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Review
The history of life is a history of evolutionary innova-
tions, qualitatively new phenotypic traits that endow
their bearers with new, often game-changing abilities.
We know many individual examples of innovations and
their natural history, but we know little about the fun-
damental principles of phenotypic variability that permit
new phenotypes to arise. Most phenotypic innovations
result from changes in three classes of systems: meta-
bolic networks, regulatory circuits, and macromole-
cules. I here highlight two important features that
these classes of systems share. The first is the ubiquity
of vast genotype networks – connected sets of geno-
types with the same phenotype. The second is the great
phenotypic diversity of small neighborhoods around
different genotypes in genotype space. I here explain
that both features are essential for the phenotypic vari-
ability that can bring forth qualitatively new phenotypes.
Both features emerge from a common cause, the robust-
ness of phenotypes to perturbations, whose origins are
linked to life in changing environments.

A question about origins
Evolutionary innovations can be difficult to define rigor-
ously [1,2], but they are often easy to recognize as qualita-
tively new and adaptive traits of organisms. In addition,
they also frequently provide new platforms upon which
further evolutionary change can unfold. Examples include
the evolution of eyes, of flowers, and of flight, each of which
opened new ecological niches.

We know many examples of innovations, each a fasci-
nating piece of natural history. However, we know few of
the principles that explain the ability of living things to
innovate through a combination of natural selection and
random genetic change. Random change by itself is not
sufficient, because it does not necessarily bring forth
beneficial phenotypes. For example, random change
might not be suitable to improve most man-made, tech-
nological systems [3]. Similarly, natural selection alone is
not sufficient: As the geneticist Hugo de Vries already
noted in 1905, ‘natural selection may explain the survival
of the fittest, but it cannot explain the arrival of the
fittest’ [4]. Any principle of innovation needs to explain
how novel, beneficial phenotypes can originate. In other
words, principles of innovation are principles of pheno-
typic variability.
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All macroscopically visible innovations ultimately have
a molecular basis. They result from genetic changes that
affect the biological function and regulation of biological
macromolecules, as well as the interaction networks that
such molecules form. Many such molecular changes are
innovations in their own right. Examples include the
evolution of proteins with new catalytic abilities [5]. Both
macroscopic and molecular innovations involve change in
three classes of systems. These are genome-scale metabolic
networks, regulatory circuits, and macromolecules. Below
I will discuss these systems and their involvement in many
if not all evolutionary innovations. I will summarize a body
of work which suggests that these systems share two
important features. The first is the ubiquity of vast geno-
type networks, connected sets of genotypes with the same
phenotype. The second is the great phenotypic diversity of
small neighborhoods around different genotypes in geno-
type space. I will argue that these features jointly permit a
principled and systematic understanding of phenotypic
variability that can bring forth qualitatively novel pheno-
types.

Metabolic network innovations
Metabolic networks are systems of hundreds to thousands
of chemical reactions that are catalyzed by enzymes
encoded by genes. These networks are responsible for
providing cells with energy and multiple molecular build-
ing blocks – amino acids, nucleotides, lipids, and others –

for cell growth. Innovations involving metabolic networks
enable an organism to produce useful secondary metabo-
lites, to detoxify waste products of its metabolism, or to use
a novel molecule as a source of energy or chemical ele-
ments. The last of these is arguably most fundamental
because it allows organisms to survive in novel chemical
environments.

Prokaryotes are especially prolific metabolic innovators.
Heterotrophic bacteria, for example, have acquired the
ability to use a broad spectrum of different molecules as
sole carbon sources. To acquire this ability for any one
molecule is an innovation in any environment where this
molecule is the only available carbon source. It allows the
bearer to survive where other organisms would perish.
Such metabolic innovations continue to occur to this
day. For instance, prokaryotes have acquired the ability
to use a wide array of man-made antibiotics as sole carbon
sources, including fully synthetic compounds such as
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ciprofloxacin [6]. They also thrive on many toxic (to us)
xenobiotic substances of industrial importance, such as
polychlorinated biphenyls [7], chlorobenzenes [8,9], or pen-
tachlorophenol, a synthetic pesticide first produced in 1936
[10,11]. The latter compound, for example, can be digested
by the bacterium Sphingomonas chlorophenolica. The nec-
essary metabolic pathway (Figure 1a) involves four steps
that this organism assembled from enzymes processing
naturally occurring chlorinated chemicals, as well as from
an enzyme involved in tyrosine metabolism [10]. In other
words, the enzymes or reactions themselves are not novel,
but their combination is. Such novel reaction combinations
are characteristic of metabolic innovations. They are facil-
itated by horizontal gene transfer, which shuffles existing
metabolic genes among organisms [12].

