-steps; this is a common assumption in distributed computing problems.

Our first performance metric, called the success rate, measures how well the ants succeed in finding an alter-
native path to repair the break. We simulated breaks under six planar network structures, which have an increas-
ingly complex topology with varying numbers of possible paths. In each evaluation below (Fig. 4), we show three
panels: the initial network with a break, the final network at the end of the simulation, which is generated using
the MLE parameter values, and a heatmap showing the success rate for pairs of parameter values (qexplore, qdecay)
close to the MLE range. In each synthetic network, a only single link is broken (shown as the ‘X’ mark in Fig. 4);
in the Supplement, we describe cases where multiple links are broken.

We analyzed all algorithms but show results only for RankEdge in the main text because Weighted rarely con-
verged onto a single path, and thus did not satisfy our second performance metric. It also did not maintain trails
in the absence of a break. These results are described in detail below. Also, see Table 2 and Supplement for analysis
of the additional non-linear algorithms.

Algorithm Minimal Simple Medium Full Spanning Europe Robustness

Unweighted 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted 1.00 1.00 1.00 1.00 1.00 1.00 1.00

RankEdge 1.00 0.98 0.84 0.70 0.54 0.70 0.78

MaxEdgeA 1.00 0.78 0.74 0.48 0.36 0.62 0.63

MaxEdgeB 0.76 0.60 0.64 0.64 0.44 0.70 0.62

MaxEdgeC 1.00 1.00 0.84 0.48 0.44 0.48 0.66

MaxWeighted 1.00 0.88 0.72 0.63 0.38 0.68 0.68

Deneubourg 1.00 1.00 0.94 0.44 0.67 0.52 0.72

Table 2.  Success rates for each algorithm. For each algorithm, we show the success rate on each simulated
network. The last column summarizes the robustness of each method across all networks. Of the non-linear
algorithms, RankEdge performs the best.

Algorithm Minimal Simple Medium Full Spanning

Unweighted 0.00 0.69 1.79 13.75 7.24

Weighted 0.00 ± 0.00 0.23 ± 0.25 1.52 ± 0.20 12.38 ± 0.22 5.94 ± 0.15

RankEdge 0.00 0.00 0.00 0.00 0.00

MaxEdgeA 0.00 0.00 0.00 0.00 0.00

MaxEdgeB 0.00 0.00 0.00 0.00 0.00

MaxEdgeC 0.00 0.00 0.00 0.00 0.00

MaxWeighted 0.00 0.00 0.00 0.00 0.00

Deneubourg 0.00 0.00 0.00 0.00 0.00

Table 3.  Path entropy for each algorithm. For each algorithm, we show the path entropy on each simulated
network. Lower values indicate convergence to fewer paths. All non-linear algorithms achieve the optimal path
entropy. The standard deviation of the entropy for all non-linear models is 0. We do not report an interval for
Unweighted because it does not depend on pheromone amount and thus has the same limiting behavior in all
cases.

www.nature.com/scientificreports/

8Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Minimal graph.  Here we find that RankEdge can solve a basic repair problem in a minimal working example
(Fig. 4A), in which the break causes the existing path to lead to a dead end that should be avoided in favor of a
single alternative path to the nest. To favor the alternative path, the simulated ants must largely eliminate the
pheromone on the edge leading to the dead end, a process which we call ‘pruning’. To favor the alternative path
instead of the existing path, the ants should put more pheromone on the edge leading upwards to the alternative
route, even though this edge initially had no pheromone.

We find that the RankEdge algorithm succeeds in this task 100% of the time, as long as the ants do not leave
pheromone on the way back returning from the dead-end (Methods and Q4).

Figure 2.  Maximum likelihood computation. (A,B) Example node junction and edge choices for turtle ants. All
ants arrive at node 1 from a different node that is not shown. In the example, we assume pheromone has been
deposited at previous time-points, and we now compute the likelihood of the next ant choice. Under the
RankEdge algorithm, the likelihood of choosing edges 1 → 3 or 1 → 2 is (1 − qexplore)(1/2); the likelihood of edge
1 → 4 is qexplore(1 − qexplore); and the likelihood of 1 → 5 is qexplore

2 . Under the Weighted algorithm, the likelihood
of choosing edge 1 → 5 is qexplore; the likelihood of edge 1 → 4 is (1 − qexplore)(1/(1 + 2 + 2)); and the likelihood of
edges 1 → 2 or 1 → 3 is (1 − qexplore)(2/(1 + 2 + 2). Under the Unweighted algorithm, the edge weights are
disregarded, and the likelihood of taking any one of the four edges is (1/4). (C,D) For each combination of
qexplore (x-axis) and qdecay (y-axis) values, we determined the pair’s likelihood of producing the choices observed
in turtle ants. Each heatmap shows the likelihood for each algorithm with a zoom-in below around the highest
likelihood region. The optimal parameter values for each algorithm, depicted in white, are shown in Table 1.

www.nature.com/scientificreports/

9Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Simple graph.  Here we increased the complexity of the graph to offer two alternative paths, instead of one in the
Minimal graph. We found that RankEdge not only prunes the dead-end, but it can find and commit to one of the
two alternatives with a 98% success rate (Fig. 4B).

Medium graph.  Here we further increased the complexity of the Minimal graph to offer six alternative paths and
found that RankEdge not only prunes the dead-end, but can find and commit to one of the six alternatives with
a 84% success rate (Fig. 4C).

Full grid.  The Full grid (Fig. 4D) presents a different computational challenge: there is no dead-end to prune and
the shortest alternative path requires only 3 additional edges. However, the total number of possible new paths
is extremely large, which makes it difficult to find and commit to a single path. The Full grid is also a standard
benchmark used in the ANTS problem (Related work), in which ants search the integer plane39–41.

We found that the highest success rate (70%) occurred for low values of qdecay, which closely matches the
observed best decay value estimated using maximum likelihood. This highlights an inherent trade-off in the turtle
ant algorithm. Low decay rates help preserve the initial path and bias the turtle ants toward finding an alternative
route that re-uses as much of the previous path as possible; that is, with low decay rates, repair starts as close to the
break as possible. However, low decay rates also limit the capacity to search for other paths that may be shorter
even though they re-use less of the previous path. An alternative would be to use higher values of qexplore to search
for other paths that do not re-use the initial path, but this would make it more difficult for the ants to converge to
a single new path.

Spanning grid.  In contrast to the Full grid, the Spanning grid is sparser and requires that the ants go back at least
one node from the break to find an alternative path (Fig. 4E).

We found that the maximum likelihood parameters produced a moderate success rate (54%). As above, the
highest success rate occurred for low values of qdecay and moderate values of qexplore. These values achieve a good
trade-off between searching sufficiently far from the break to find an alternative path, and largely preserving
the previous path. The performance on the Spanning grid demonstrates that the algorithm is flexible enough to
search locally around a break point for new paths, while still maintaining most of the old path.