Because horizontal gene transfer is rampant in prokar-
yotes it is easy to understand why they are prolific meta-
bolic innovators. However, metabolic innovations are not
only restricted to microbes. Consider the urea cycle, an
innovation of land-living animals. It serves to convert
highly toxic ammonia into a less toxic compound that
can be excreted through urine. This compound is urea,
produced in a chemical cycle of five reactions. The cycle
combines four widespread reactions involved in arginine
biosynthesis with a reaction catalyzed by arginase, an
enzyme involved in arginine degradation [13]. Although
the reactions themselves are not new, the combination of
these reactions in the urea cycle is novel [13].

Innovation through regulation
Gene regulation changes the expression of a gene or the
activity of its product. The products of many genes form
regulatory circuits whose members cross-regulate the ex-
pression or the activity of each other. Changes in gene
regulation are central to many innovations.

One example is the eyespots of butterflies, innovations
that serve to deter predators [14–16]. In developing but-
terfly larvae, eyespots form in a prospective wing region
called the eyespot focus, where the transcription factor
Distal-less is expressed [17]. This protein plays a role in the
development of many body structures, including legs and
wings [18]. Its early expression in the eyespot focus demar-
cates the location where the eyespot will later form. Distal-
less is expressed in all eyespot foci studied to date, and
grafts of Distal-less-expressing foci to developing wing
tissue are sufficient to cause eyespot formation in the
recipient tissue [17]. Together with other regulators that
are also expressed in eyespot foci, Distal-less is thus a
prime candidate for a molecule that was involved in the
origin of eyespots [19].

Another example is leaf dissection in plants. Some plant
leaves are simple in shape, others are highly complex or
dissected, consisting of multiple small leaflets (Figure 1b).
Leaf dissection is an innovation that can serve many
purposes, among them to prevent leaf overheating in hot
environments and to increase CO2 uptake in water [20,21].
The developing leaflets of most flowering plants with com-
plex leaves show a marked increase in the expression of
KNOTTED1-like homeobox (KNOX) transcription factors
[22] (Figure 1b). This association is causal, as shown in the
lamb’s cress Cardamine hirsuta which has dissected
398
leaves. Reducing the activity of KNOX genes severely
impairs leaflet formation, whereas an increase in its
expression is sufficient to produce additional leaflets [23].

The commonality of these and many other examples of
innovation is that a change in the expression of already
existing molecules is involved in the innovation. It is no
coincidence that the regulatory molecules in both examples
are transcriptional regulators. First, transcriptional regu-
lation circuits have prominent roles in patterning plant
and animal embryos [18,24]. Second, most regulatory phe-
nomena ultimately affect gene transcription, which can be
viewed as the regulatory backbone of life.

Novel macromolecules
Macromolecules are among the smallest system classes in
which innovation can occur. Many innovations involve
changes in the composition of macromolecules, especially
proteins. Some such innovations are based on a single
amino acid change. A case in point is the bacterial enzyme
L-ribulose-5-phosphate 4-epimerase, where a single muta-
tion at the active site – from histidine to asparagine – gives
rise to a new catalytic activity, that of an aldolase joining
one molecule of dihydroxyacetone phosphate and glycoal-
dehyde phosphate [25] (Figure 1c). Other innovations re-
quire many amino acid changes. Examples include
antifreeze proteins. These proteins protect organisms from
temperatures at which their body fluids would otherwise
turn to ice [26–28]. Antifreeze proteins have evolved mul-
tiple times, and they can evolve rapidly [26,29]. For exam-
ple, the arctic glaciation which probably has driven
antifreeze protein evolution in arctic fish occurred less
than 3 million years ago [30]. Antifreeze proteins are
representative of much larger classes of innovations that
have occurred repeatedly and with sometimes very differ-
ent solutions to the same problem [31,32].

Towards a systematic understanding of innovation
The three classes of molecular change I discussed are not
mutually exclusive. Most innovations involve an entangled
combination of them, each with small effects, but jointly
transformative. For example, the evolution of new meta-
bolic abilities can involve novel combinations of enzymes
created through horizontal gene transfer, changed regula-
tion of existing enzymes, and amino acid changes that
create new enzyme functions. It is nonetheless necessary
to examine these classes of change separately to identify
commonalities that can lead us to a more systematic
understanding of innovation.