The results from the Full grid and the Spanning grid together suggest that the algorithm performs best when
it preserves as much of the previous path as possible, even if it can not re-use all of the original path. This is con-
sistent with field observations that showed that turtle ants sought alternative paths in a “greedy” manner, by going
back up to 1 or 2 nodes from the break point, even though going back more nodes may have resulted in a path
with fewer nodes overall7.

European road transportation network.  To demonstrate the utility of this algorithm in a real-world scenario,
we applied the RankEdge algorithm to repair networks in a human-designed transport network (Fig. 5). We
downloaded the network depicting the major roads (edges) connecting intersections (nodes) in the international
E-Road in Europe63 (Methods). We removed an edge from an existing path between two nodes and ran the
RankEdge algorithm to repair the simulated closure. The RankEdge algorithm achieved a success rate of 70%,
indicating that the turtle ant algorithm can also repair breaks in real-world topologies. This shows how distrib-
uted solutions may be useful for new application domains, such as for swarm robotics or molecular robots64–67 in
remote environments, when centralized or global positioning systems may not be as effective.

Figure 3.  The maximum likelihood parameters closely match the best simulation parameters: (A) The color
of each square in the heatmap corresponds to the robustness (Methods) of the success rates for the RankEdge
algorithm for each combination of qexplore (x-axis) and qdecay (y-axis) values. Results are aggregated over the six
simulated and real-world networks presented in Figs 4 and 5. (B) The maximum likelihood parameter estimates
for RankEdge from observations of turtle ants. The black rectangle in both panels shows that the parameter
values that best explain the turtle ants’ behavior also perform best for solving the network repair problem.

www.nature.com/scientificreports/

1 0Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

We also compared the algorithms on Erdos-Renyi random networks and small-world networks and found
similar gains in performance for RankEdge (Supplement).

Q2a. Converging onto a single consensus path.  Our second performance metric, called path entropy,
measures how well foragers commit to a single alternative path (Table 3).

We find that the RankEdge algorithm consistently achieves a path entropy near 0, indicating that on the final
network all ants follow the same path when not taking explore steps (Table 3). This is particularly challenging

Figure 4.  Success rates for each network. (A–E) For each network we show the initial graph (left), an example
of the final graph after running the RankEdge algorithm using the maximum likelihood parameters (middle),
and the algorithm’s success rate for each parameter combination (right). In each panel, black dots indicate nodes
in the network, and solid lines indicate edges that may be traversed. If two adjacent nodes are not connected
by an edge, there is a space between them. In the initial graphs, the ‘X’ marks the edge that is broken. The x-
axis of the heatmap (right column) shows qexplore, and the y-axis shows qdecay under the range close to the MLE
parameters. Darker shades of red indicate success rates closer to 1, and thus are better.

www.nature.com/scientificreports/

1 1Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

for the Full and Spanning grids because both contain a large number of possible paths, and thus a large possible
path entropy if the simulated ants exploit many paths. Thus, when the algorithm succeeds in repairing the path,
RankEdge satisfies our second performance criterion.

More generally, one advantage of non-linear algorithms such as RankEdge is that all simulated ants, by simply
following the maximal edge (the adjacent edge with the highest pheromone), can travel from one nest to the other
using the same path, thereby achieving a path entropy of 0. On the other hand, linear algorithms such as Weighted
do succeed in finding a path; however, Weighted is unable to commit to only one path, and thus has very high
path entropy (Fig. 6).

Q2b. Finding short paths.  Our third performance metric measures the path length of the final trail net-
work (Table 4). We found that RankEdge consistently finds paths of lengths that are close to, though slightly larger
than, the globally shortest path lengths. For every network, we compared the average path lengths of RankEdge
versus every other algorithm using Welch’s unpaired T-test. RankEdge finds significantly shorter paths than
Weighted and Unweighted on the Full grid, Spanning grid, and Medium graph (p < 0.05); RankEdge is not sig-
nificantly different from the other non-linear algorithms (Table 4). The improved performance over Unweighted
demonstrates the value of using pheromone to solve the network repair problem collectively, instead of using
independent search.

Q2c. The power of bi-directional search.  We find that a bi-directional search, in which simulated ants
attempt to create an alternative path concurrently from both sides of the break, allows the algorithm to perform
significantly better than a uni-directional search using ants from only one side of the break. We tested this on the
Full grid, and found that for the MLE parameter values for RankEdge, the success rate was on average 70% for a
bi-directional search versus 14% for uni-directional search (Fig. S3).

One might predict that uni-directional search would perform as well as the bi-directional search, while simply
taking longer. However, we found this not to be true: using a bi-directional search means that once ants from side
A of the break reach side B of the break, the rest of their search is directed by the pheromone trail laid by ants that
started on side B. In the uni-directional search, even if ants from side A reach side B, they must still find a path
from scratch connecting the dead end on side B to the nest on side B. Although uni-directional search has rarely
been observed to occur in turtle ant networks, we tested it here to compare it with bi-directional search, which is
often used to improve the performance of search algorithms.

Q2d. The power of avoiding backtracking.  We find that providing simulated ants the ability to avoid
backtracking, i.e., visiting the same node visited in the previous time-step (Methods) allows for a significant
improvement in algorithm performance. In contrast, ants that are not given this ability could keep going back and
forth along the same edge (Fig. S4).

In particular, ants that used the RankEdge algorithm and avoided backtracking produced a success rate of 70%
on the Full grid, compared to 0% when an ant was not prevented from returning to the previous node it visited
(Fig. S4). Thus, providing ants with a basic node-to-node sense of direction led to a significant improvement in
performance.

Figure 5.  Repairing road closures in the Europe road graph. Analysis of how well the turtle ant algorithm
translates to repair simulated breaks in a real-world transport network. (A) An example of a path in the
European E-road network connecting Munich to Berlin, Germany. The roads and junctions form a graph. On
the left, the black ‘X’ shows a road that has been broken or closed along the path. On the right, we show an
alternative path that avoids the broken road. (B) The success rate of the turtle ant algorithm (RankEdge) applied
to this network. Map data: Google, DigitalGlobe.

www.nature.com/scientificreports/

1 2Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Q2e. Critical features for the success of a plausible algorithm.  We find that there are two important
features for non-linear algorithms to perform well in simulation: (1) Simulated ants do not lay pheromone on the
way back from a dead end, and (2) simulated ants queue at nodes (Methods). In the Supplement, we provide theo-
retical analysis for why these two components are critical for any non-linear algorithm to circumvent a dead end.
Without either of these two features, the time to circumvent a dead end rises dramatically. In the Supplement, we
also confirm these theoretical observations via simulation.

Q3. Maintaining a trail in the absence of a break.  Here we consider whether the same algorithm used
to repair a path can also keep a path intact when it is not broken. This is important because if different algorithms
were used to maintain trails versus repair trails, then the turtle ants would need some signal to toggle between dif-
ferent methods for choosing among candidate edges, depending on the context. We found that a single algorithm,
RankEdge, is capable of maintaining trails and responding to breaks.

In particular, we ran the RankEdge algorithm on the Spanning grid without breaking the original path and
found that the trail was preserved without any modification to the algorithm or its parameters (Fig. 7). In con-
trast, the Weighted algorithm performed very poorly on this task. In particular, for RankEdge, the path entropy

Figure 6.  Poor path entropy for Weighted. The initial (left) and final (right) networks for the (A) Full grid and
(B) Spanning grid. In both cases, the MLE parameter values (qexplore = 0.05, qdecay = 0.01) for Weighted did not
find a low path entropy solution.

Algorithm Minimal Simple Medium Full Grid Spanning Grid

Unweighted 12.00 ± 0.00 12.90 ± 1.00 13.16 ± 3.00 26.04 ± 6.56 20.05 ± 7.24

Weighted 12.00 ± 0.00 12.97 ± 0.85 13.04 ± 0.64 18.36 ± 0.18 16.93 ± 0.24

RankEdge 12.00 ± 0.00 12.98 ± 1.01 10.95 ± 1.01 13.06 ± 0.34 14.56 ± 3.97

MaxEdgeA 12.00 ± 0.00 12.87 ± 1.00 11.29 ± 0.97 13.17 ± 0.56 15.56 ± 4.38

MaxEdgeB 12.00 ± 0.00 13.30 ± 0.96 10.77 ± 0.99 13.06 ± 0.35 15.09 ± 4.07

MaxEdgeC 12.00 ± 0.00 13.02 ± 1.01 11.00 ± 1.01 13.16 ± 0.56 15.45 ± 3.54

MaxWeighted 12.00 ± 0.00 12.87 ± 0.99 10.89 ± 1.03 13.06 ± 0.58 14.46 ± 3.07

Deneubourg 12.00 ± 0.00 13.16 ± 1.00 11.06 ± 1.30 14.18 ± 3.47 13.94 ± 2.51

Optimal 12.00 12.00 10.00 13.00 13.00

Table 4.  Average path length for each algorithm. For each algorithm, we show the average path length of the
final graph, measured as the number of nodes in the path. RankEdge performed much better than the null
model (Unweighted) and close to the globally shortest path length (Optimal).

www.nature.com/scientificreports/

13Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

using the MLE parameter values from turtle ant data was optimal (0.00). For Weighted, however, the path entropy
for the MLE parameter values was much higher (5.38), indicating poor maintenance of the original path.

Q4. Pruning as a general principle for discovering alternative paths.  Field observations show that
turtle ants engage in pruning (Fig. 8). In our simulations, we also observed that ants explored multiple alternative
paths, and then most of these paths were pruned as the colony converged to a single alternative path. Further,
the paths tended to become shorter over time. We quantified how many paths were pruned during the simula-
tion using a measure called path elimination (Methods). We also quantified how the lengths of the remaining
paths changed over time using a measure called path length pruning (Methods). All of the non-linear algorithms
exhibit some path elimination and pruning, and thus could plausibly be used to explain the observed pruning in
observed turtle ants. RankEdge prunes fewer paths than the other algorithms (Table 5) because RankEdge does
not form as many initial paths as other algorithms. However, of the paths that are pruned, RankEdge tends to
prune more nodes from the paths (Table 6).

For every network, we compared the average path elimination and path length pruning of RankEdge versus
every other algorithm using Welch’s unpaired T-test. For path elimination, RankEdge does not reduce the num-
ber of paths more than other algorithms (p < 0.05), as we described above. However, for path length pruning,
RankEdge reduces path lengths significantly more than all other non-linear algorithms on the Spanning grid and
European roads (p < 0.05). On the Full grid, RankEdge is not significantly different from Weighted, Deneubourg,
or MaxEdgeB, and is significantly worse than MaxEdgeA, MaxEdgeC, and MaxWeighted. No statistical differ-
ence is observed for the Simple and Medium graphs, likely due to their relatively simple topology. These pruning
results suggest that RankEdge explores fewer paths initially but is better at selecting the shortest of the paths it
explores. RankEdge tends to prune fewer paths (path elimination), but of the paths it does explore, RankEdge
converges to the shorter paths (path length reduction).

Field observations7 also showed that when ruptured trails are repaired, new nodes are added to the network,
and in subsequent days, some of the nodes are pruned. Such pruning of nodes also led to global pruning of paths
(Fig. 8). Such an “explore-exploit” strategy may help turtle ants quickly find a solution that re-connects a rupture
in a trail, and may also help the colony to optimize the coherence of the trail, by minimizing the number of junc-
tions at which ants could get lost.

Interestingly, using pruning-based strategies to discover the most appropriate edges or paths to keep is a
common strategy used by biological systems. In particular, during the development of neural circuits in the
brain, synapses are massively over-produced and then pruned-back over time3. This strategy is thought to
help neural circuits explore possibly topologies and then converge to the most appropriate topology based on
environment-dependent feedback. A similar process occurs during the development of vascular networks in the
body68. Thus, pruning may be a common biological strategy of network design when multiple topologies need to
be explored in a distributed manner.

Discussion
Our primary contribution is to address an engineering problem (maintaining a trail network and finding alter-
native paths to route around broken links in the network) using biologically feasible parameters and models
motivated by how turtle ants may solve this problem in the field. Successful performance by the algorithm in sim-
ulation, using realistic parameter values, indicates that the algorithm is a plausible candidate to describe how the
ants create their networks. The RankEdge algorithm achieved a better maximum likelihood estimate (Figs 2–3)
than every other non-linear model except for MaxEdgeA. When parameterized by data from field observa-
tions, RankEdge was better able to find a single, short path with high probability compared to other algorithms
(Tables 2, 3 and 4). From this, we conclude that non-linear models, in particular RankEdge and MaxEdgeA, rep-
resent the two best plausible models of turtle ant behavior.

By testing performance across six different networks, we found that the turtle ants appear to have evolved an
algorithm that may not be optimal for any particular planar network but is robust to some variation in the topol-
ogy. Further, non-linear algorithms exhibited pruning, which also occurred in field observations7 (Table 6, Fig. 8).

Figure 7.  Analysis in the absence of a break. (A) Initial Spanning grid, with no break. (B) The final network
produced using Weighted, which does not find a low entropy solution. (C) The final graph using RankEdge,
which finds a low path entropy solution.

www.nature.com/scientificreports/

1 4Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

Figure 8.  Turtle ants prune paths. The diagram from7 shows the results of an experiment in which an edge
was cut. Left: The initial trail is shown in grey. The edge connecting nodes 5 and 6 was cut. After 75 minutes,
the turtle ants explored several new paths (red). Center: Five hours after the cut, some of the red paths were
pruned (transparent grey). Ants traveling down from node 7 took one trail, consisting of nodes 6, 15, 16, 17,
18, 4, and 3, because they could not use 12 in this direction. Ants traveling in the other direction took another
trail, consisting of nodes 3, 4, 5, 12, 13, and 14, or the trail consisting of 11, 13, and 14. Right: The next day, there
was additional pruning. Because node 12 could now be used in both directions, ants traveled both ways on the
indicated trail.