What specifically should such a systematic understand-
ing of innovation achieve? First and foremost, it has to
explain how biological systems can preserve existing phe-
notypes that are necessary for survival and reproduction,
while at the same time exploring the many novel pheno-
types necessary to find an adaptive new phenotype. Sec-
ond, it should offer a unified understanding of innovations
at different levels of organization. Third, it should capture
the combinatorial nature of phenotypic variation: Innova-
tion often involves new combinations and re-use of existing
parts of a system [33,34], such as new combinations of
enzymes in metabolic innovations. Fourth, it should
account for the multiple origins of many innovations
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Figure 1. Three example innovations involving change in three different kinds of systems. (a) Four enzymatic steps in the degradation of pentachlorophenol. The enzymes

marked in blue have probably been recruited to pentachlorophenol degradation from pathways that are involved in the degradation of naturally occurring chlorophenols,

such as 2,6-dichlorophenol, which are produced naturally by some fungi and insects. The reactions in red are carried out by maleylacetoacetate isomerase, an enzyme

involved in the degradation of phenylalanine and tyrosine in some organisms, including some bacteria, fungi, and humans [10]. (b) Upper: a simple and a dissected leaf;

lower left: dissected leaf of the lamb’s cress Cardamine hirsuta; lower right: cross-section of shoot apical meristem (central region enclosed by a black line) together with

leaf primordia (enclosed areas surrounding the meristem, one is indicated by an arrow) of C. hirsuta [23]. Arrowheads indicate initiating leaflets and regions where KNOX

proteins are expressed, as revealed by antibody staining. After Figure 1 of [23], with permission from Nature Publishing Group. (c) Upper: one subunit of the

homotetrameric L-ribulose-5-phosphate 4-epimerase from Escherichia coli. A histidine residue (H97) in the catalytic site is highlighted. The structure is rendered from

information in Protein Data Bank file 1K0W [114]. Lower: schematic drawing of the chemical reaction catalyzed by the epimerase shown above, as well as for a mutant with a

single histidine to asparagine amino acid change at position 97; after [115]. The mutant catalyzes a new aldolase reaction.

Review Trends in Genetics October 2011, Vol. 27, No. 10

399



Glucose + ATP  → Glucose 6-phosphate +  ADP

Fructose 1,6-bisphosp hate →  Fructose 6-phosphate + Pi

Isocitrate  → Glyoxy late + Succina te 

Acetoac etyl -Co + Gyoxy late  → Co A + Malate

Oxaloac etate +  ATP  → Phosphoenolpyr uvate + CO2+ ADP

Pyruvate + Glutamate ↔  2-Oxogluta rate + Alanine 0

1

1

0

1

…
…

1
Alanine

Glucose

Ethanol

Melibiose

Xanthosine1

0

1

1

0

(a)

Sole ca rbon
source s

0.0 0.2 0.4 0.6 0.8 1.0

Fracti on U of phenoty pes un ique to neig hborhood

0

20

40

60

80

100

120

140

160

N
um

be
r 

of
 n

et
w

or
k 

pa
irs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Maximal  geno type distanc e D

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r 

of
 n

et
w

or
k 

pa
irs

5 10 15 20 25 30 35 40 45 50 55 60

Numbe r of alterna tive carb on source s

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
al

 g
en

ot
yp

e 
di

st
an

ce

(c)

(d)

>5000 biochemical  reactions

Metabolic genotype
(Net work  of enzymatic  reaction s)

(b) Metabolic phenotype
(Viabilit y on  carbon  source )

Genotype

Phenotype

TRENDS in Genetics 

…

…

…

…

…
…

U
P P

G1 G2

Figure 2. Metabolic genotypes, phenotypes, and genotype networks. Panels (a) and (b) represent the metabolic genotype and phenotype of a hypothetical metabolic

network. (a) The metabolic genotype of a genome-scale metabolic network can be represented compactly as a binary string which is as long as the number of known

enzyme-catalyzed biochemical reactions (there currently are more than 5000 such reactions.) The string contains a ‘1’ for each reaction that the network can catalyze, and a

‘0’ for all other reactions. (b) The entries of a metabolic phenotype string representation correspond to individual carbon sources. The string contains a ‘1’ for every carbon

source (black lettering) from which a metabolic network can synthesize all major biomass components. (c) Distribution of maximum genotype distance between 1000 pairs

of metabolic networks that are the endpoints of random walks in genotype space, where each walk leads away from an initial metabolic network, while preserving the

viability of this network on glucose. Inset: maximum genotype distances (vertical axis) between metabolic networks able to sustain life on a given number of carbon sources
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[31]. For instance, carbon fixation, the incorporation of
inert atmospheric CO2 into biomass, has been achieved
through the Calvin–Benson cycle, the reductive citric acid
cycle, and the hydroxypropionate cycle in quite different
ways [32]. Finally, it should provide insights about the role
of the environment and its change in innovation.