Algorithm Simple Medium Full Grid Spanning Grid
European
Roads

Weighted 0.94 ± 0.58 0.48 ± 0.32 0.00 ± 0.00 0.001 ± 0.002 0.14 ± 0.30

RankEdge 0.18 ± 0.26 0.25 ± 0.29 0.14 ± 0.20 0.15 ± 0.18 0.10 ± 0.16

MaxEdgeA 0.54 ± 0.84 0.69 ± 1.14 0.26 ± 0.49 0.78 ± 1.37 0.01 ± 0.01

MaxEdgeB 0.25 ± 0.61 0.66 ± 1.06 0.29 ± 0.56 0.84 ± 1.73 1.18 ± 2.44

MaxEdgeC 0.40 ± 0.78 1.29 ± 1.40 0.48 ± 0.92 1.03 ± 1.58 0.04 ± 0.07

MaxWeighted 0.44 ± 0.78 1.04 ± 1.23 0.68 ± 1.43 1.36 ± 2.93 0.38 ± 0.46

Deneubourg 0.43 ± 0.56 1.60 ± 0.96 0.55 ± 1.45 1.40 ± 2.36 1.47 ± 2.95

Table 5.  Path elimination: For each algorithm, we show the average reduction in entropy over chosen paths
over time (Methods). We omit the Minimal graph, because there is only one possible path from one nest to the
other, and thus no path elimination is possible.

Algorithm Simple Medium Full Grid Spanning Grid European Roads

Weighted 0.19 ± 0.29 0.32 ± 0.46 0.09 ± 0.46 0.44 ± 1.74 0.03 ± 0.08

RankEdge 0.30 ± 0.58 0.39 ± 0.58 0.04 ± 0.14 0.97 ± 2.59 0.35 ± 0.50

MaxEdgeA 0.30 ± 0.27 0.28 ± 0.30 0.11 ± 0.17 0.15 ± 0.20 0.05 ± 0.10

MaxEdgeB 0.14 ± 0.23 0.15 ± 0.23 0.06 ± 0.10 0.11 ± 0.16 0.08 ± 0.14

MaxEdgeC 0.31 ± 0.29 0.50 ± 0.36 0.12 ± 0.17 0.13 ± 0.21 0.08 ± 0.13

MaxWeighted 0.29 ± 0.30 0.39 ± 0.33 0.15 ± 0.23 0.19 ± 0.24 0.17 ± 0.23

Deneubourg 0.46 ± 0.17 0.42 ± 0.28 0.001 ± 0.003 0.04 ± 0.09 0.02 ± 0.09

Table 6.  Path length pruning: For each algorithm we show the average reduction in lengths of chosen paths
over time (Methods) observed. We omit the Minimal graph, because there is only one possible path from one
nest to the other, and thus no pruning is possible.

www.nature.com/scientificreports/

1 5Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

There are several features of our algorithm that are critical for success in repairing breaks to the routing back-
bone. First, to minimize path entropy it is essential to have a stronger-than-linear bias towards choosing the
highest-weighted edge (RankEdge), rather than choosing edges proportional to their edge weight (Weighted).
This helps constrain the search space and leads to better convergence to a single consensus path. We emphasize
that Weighted has a strong success rate because pheromone is left on every edge in the graph (see e.g., Fig. 6A,B).
This guarantees that there exists some path with positive probability. However, Weighted does not commit to a
single path as effectively as an algorithm with a strong, non-linear bias toward the highest-weighted edge, such as
RankEdge. The path entropy of Weighted is high because essentially every path in the graph has high probability,
and the average path length is high because the algorithm does little to eliminate long paths and commit to short
paths. Second, to repair breaks it is essential to use bi-directional search and avoid backtracking. Observations
show that when turtle ants encounter a break, ants from both sides of the break attempt to repair the trail7. When
ants from both sides meet, they each encounter a trail that is already strongly reinforced and guided towards the
other nest. In addition, the ability to avoid backtracking allows ants to avoid going back and forth along the same
edge. Third, we showed theoretically that the time needed to find an alternative path decreases significantly if
turtle ants reaching a dead-end in their trail do not leave pheromone while returning back from the dead-end.

The RankEdge algorithm is parsimonious, capable of both maintaining trails and repairing breaks to trails
using the same underlying logic. Observed ants encounter diverse situations analogous to breaks in the ongo-
ing maintenance of trails. We find that a single algorithm can solve two diverse problems without requiring the
additional complexity of a signal that distinguishes such situations from a rupture in the trail. How each path is
established originally is an interesting yet distinct question. Paths are not always the shortest globally, and the
physical structure of edges in the canopy appears to affect how these paths are selected.

The algorithm can be extended to improve performance, though this may involve sacrificing biological real-
ism. One possible extension would allow ants to “toggle” between different parameter values or algorithms in
different situations. For example, an ant could use RankEdge, but if it encounters a dead-end or massive crowd-
ing (determined for example by a large increase in the frequency of antennal contacts with other ants18,69), then
it increases its probability of exploring new edges. This would be similar to a distributed version of simulated
annealing, with the value of qexplore corresponding to the decreasing value of the temperature parameter. A second
possible extension would be to use multiple types of pheromone70. Ants could use negative pheromone to signal
to other ants not to select a certain edge, for example, towards a dead-end. Further work is needed to measure
the computational abilities of turtle ants to determine whether such extensions depart from biological realism.

There are some differences between our synthetic networks and the environment of the observed turtle ants.
First, turtle ant trail networks in the canopy are 3D planar networks, whereas here, to begin the investigation of
arboreal ant trail networks, we used 2D planar networks. The ideal test case would be a suite of synthetic networks
that are isomorphic to some portion of the turtle ant canopy. In lieu of this, we describe five synthetic networks,
some of which have been used by prior work, that each collectively test the ability of different algorithms to solve
the network repair problem. These five networks comprise a necessary (if not exhaustive) set of test cases. Second,
in the tropical forest, many edges are physically difficult to traverse, which may provide natural inhibition for
selecting certain edges. Third, in the canopy, edges are not all of the same length. In future work that includes var-
iability in edge lengths, synchronous walks will need to be modified since longer edges require more time-steps to
traverse. More generally, further work is needed to determine the physical properties of junctions and branches
in the canopy and how these properties influence the likelihood of traversing an edge.

Finally, the probabilistic RankEdge algorithm is biologically feasible, requiring less computational complexity
and assuming fewer memory requirements than many other distributed graph algorithms commonly used in
computer science. This suggests that a biological algorithm evolved to deal with the constraints of the tropical
forest canopy may be useful in other applications, such as in swarm robotics or molecular robots64–67. For such
applications, the best algorithm to choose depends on the requirements of the problem. We find evidence that
RankEdge is the best algorithm to achieve relatively high success rate and low path entropy. If agents do not need
to adhere to a single path, then the Weighted algorithm performs better, though the length of the path may be
long. It appears that turtle ants use an algorithm that finds a single short path7, as RankEdge provides. For trivial
graphs with only one alternative path, both algorithms perform similarly.

Overall, our work contributes to the growing body of work that reveals how distributed algorithms are used
by natural biological processes12,71.

Methods
Maximum likelihood estimation of parameter values.  For each candidate algorithm, we varied qdecay,
qexplore ∈ (0, 1) and evaluated the likelihood that the algorithm with a specific set of parameter values would have
generated the choices made by turtle ants observed in the field. The edges traversed by the turtle ants, and times
the edges were traversed, were used to compute how much pheromone had been added to and had decayed from
each edge, to give the amount of pheromone on each edge at any time. In modeling pheromone decay, we treat
qdecay as the rate of decay per second. When computing the amount of decay between two consecutive ant choices,
we decay all of the edges in proportion to the number of seconds elapsed between the two choices. For each can-
didate algorithm, if we know all of the edge weights at a given time and the value of qexplore, we can compute the
likelihood of a given choice. Figure 2A,B provides an example of a calculation of the likelihood of a choice for
each candidate algorithm.

For a given combination of qdecay, qexplore we performed this likelihood computation for every observed choice
in each of the 13 junctions. We updated the edge weights based on the choice and the amount of time that passed
between successive choices, and then repeated this process on the next choice made by the next ant. For each
junction of observations at a given node on a given day, we computed the maximum likelihood estimate (MLE)
for each parameter value pair. We then added the log-likelihoods for all the 13 junctions.

www.nature.com/scientificreports/

1 6Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

As we formalize in the Supplement, the exponential rate of pheromone decay means that the most recent ant
choices have the largest effect on the current edge weights at a junction. Pheromone added far in the past will have
largely decayed and will not contribute much to the current weights. Thus, we do not need an extensive history of
the choices to perform accurate modeling. It is not currently possible to measure or manipulate pheromone levels
on the branches in the canopy.

Additional technical details.  Each algorithm includes the following constraints motivated by field
observations:

	 1.	 Observations suggest that turtle ants tend not to backtrack, but instead tend to keep moving along the
trail in the same direction, indicating that turtle ants have at least enough sense of direction to avoid going
back and forth over the same edge. Our simulations include three exceptions to this. First, because our
simulations include two nests with ants going back and forth, upon reaching the nest, an ant is allowed to
backtrack along the same edge it used to reach the nest. Second, if a simulated ant reaches a dead-end node
that has no outgoing edges other than the previously traversed edge, it is allowed to backtrack. However,
the ant does not lay pheromone on the way back until it reaches a node with two edges, excluding the
edge it previously traversed. In field experiments, it is difficult to determine whether a turtle ant is laying
pheromone; however, it is known that Lasius niger ants down-regulate pheromone deposition at dead-ends
to avoid recruitment during crowding70,72. It is possible that turtle ants similarly down-regulate pheromone
in response to dead-ends. In the Supplement, we also provide a probabilistic argument for why it is critical
that ants do not lay pheromone when returning from a dead-end to repair the break. Thus, in addition to
the ability to avoid backtracking, each ant requires one binary state variable that is 0 or 1 depending on
whether the ant is coming back from a dead end.

	 2.	 Turtle ants queue at a node and leave in a first-in first-out manner. In other words, if more than one ant is
at the same node, only one ant chooses an edge in each time-step. In the field, turtle ants walk along narrow
branches, almost always one ant at a time in each direction. We find that queueing increases the success
rate of the algorithm (Supplement).

	 3.	 When turtle ants take an explore step, they often traverse an edge for a short distance, and then return to
the original node7. This builds a slight extension off the primary path, which can be extended by subse-
quent ants. In all algorithms, if a simulated ant takes an explore step, it goes across the edge and comes back
in one time-step. Thus, two units of pheromone are left on the edge, and the ant is back at the node it
started from. (R3-27) An explore step is defined as any choice that cannot occur unless >q 0explore . For
Weighted, this involves taking an edge with zero weight; for RankEdge, this involves taking an edge that
does not have the highest weight. For Unweighted, there is no explore step, because ants are not inherently
biased towards following any particular pheromone trail.

	 4.	 Because pheromone decays exponentially, theoretically once an ant lays pheromone on an edge, that edge’s
weight will never decay to absolute 0. In practice, if the edge weight stays unchanged even after multiply-
ing by the decay rate (due to numerical computation error, occurring at roughly 10−300), then we reset the
weight of that edge to absolute 0. Another possible approach would be to introduce a pheromone detection
threshold parameter. If an edge had pheromone below this threshold, the ant would treat the edge as if it
had no pheromone. We avoided this approach because it would introduce another parameter to optimize
and compare.

5. All edges are assumed to have the same length, and it takes exactly one time step for an ant to cross an edge.

Performance metrics.  Below we formally describe the three performance metrics used to evaluate each
algorithm, after it ran for T time-steps. Intuitively, the simulated ants have successfully found a path if they can
reach one nest from the other without taking any explore steps. We thus measure the performance of each algo-
rithm assuming qexplore = 0, and consider all paths that may be taken with positive probability under this con-
straint. For RankEdge and other non-linear algorithms, ants travel from one nest to the other by following the
highest-weighted edges. For Weighted, ants travel from one nest to the other using only edges of positive weight.

Formally, let the pheromone subgraph be the subgraph induced by the two nest nodes, all edges with a nonzero
weight, and all nodes adjacent to edges with non-zero weight. Let G be a pheromone subgraph and P = (v1, v2, …
vn) be a path in G, with nests v1 and vn. For a node vi≠1 ∈ P, define the candidate edges CP(vi) = {(vi, u) ∈ E(G):
u ≠ vi−1}, i.e., the edges that the ant could take from vi without backtracking to its previous node. Let vi, vi+1 ∈ P be
consecutive nodes in the path; we say edge (vi, vi+1) is maximal with respect to P if =+ ∈w v v max w v u(,) (,)i i u C v i1 ()P i

.
The path P is a maximal path if for every pair of consecutive nodes vi, vi+1 ∈ P, the edge (vi, vi+1) is maximal with
respect to P. An ant taking a maximal path always takes an edge with the highest weight; thus, a maximal path
allows an ant using one of the non-linear algorithms to commute between two nests with positive probability even
if qexplore = 0.