To study innovation more systematically than any one
case-study would allow it is necessary to represent a
system such that every possible phenotype can in principle
be studied. The representation of a genotype space, the set
of all possible genotypes, each with some phenotype, is
suitable for this purpose. To understand innovation sys-
tematically one needs to understand how genotype change
translates into phenotype change. Because genotypes are
ultimately DNA sequences, a genotype space is ultimately
a space of DNA sequences. However, it is often more
expedient to use other, more compact representations of
genotypes. I will next revisit the three classes of molecular
systems introduced earlier, and discuss the relationship
between genotype and phenotype in each. To elucidate this
relationship one must examine thousands of genotypes and
their phenotypes. Experimental techniques are currently
inadequate for this purpose. Computational modeling and
comparative analyses of massive amounts of data are thus
still essential for this characterization.

The organization of metabolic genotype space
The known ‘universe’ of chemical reactions in metabolism
comprises more than 5000 enzyme-catalyzed reactions
[35,36]. The genome of any one organism encodes enzymes
for only some of these reactions. We can view this collec-
tion of enzyme-coding genes as the metabolic genotype of
the organism. As a first approximation, we can represent it
as a binary string whose length is the number of reactions
in the known reaction universe (Figure 2a). This string
contains a ‘1’ at some position i if the organism encodes a
gene for reaction i (black lettering) and a ‘0’ (grey lettering)
if it does not. Reactions catalyzed by more than one
enzyme can be represented through one of their en-
zyme-coding genes.

The set of possible metabolic genotypes forms a vast
metabolic genotype space. The metabolic network of any
one organism is a point in this space. Two metabolic net-
works have a genotype distance D in this space, which can
be represented as the fraction of reactions in which they
differ. The maximal distance in this space – the diameter of
the space – corresponds to D = 1. Two metabolic networks
are neighbors in this space if they differ in the presence or
absence of a single reaction. Another important notion is
that of a network’s neighborhood, which comprises all the
network’s neighbors. More generally, the k-neighborhood
of a metabolic network contains all networks that differ
from this network in no more than k reactions.

To characterize the most fundamental metabolic phe-
notypes systematically, one can ask whether a metabolic
network can synthesize all biomass molecules life needs in
(horizontal axis) [43]. The graphs show that most reactions in a metabolic network can b

different and novel metabolic phenotypes that occur in the neighborhood of one but no

the same genotype network. The two circles in the inset stand for the sets of phenotype

phenotypes that would occur in only one but not the other neighborhood have grey sha

network pairs (G1,G2) the majority of phenotypes is unique to one of the two neighbo
a given chemical environment, such as a chemically mini-
mal environment with a single carbon source. Different
metabolic networks can use different molecules as sole
carbon sources. These observations motivate a represen-
tation of metabolic phenotypes as a binary string whose
length corresponds to the number of molecules that can
serve as a sole carbon source for a particular metabolic
network. For any one metabolic genotype this string con-
tains a ‘1’ at position i if the network can synthesize all
biomass components whenever carbon source i is provided
as the only carbon source, in an otherwise minimal envi-
ronment (Figure 2b). A string with multiple ‘1’s corre-
sponds to a network that is viable – it can synthesize
biomass – in multiple minimal environments that differ
in the sole carbon source they contain. In this context, a
metabolic innovation is a new metabolic genotype viable
on a novel carbon source – a novel ‘1’ in the phenotype
string. I focus here on innovations involving novel sources
of carbon because they are most fundamental, but the
framework I discuss also applies to other metabolic inno-
vations [37].

Determining the metabolic phenotype of a single organ-
ism – viability on a given spectrum of carbon sources – can
be performed experimentally. However, systematically ex-
ploring metabolic genotype space requires phenotypic in-
formation for many thousands of genotypes, and is
currently unfeasible by experiment. Fortunately, it is pos-
sible to infer metabolic phenotypes from metabolic geno-
types using the computational method of flux balance
analysis [38]. Briefly, this method uses information about
the stoichiometry of all chemical reactions in a metabolic
network, and about available nutrients, to predict the
spectrum of biomass molecules that the network can
synthesize and how fast it can synthesize them. The pre-
dictions of the method are in good agreement with experi-
mental results, with some exceptions, such as when
enzyme misregulation prevents growth [39–42].

Starting from a metabolic network with a given pheno-
type, one can explore metabolic genotype space through
random walks in this space. Each step in such a random
walk consists of deleting a randomly chosen reaction from a
metabolic network, or of adding a randomly chosen reac-
tion from the known reaction universe, as might occur in a
horizontal gene transfer event, followed by computation of
the new metabolic phenotype of the network. Such an
exploration reveals two simple organizational features of
metabolic genotype space [37,43,44].

First, metabolic genotypes with the same phenotype
form vast interconnected sets that extend far through
genotype space. Two metabolic networks with the same
phenotype are connected if one can be reached from the
other through a series of additions and deletions of reac-
tions, without ever changing the phenotype. Such a net-
work of genotypes – a genotype network – can be viewed as a
network of metabolic networks, all with the same pheno-
type. Each metabolic phenotype is associated with one or
e altered while preserving the network phenotype. (d) Distribution of the fraction of

t the other metabolic network, based on pairs of networks chosen at random from

s in the neighborhoods of two metabolic networks (genotypes), G1 and G2, where

ding and are labeled with the letter ‘U’ for unique. The graph shows that for most

rhoods. Data from [43].
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more such genotype networks. A genotype network for any
typical phenotype contains an astronomical number of
genotypes and reaches far through genotype space.
Figure 2c illustrates, as an example, that two metabolic
networks viable on glucose can differ in more than 70% of
their reactions. Networks viable on multiple sole carbon
sources can be equally diverse [43] (Figure 2c, inset).

The second feature emerges if one studies the neighbor-
hoods of different genotypes on a genotype network. That
is, choose two metabolic genotypes G1 and G2 at random
from the same genotype network, and examine the
(1-)neighborhood of each. In each neighborhood, some net-
works are inviable, others have the same genotype as G1
and G2, and still other networks are viable on new carbon
sources. These neighbors have novel metabolic pheno-
types, potential evolutionary innovations. If one compares
the two sets of novel phenotypes that occur in each neigh-
borhood one finds that they are very different. Most phe-
notypes that are found in a neighborhood are unique to
that neighborhood, in the sense that they do not occur in
the other neighborhood (Figure 2d).
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Genotype networks in gene regulatory circuits
To study phenotypic variability in the expression of regu-
latory genes or the activity of their products, one must
study the patterns of molecular activity, the regulatory
phenotypes that such circuits produce. Because transcrip-
tion regulatory circuits are central to embryo development
and to regulatory innovations, many such circuits are well-
studied individually [18,24]. The gene products of such
circuits are transcriptional regulators that bind regulatory
DNA sequences of other genes and activate or repress their
transcription. However, the evolution of such circuits is
difficult to study, partly because regulatory DNA
sequences evolve very rapidly, partly because they can
be spread over vast regions of non-coding DNA, and are
thus difficult to characterize [24]. In addition, systematic
understanding of novel regulatory phenotypes cannot be
achieved by the analysis of a single circuit, and instead
requires systematic analysis of thousands of circuits in the
genotype space of such circuits. For this purpose, computa-
tional models of such circuits are currently indispensable
[45–49].
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Computational models that lend themselves to an ex-
ploration of a circuit space need to represent the topology of
such a circuit – the pattern of activating and inhibiting
regulatory interactions – in a systematic way. Figure 3a
illustrates such a topology in a hypothetical gene regula-
tory circuit of five genes. One can think of the pattern of
regulatory interactions in a circuit as the regulatory geno-
type of that circuit. Two circuits are neighbors in the
genotype space of circuits if they differ in exactly one
regulatory interaction. The neighborhood of a circuit com-
prises all circuits that differ from it in one regulatory
interaction. One can represent the distance D between
the regulatory genotypes of two circuits as the number
or fraction of all regulatory interactions in which they
differ. Two circuits are maximally different (D = 1) if they
have no regulatory interactions in common. The regulatory
interactions specified in a regulatory genotype determine
the phenotype of the circuit. This phenotype reflects the
activity or expression level of each gene in any one cell, and
these can be represented either continuously or discretely
(‘on’ or ‘off’). The latter, discrete representation, although
highly simplified, facilitates enumeration and comparison
of different circuit phenotypes [49–51].

Just as in the case of metabolic genotype space, one can
explore a space of regulatory circuits through random
walks in this space. Each step in such a random walk
changes one regulatory interaction at a time while preserv-
ing the gene expression phenotype of the circuit. This type
of analysis reveals an organization of circuit genotype
space that is very similar to that of metabolic genotype
space.

First, for any one circuit phenotype, there are many
circuits with this phenotype. Almost all of these circuits
form one vast, connected genotype network that extends
far through genotype space. For example, circuits of 20
genes with the same phenotype can differ in more than 75%
of their regulatory interactions (Figure 3b). In conse-
quence, there are many solutions to the problem of pro-
ducing a given gene activity pattern [49–52]. This
observation is not specific to any one model of transcription
regulatory circuitry. It has also been made for circuits that
involve modes of regulation different from transcription
[49,53–55]. Supporting empirical evidence for this obser-
vation comes from recent analyses on the regulatory cir-
cuits driving sex determination, galactose metabolism, and
coordinated expression of ribosomal proteins in yeasts, all
of which can produce very similar regulatory phenotypes
but with different regulatory interactions [56–58].