Next, define a pheromone path to be a path in which all edges have positive weight. Such a path allows an ant
following the Weighted algorithm to commute between two nests with positive probability even when qexplore = 0.

For a given algorithm, define a solution path to be a path that can be traversed with positive probability under
that algorithm when qexplore = 0. For all the non-linear algorithms discussed here, solution paths are equivalent to
maximal paths. For the Weighted algorithm, a solution path is equivalent to a pheromone path.

Let = … ∑ =p̂ p p p(, ,), 1i i1 2 be a probability distribution. Define the entropy of the distribution to be:
= −∑ˆS p p p() log()i i i .

www.nature.com/scientificreports/

17Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

At the end of the simulation, we evaluate the pheromone subgraph of each algorithm by computing the fol-
lowing measures:

	 1.	 Success rate (higher is better): The probability that the ants form a solution path. This is defined empiri-
cally by computing the percentage of the N simulations where a solution path is formed in the final graph.

	 2.	 Path entropy (lower is better): An information-theoretic measure of how well the ants converge onto a
single solution path.

•	 Let M1, M2, …, Mn be the set of all n solution paths in the final graph.
•	 Let p1, p2, …, pn be the probabilities of taking each solution path with qexplore = 0. The probabilities

p̂ = (p1, p2,…, pn) form a probability distribution.
•	 The path entropy is then: S(p̂).

	 3.	 Average path length (lower is better): The average length of the solution paths in the final graph. Path
length is defined to be the number of nodes in a path.

To compute the pruning metrics, we first define a chosen path as the sequence of nodes v1, v2, …, vn, after
removing cycles, that an ant takes to successfully walk from one nest to another. Figure S1 illustrates why remov-
ing cycles is necessary when comparing chosen paths.

Over the course of the simulation, we track all chosen paths for all ants that successfully walk from one nest
to the other. This includes the number of times each path was chosen—and thus the distribution over the chosen
paths—and the lengths of these paths.

	 1.	 Path elimination: An information-theoretic measure of the degree to which paths from one nest to the
other are eliminated over time.

•	 Let St = S(p̂t) be the entropy over the distribution of chosen paths p̂ that have been completed at or
before time t.

•	 Let =
≤ ≤

S Smaxmax
t T

t
1

 be the maximum chosen-path entropy over the entire simulation.
•	 The path elimination is then the maximum entropy minus the entropy at the end of the simulation:

Smax − ST.

	 2.	 Path length pruning: A measure of the degree to which ants reduce the lengths of the paths they take over
time.

•	 Suppose at time t the ants have taken chosen paths p1, p2, …, pn with frequencies c1, c2, …, cn. Let l(pi) be
the length of path pi. We define the weighted-mean chosen path length at time t to be: = .

∑ ⋅

∑
Lt

c l p

c

()i i i

i i
•	 Let =

≤ ≤
L Lmaxmax

t T
t

1
 be the maximum weighted mean chosen path length over the entire simulation.

•	 The path length pruning is then: Lmax − LT.

Robustness across network topologies.  To determine which parameter values performed well across
all the planar topologies tested, we defined the robustness of a set of parameter values (qexplore, qdecay) to be the
geometric mean of the success rates for those parameter values on all six networks. We use the geometric mean
because it penalizes parameter values that perform poorly on any one particular graph; for a set of parameter
values to have a high geometric mean, it must perform well on every graph. When computing robustness, we
weight the success rates over all networks equally. This is done for two reasons: first, this highlights algorithms
that perform well under a variety of distinct but equal conditions; and second, we do not currently have complete
data on which topologies are more or less likely to occur in the canopy, and thus it is not clear how weighting
factors should be selected.

Application to the European road network.  We sampled a portion of the European road network. This
sample contained the same number of nodes as the Full grid (11×11 = 121 nodes). Sampling was done by select-
ing a random node and performing a breadth-first search until 121 nodes were visited. The network contained
these 121 nodes and all the edges adjacent to these nodes. We then randomly selected two nodes and removed
a randomly-chosen edge in the shortest path between those nodes. If removing this edge disconnected the two
nodes, we discarded the pair of nodes and picked a new randomly chosen pair of nodes. We then applied our
algorithm to repair the trail.

Source code and datasets.  All source code for the algorithm and all datasets for the ant choices are avail-
able at our Github repository: http://github.com/arjunc12/Ants.

References
	 1.	 Lynch, N. A. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, (1996).
	 2.	 Tero, A. et al. Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010).
	 3.	 Navlakha, S., Barth, A. L. & Bar-Joseph, Z. Plos computational biology: Decreasing-rate pruning optimizes the construction of

efficient and robust distributed networks. PLoS ONE, (Accessed on 07/13/2016) (2015).
	 4.	 Latty, T. et al. Structure and formation of ant transportation networks. J R Soc Interface 8(62), 1298–1306 (2011).

http://github.com/arjunc12/Ants

www.nature.com/scientificreports/

1 8Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

	 5.	 Brabazon, A., O’Neill, M. & McGarraghy, S. Natural Computing Algorithms (Natural Computing Series). Springer (2015).
	 6.	 Gordon, D. M. The dynamics of foraging trails in the tropical arboreal ant Cephalotes goniodontus. PLoS ONE 7(11), e50472 (2012).
	 7.	 Gordon, D. M. Local regulation of trail networks of the arboreal turtle ant, cephalotes goniodontus. Am. Nat. 190(6), E156–E169

(2017).
	 8.	 Bottinelli, A., van Wilgenburg, E., Sumpter, D. J. & Latty, T. Local cost minimization in ant transport networks: from small-scale data

to large-scale trade-offs. J R Soc Interface 12(112) (2015).
	 9.	 Lanan, M. C., Dornhaus, A. & Bronstein, J. L. The function of polydomy: the ant crematogaster torosa preferentially forms new nests

near food sources and fortifies outstations. Behavioral Ecology and Sociobiology 65(5), 959–968 (2011).
	10.	 Newman, M. Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA (2010).
	11.	 Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to algorithms, volume 6. MIT press Cambridge (2001).
	12.	 Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst 3(6), 514–520 (2016).
	13.	 Gomez, C., Gilabert, F., Gomez, M. E., López, P. & Duato, J. Deterministic versus adaptive routing in fat-trees. In Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE (2007).
	14.	 Middleton, E. J. T. & Latty, T. Resilience in social insect infrastructure systems. Journal of The Royal Society Interface 13(116),

20151022 (2016).
	15.	 Malĺčková, M., Yates, C. & Boová, K. A stochastic model of ant trail following with two pheromones. arXiv:1508.06816 (2015).
	16.	 Flanagan, T. P., Pinter-Wollman, N. M., Moses, M. E. & Gordon, D. M. Fast and flexible: Argentine ants recruit from nearby trails.