A second generic feature is that small neighborhoods
around different circuits G1 and G2 with the same pheno-
type generally contain very different novel regulatory
phenotypes. Many phenotypes in the neighborhood of G1
are usually unique to that neighborhood, in the sense that
they do not occur in the neighborhood of G2 [51].

Innovation in macromolecules
The genotype of a macromolecule is its amino acid sequence
for proteins or its nucleotide sequence for RNA. The pheno-
type is its folding pattern in 3D space or its biochemical
function. The set of all possible genotypes forms a genotype
space, a concept that goes back to the late John Maynard
Smith who termed it a ‘protein space’ [59]. Later, computa-
tional work showed that genotype networks – connected
networks of macromolecules with the same phenotype –

exist in simple models of protein folding and of secondary
structure phenotypes in RNA [60,61]. Such genotype net-
works had originally been called neutral networks [60], but
evolution along such networks is all but neutral in fitness,
and can involve many epistatic mutations with modest
individual fitness effects [62,63]. Evidence accumulated
since then shows that such networks also exist for real
proteins of the same structure and/or function. In conse-
quence, proteins with the same phenotype can be extremely
diverse in their genotype [5,64–66].

An example involves the globin fold, a protein pheno-
type characteristic of oxygen-binding proteins, such as
myoglobin and hemoglobin (Figure 4a). The tertiary struc-
tures of even distant globin representatives are very simi-
lar, but their sequences are highly diverged. For example, a
study of six hemoglobins from plants and animals found
that as few as 12.4% of amino acid residues were identical
between any protein pair. In addition, only four out of 97
amino acids were unchanged in all of these proteins [67].
Phylogenetic information suggests that many known and
highly diverse globins stem from a common ancestor, and
that amino acid similarities of globins among different
animal species reflect the evolutionary relatedness of the
species [68,69]. Globins are not unusual in this regard. One
of many other examples is the triosephosphate isomerase
(TIM) barrel domain, a barrel-like protein structure whose
‘planks’ are made up of secondary structure elements. The
TIM-barrel could derive from a single ancestor [70], but
many proteins that harbor its structure have no recogniz-
able sequence similarity to one another. More generally,
surveys of multiple proteins reveal that many protein
structures can be realized by very different amino acid
sequences [5,64–66], although there are exceptions [71].

Thus, protein sequence space is permeated by genotype
networks of proteins with similar structure and function.
In addition, different neighborhoods in this space generally
contain different novel phenotypes. Figure 4b shows
results of a pertinent analysis [72]. The vertical axis shows
the fraction of novel enzymatic phenotypes that occur in
the neighborhood of one but not the other protein in a pair
of proteins with the same structure, and with a given
genotype distance D (horizontal axis). Even for proteins
with moderate genotype distance D, more than 50% of
enzyme phenotypes occur in the neighborhood of one pro-
tein but not the other. Similar observations exist for RNA
structure phenotypes [60,73,74].

Common organizational properties of genotype spaces
facilitate exploration of many novel phenotypes
The three system classes examined above are very differ-
ent, but they share two important features. First, geno-
types with the same phenotypes form extended genotype
networks that reach far through genotype space. Second,
different neighborhoods of genotypes on the same genotype
network contain different novel phenotypes. Taken togeth-
er, both of these features (illustrated in Figure 5a) facili-
tate the exploration of many novel phenotypes. To
visualize this, consider a population of genotypes that
403
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Figure 4. Structural conservation and great functional diversity in different neighborhoods of protein sequence space. (a) Two globin molecules with very similar tertiary

structures but little amino acid sequence similarity. Left structure: root nodule hemoglobin of the lupine Lupinus luteus [117]. Right structure: hemoglobin of the midge

Chironomus thummi thummi [118]. The root mean square difference in the position of 97 a-carbon atoms in the backbone of these helices is 2.88 Å [67]. Only 15.5% of the

amino acids are identical in the seven conserved helices [67]. The globins shown correspond to entries 2LH3 and 1ECO of the protein database PDB [119]. Figure adapted

from [95]. (b) The horizontal axis shows the mean genotype distance D of single-domain protein genotypes G1 and G2 with the same structure. This distance D is the

fraction of amino acids in which the two proteins differ. The vertical axis shows the fraction U of proteins with enzymatic functions that occur in a small sequence

neighborhood (�5 point mutations) of one but not the other of the two genotypes. The data are based on 16 574 single-domain proteins of known structure and enzymatic

function [72]. The large uncertainty (long error bars) at small distances D is caused by the low number of enzyme pairs at low genotype distance D [72]. The panel shows

that the neighborhoods of even modestly diverged proteins (D > 0.25, corresponding to more than 25% amino acid divergence) typically contain proteins with mostly

unique new functions, that is, functions that occur in the neighborhood of one but not the other protein genotype.
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explores a genotype network through repeated cycles of
mutation and selection that preserve an existing pheno-
type. If the genotype network of this phenotype reaches far
through genotype space, individuals in the population can
gradually change their genotype – and dramatically so –

while preserving their phenotype. They can explore very
different regions of genotype space and, through muta-
tions, different neighborhoods of their genotype network.
Because these neighborhoods harbor very different novel
phenotypes the existence of genotype networks facilitates
access to a great diversity of novel phenotypes. Recent
experimental work corroborates these ideas, showing that
populations of RNA enzymes that are spread out on a
404
genotype network can undergo rapid evolutionary adapta-
tion to a new chemical environment [75].

Figure 5b–d illustrate that both these features are
essential by exploring several counterfactual scenarios.
First (Figure 5b), if many genotypes were to form the same
phenotype, but if these genotypes were isolated from one
another, evolving genotypes would remain confined to
small regions of this space, and they could no longer access
as many different novel phenotypes. They can no longer
explore large regions of this space through mutations that
leave the phenotype unchanged. Second (Figure 5c), if
genotype networks were to be connected, but were highly
localized instead of extending far through genotype space,
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Figure 5. Connected genotype networks facilitate accessibility of many phenotypes. (a) The figure schematically represents a set of genotypes (grey circles) in a genotype

space (rectangle) that share the same phenotype and form a genotype network; neighboring genotypes are connected by grey lines. Colored circles indicate genotypes that

are adjacent to the genotype network, and that have different phenotypes (each color stands for a different phenotype). The figure illustrates that many different novel

phenotypes can be accessed from a connected genotype network that spreads far through genotype space. Panels (b) through (d) show three counterfactual scenarios for

genotype space organization, scenarios not typically found in systems studied thus far. (b) Most genotypes with the same phenotype are not connected. (c) The genotype

network does not spread far through genotype space but is highly localized to a small region. (d) Neighborhoods of different genotypes are not diverse, but they contain the

same novel phenotypes (blue circles). Note that genotype spaces have many dimensions with counterintuitive geometric properties, which a two-dimensional schematic

can only represent crudely.
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many novel phenotypes occurring elsewhere in genotype
space would remain inaccessible. Third (Figure 5d), if the
phenotypes in different neighborhoods of a genotype net-
works were not different but identical, the existence of a
genotype network would be irrelevant for evolutionary
innovation. Regardless of where a genotype lies on such
a network, it would only have access to the same novel
phenotypes.
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Box 1. Robustness is necessary and sufficient for extended genotype networks

The first step is to show that robustness – a fraction n > 0 of any

genotype’s neighbors with the same phenotype – is necessary for the

existence of connected genotype networks. The text below is written

with metabolic networks in mind, but the argument would apply to

regulatory circuits and molecules as well. Consider a typical

phenotype P. It will be adopted by some very large number NP of

genotypes. These phenotypes typically constitute a very small

fraction of a vast genotype space [5,44,50,73]. Let us assume that

this set of NP genotypes consists of genotypes chosen at random

from genotype space, without requiring that each genotype has many

neighbors with the same phenotype. The question is whether many

or most of these genotypes would be connected in a genotype

network. To address this question, let us examine one such genotype

G and its S neighbors. If the reaction universe has S reactions, then

each genotype has S neighbors. What is the probability that this

genotype is isolated, that is, that none of its neighbors are members

of P’s genotype set [51]? To answer this question, consider first the

probability that a randomly chosen genotype from the 2S – 1

genotypes different from G is not one of the S neighbors of G. This

probability is equal to one minus the number of neighbors of G,

divided by the 2S – 1 genotypes different from G, that is, it is equal to

1-[S/(2S – 1)]. Similarly, the probability that a second genotype chosen

at random from the now remaining 2S – 2 genotypes is not a neighbor

of G is 1-[S/(2S – 2)]. The same argument applies for a third, fourth,

and further genotypes, until one reaches genotype number (NP – 1).