PloS one 8(8), e70888 (2013).
	17.	 Garnier, S., Guérécheau, A., Combe, M., Fourcassié, V. & Theraulaz, G. Path selection and foraging efficiency in argentine ant

transport networks. Behavioral Ecology and Sociobiology 63(8), 1167–1179 (2009).
	18.	 Dussutour, A., Fourcassie, V., Helbing, D. & Deneubourg, J.-L. Optimal traffic organization in ants under crowded conditions.

Nature 428(6978), 70–73 (2004).
	19.	 Deneubourg, J.-L., Goss, S., Franks, N. & Pasteels, J. M. The blind leading the blind: modeling chemically mediated army ant raid

patterns. Journal of insect behavior 2(5), 719–725 (1989).
	20.	 Cherix, D. et al. Spatial organisation of a polycalic system in formica (coptoformica) exsecta nyl.(hymenoptera: Formicidae).

Mitteilungen der Schweizerischen Entomologischen Gesellschaft 53(2/3), 163–172 (1980).
	21.	 Deneubourg, J. L., Aron, S., Goss, S., Pasteels, J. M. & Duerinck, G. Random behaviour, amplification processes and number of

participants: how they contribute to the foraging properties of ants. Physica D: Nonlinear Phenomena 22(1), 176–186 (1986).
	22.	 Franks, N. R. Army ants: a collective intelligence. American Scientist 77, 138–145 (1989).
	23.	 Reid, C. R. et al. Army ants dynamically adjust living bridges in response to a cost–benefit trade-off. Proceedings of the National

Academy of Sciences 112(49), 15113–15118 (2015).
	24.	 Jackson, D., Holcombe, M. & Ratnieks, F. Coupled computational simulation and empirical research into the foraging system of

pharaohaos ant (monomorium pharaonis). Biosystems 76(1), 101–112 (2004).
	25.	 Jackson, D. E., Martin, S. J., Holcombe, M. & Ratnieks, F. L. W. Longevity and detection of persistent foraging trails in pharaoh’s ants,

monomorium pharaonis (l). Animal Behaviour 71(2), 351–359 (2006).
	26.	 Robinson, E. J. H., Jackson, D. E., Holcombe, M. & Ratnieks, F. L. W. Insect communication: “no entry” signal in ant foraging.

Nature 438(7067), 442–442 (2005).
	27.	 Robinson, E. J. H., Green, K. E., Jenner, E. A., Holcombe, M. & Ratnieks, F. L. W. Decay rates of attractive and repellent pheromones

in an ant foraging trail network. Insectes sociaux 55(3), 246–251 (2008).
	28.	 Robinson, E. J. H., Ratnieks, F. L. W. & Holcombe, M. An agent-based model to investigate the roles of attractive and repellent

pheromones in ant decision making during foraging. Journal of Theoretical Biology 255(2), 250–258 (2008).
	29.	 Colorni, A. et al. Distributed optimization by ant colonies. In Proceedings of the first European conference on artificial life, volume

142, pages 134–142. Paris, France (1991).
	30.	 Dorigo, M. & Blum, C. Ant colony optimization theory: A survey. Theoretical Computer Science 344(2-3), 243–278 (2005).
	31.	 López-Ibáñez, M., Stützle, T. & Dorigo, M. Ant Colony Optimization: A Component-Wise Overview, pages 1–37. Springer

International Publishing, Cham (2016).
	32.	 Colorni, A., Dorigo, M. & Maniezzo, V. Towards a Practice of Autonomous Systems: Proceedings of the First European Conference

on Artificial Life. Distributed Optimization by Ant Colonies, (eds F. J. Varela and P. Bourgine), 134–142, @inproceedings{ColDorMan
1992:ecal, (MIT Press, Cambridge, MA 1992). [@inproceedings{ColDorMan1992:ecal]

	33.	 Gambardella, L. M., Montemanni, R. & Weyland, D. Coupling ant colony systems with strong local searches. European Journal of
Operational Research 220(3), 831–843 (2012).

	34.	 Tsutsui, S. Ant colony optimization with cunning ants. Transactions of the Japanese Society for Artificial Intelligence 22, 29–36 (2007).
	35.	 Wiesemann, W. & Stützle, T. Iterated ants: An experimental study for the quadratic assignment problem. In International Workshop

on Ant Colony Optimization and Swarm Intelligence, pages 179–190. Springer (2006).
	36.	 Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A. & Peleg, D. Graph exploration by a finite automaton. Theoretical Computer Science

345(2), 331–344 (2005).
	37.	 Hanusse, N., Kavvadias, D., Kranakis, E. & Krizanc, D. Memoryless search algorithms in a network with faulty advice. Theoretical

Computer Science 402(2), 190–198 (2008).
	38.	 Wagner, I. A., Lindenbaum, M. & Bruckstein, A. M. Efficiently searching a graph by a smell-oriented vertex process. Annals of

Mathematics and Artificial Intelligence 24(1–4), 211–223 (1998).
	39.	 Feinerman, O., Korman, A., Lotker, Z. & Sereni, J.-S. Collaborative search on the plane without communication. In Proceedings of

the 2012 ACM Symposium on Principles of Distributed Computing, PODC ’12, pages 77–86, New York, NY, USA, ACM (2012).
	40.	 Emek, Y., Langner, T., Stolz, D., Uitto, J. & Wattenhofer, R. Towards More Realistic ANTS. In 2nd Workshop on Biological Distributed

Algorithms (BDA) (2014).
	41.	 Lenzen, C. & Radeva, T. The power of pheromones in ant foraging. In 1st Workshop on Biological Distributed Algorithms (BDA),

(2013).
	42.	 Kleinberg, J. & Tardos, E. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2005).
	43.	 Chandy, K. M. & Misra, J. Distributed computation on graphs: Shortest path algorithms. Communications of the ACM 25(11),

833–837 (1982).
	44.	 Humblet, P. A. et al. Another adaptive distributed shortest path algorithm. IEEE transactions on communications 39(6), 995–1003

(1991).
	45.	 Perlman, R. An algorithm for distributed computation of a spanningtree in an extended lan. In ACM SIGCOMM Computer

Communication Review, volume 15, pages 44–53. ACM (1985).
	46.	 Garay, J. A., Kutten, S. & Peleg, David A sublinear time distributed algorithm for minimum-weight spanning trees. SIAM Journal on

Computing 27(1), 302–316 (1998).
	47.	 Suomela, J. Survey of local algorithms. ACM Computing Surveys (CSUR) 45(2), 24 (2013).
	48.	 Afek, Y. et al. Beeping a maximal independent set. Distributed computing 26(4), 195–208 (2013).
	49.	 Merkl, F. & Rolles, S. W. W. Linearly edge-reinforced random walks. In Institute of Mathematical Statistics Lecture Notes - Monograph

Series, pages 66–77. Institute of Mathematical Statistics (2006).
	50.	 Diaconis, P. & Freedman, D. de finetti’s theorem for markov chains. The Annals of Probability, pages 115–130 (1980).
	51.	 Burgess, D. Reinforced random walk. Probability Theory and Related Fields 84(2), 203–229 (1990).

www.nature.com/scientificreports/

1 9Scientific REPOrTS | (2018) 8:9297 | DOI:10.1038/s41598-018-27160-3

	52.	 Stevens, A. & Othmer, H. G. Aggregation, blowup, and collapse: the abc’s of taxis in reinforced random walks. SIAM Journal on
Applied Mathematics 57(4), 1044–1081 (1997).

	53.	 Aron, S., Pasteels, J. M. & Deneubourg, J. L. Trail-laying behaviour during exploratory recruitment in the argentine ant, Iridomyrmex
humilis (Mayr). Biology of Behaviour 14, 207–217 (1989).

	54.	 Pinter-Wollman, N., Wollman, R., Guetz, A., Holmes, S. & Gordon, D. M. The effect of individual variation on the structure and
function of interaction networks in harvester ants. J R Soc Interface 8(64), 1562–1573 (2011).

	55.	 Mersch, D. P., Crespi, A. & Keller, L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science
340(6136), 1090–1093 (2013).

	56.	 Gordon, D. M. The expandable network of ant exploration. Animal Behaviour 50(4), 995–1007 (1995).
	57.	 Jeanson, R., Ratnieks, F. L. W. & Deneubourg, J.-L. Pheromone trail decay rates on different substrates in the pharaoh’s ant,

monomorium pharaonis. Physiological Entomology 28(3), 192–198 (2003).
	58.	 Simon, T. & Hefetz, A. Trail-following responses oftapinoma simrothi (formicidae: Dolichoderinae) to pygidial gland extracts.

Insectes Sociaux 38(1), 17–25 (1991).
	59.	 Perna, A. et al. Individual rules for trail pattern formation in argentine ants (linepithema humile). PLoS computational biology 8(7),

e1002592 (2012).
	60.	 Deneubourg, J.-L., Pasteels, J. M. & Verhaeghe, J.-C. Probabilistic behaviour in ants: a strategy of errors? Journal of Theoretical

Biology 105(2), 259–271 (1983).
	61.	 Fonio, E. et al. A locally-blazed ant trail achieves efficient collective navigation despite limited information. eLife 5, e20185 (2016).
	62.	 Sumpter, D. J. T. & Beekman, M. From nonlinearity to optimality: pheromone trail foraging by ants. Animal behaviour 66(2),

273–280 (2003).
	63.	 Kunegis, J. KONECT – The Koblenz Network Collection. In Proc. Int. Conf. on World Wide Web Companion, pages 1343–1350

(2013).
	64.	 Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010).
	65.	 Brambilla, M., Ferrante, E., Birattari, M. & Dorigo, M. Swarm robotics: a review from the swarm engineering perspective. Swarm

Intell 7(1), 1–41 (2013).
	66.	 Werfel, J., Petersen, K. & Nagpal, R. Designing collective behavior in a termite-inspired robot construction team. Science 343(6172),

754–758 (2014).
	67.	 Hecker, J. P. & Moses, M. E. Beyond pheromones: evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm

Intelligence 9(1), 43–70 (2015).
	68.	 Korn, C. & Augustin, H. G. Mechanisms of Vessel Pruning and Regression. Dev. Cell 34(1), 5–17 (2015).
	69.	 Prabhakar, B., Dektar, K. N. & Gordon, D. M. The regulation of ant colony foraging activity without spatial information. PLoS

Comput Biol 8(8), e1002670 (2012).
	70.	 Czaczkes, T. J., Grüter, C. & Ratnieks, F. L. W. Trail pheromones: an integrative view of their role in social insect colony organization.

Annual review of entomology 60, 581–599 (2015).
	71.	 Navlakha, S. & Bar-Joseph, Z. Distributed information processing in biological and computational systems. Commun. ACM 58(1),

94–102 (2014).
	72.	 Czaczkes, T. J., Grüter, C. & Ratnieks, F. L. W. Negative feedback in ants: crowding results in less trail pheromone deposition. Journal

of the Royal Society Interface 10(81), 20121009 (2013).

Acknowledgements
The authors thank Jason Schweinsberg for guiding us in the theoretical proof. We are grateful to Illia Ziamtsov,
Javier How, Benjamin Cosman, Ailie Fraser, Will Hamilton, Sam Crow, Alex Lang, and the anonymous reviewers
for helpful comments on the manuscript.

Author Contributions
A.C. and S.N. performed the computational experiments. D.M.G. performed the field experiments. All authors
wrote and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27160-3.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-27160-3
http://creativecommons.org/licenses/by/4.0/

	A distributed algorithm to maintain and repair the trail networks of arboreal ants

	Related work

	Species-specific modeling of ant behavior.
	Ant colony optimization.
	Graph algorithms and reinforced random walks.

	Results

	A graph-theoretic framework for modeling network repair by turtle ants.
	Parameters.
	Performance metrics.
	A model of computation for individual ants.
	Candidate distributed algorithms.
	Other algorithms.
	Summary of conclusions.
	Q1. Field observations to determine the best algorithm and parameter values.
	Maximum likelihood estimation.
	Consistency of the maximum likelihood estimation across colonies and days.

	Q2. Algorithm performance on synthetic and real-world planar networks.
	Simulation setup.
	Minimal graph.
	Simple graph.
	Medium graph.
	Full grid.
	Spanning grid.
	European road transportation network.

	Q2a. Converging onto a single consensus path.
	Q2b. Finding short paths.
	Q2c. The power of bi-directional search.
	Q2d. The power of avoiding backtracking.
	Q2e. Critical features for the success of a plausible algorithm.
	Q3. Maintaining a trail in the absence of a break.
	Q4. Pruning as a general principle for discovering alternative paths.

	Discussion

	Methods

	Maximum likelihood estimation of parameter values.
	Additional technical details.
	Performance metrics.
	Robustness across network topologies.
	Application to the European road network.
	Source code and datasets.

	Acknowledgements

	Figure 1 Turtle ant habitat and trail network.
	Figure 2 Maximum likelihood computation.
	Figure 3 The maximum likelihood parameters closely match the best simulation parameters: (A) The color of each square in the heatmap corresponds to the robustness (Methods) of the success rates for the RankEdge algorithm for each combination of qexplore (
	Figure 4 Success rates for each network.
	Figure 5 Repairing road closures in the Europe road graph.
	Figure 6 Poor path entropy for Weighted.
	Figure 7 Analysis in the absence of a break.
	Figure 8 Turtle ants prune paths.
	Table 1 Maximum likelihood estimates for each algorithm.
	Table 2 Success rates for each algorithm.
	Table 3 Path entropy for each algorithm.
	Table 4 Average path length for each algorithm.
	Table 5 Path elimination:.
	Table 6 Path length pruning:.