From these considerations, we can estimate the probability that none

of the (NP – 1) genotypes different from G are neighbors of G as their

product. This probability is greater than

�
1 � S

2s � N p þ 1

�NP�1

� 1 � SðNP � 1Þ
2s � NP þ 1

(1)

The ratio S/[2S – NP – 1] will be very small, because the numerator is

linear in S, whereas the denominator is dominated by the term 2S,

which is exponential in S. For this reason, and because the number NP

of genotypes with phenotype P is typically very small compared to the

size 2S of genotype space, the right hand side of the equation will be

extremely close to one. This means that, in the absence of robustness,

two genotypes with the same phenotype will typically be isolated

from one another. They will not form a genotype network. More

generally, a set of random genotypes must contain at least of the

order of a fraction 1/S of all genotypes in genotype space before a

large genotype network arises [111,112]. In a genotype space of 2S

genotypes, this is a gigantic number of genotypes, larger than the

genotype sets of most phenotypes [44].

I next show that robustness (n > 0) is not only necessary but

sufficient for the occurrence of genotype networks. To this end, it is

useful to ask how genotype space would be organized if all genotype

networks were random networks that shared only this feature. I

emphasize that such random networks probably show little resem-

blance to actual genotype networks. However, they are useful in

forming null-hypotheses about genotype space organization. To this

end it will be useful to view genotype networks as graphs,

mathematical objects that consist of nodes, and of edges that link

these nodes. The nodes in a genotype space graph are genotypes.

Two nodes are k-neighbors if they differ in exactly k reactions. An

edge connects two genotypes if they are 1-neighbors.

Let us now iteratively construct a random graph in genotype space

as follows (Figure I). In the first iteration, connect G to nS of its 1-

neighbors at random, with equal probability that each 1-neighbor is

chosen. Second, take each of the 1-neighbors of G that are now

connected to G, and connect it to nS of its neighbors, most of which

will be 2-neighbors of G. Proceed analogously for the 2-neighbors

now connected to 1-neighbors (that are themselves connected to G)

and connect these 2-neighbors to 3-neighbors, and so forth. By

construction, nodes in the resulting graph will be connected to

approximately nS of their neighbors. At some iteration step in this

graph construction process, genotypes newly added to the graph no

longer increase the diameter of the graph, the maximum distance

between two nodes. To estimate approximately when this step is

reached – how far this graph reaches through genotype space – focus

on a k-neighbor Gk of G that is on the graph, and on one of the

neighbors that Gk has on the graph. The probability that this neighbor

is a (k + 1)-neighbor of G is 1 – k/S. The number of newly added nodes

that are (k + 1)-neighbors of G then follows a binomial distribution

with parameters nS and p = 1 – k/S. The expected number of newly

added nodes that are (k + 1) neighbors of G is thus n(S � k). It falls

below 1.0 if D > 1 � (1/nS), where D = k/S is the random graph

diameter, expressed as a fraction of the diameter of genotype space.

This inequality provides a lower bound for how far a random

genotype network would extend through genotype space. Because

S is large, numbering in the thousands for metabolic networks, and

n > 0.1 for most characterized networks [43,50,60,73], D is close to 1.0.

In consequence, one would expect random genotype networks to

extend far through genotype space, provided that their genotypes

have many neighbors with the same phenotype. Whether all or only

some of the genotypes of a particular phenotype lie on one genotype

network depends on n and on other system details [113].

Gk+1Gk

G

TRENDS in Genetics 

Figure I. Iterative construction of a random graph in genotype space.
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The central importance of robustness
Why do the genotype spaces of three very different system
classes show a common organization, in particular the
existence of extended genotype networks? This common
organization emerges from a common underlying cause.
Phenotypes in all three systems are to some extent robust
to genetic change—they are mutationally robust. In the
language of genotype spaces, this means that some fraction
v > 0 of the neighbors of a genotype G have the same
phenotype as G itself. Box 1 uses simple mathematics to
show that this feature is both necessary and sufficient for
the existence of extended genotype networks.

The robustness required for the existence of extended
genotype networks exists in all three system classes. For
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example, many neighbors of a protein G – differing in one
amino acid – have the same phenotype P, as shown by
random mutagenesis experiments [76–79]. In metabolic
networks, both computational and experimental work
shows that deletion of many enzyme-coding genes in
metabolic networks of free-living organisms does not
eliminate viability in any one environment [40,80–83].
In the Escherichia coli transcription-regulation network,
introducing each of more than 500 new regulatory
interactions does little to impair the operation of this
network [84].

The second of the two features highlighted, the pheno-
typic diversity of different neighborhoods of a genotype
network, can be easily understood from the following
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observation. Consider an arbitrary neighbor of some geno-
type G and the phenotype P of this neighbor. What is the
probability that an arbitrary neighbor of a second genotype
G’ (either on the same or a different genotype network) will
also have phenotype P? Even if phenotypes were to be
randomly, uniformly, and independently distributed
among all genotypes in a genotype space, this probability
would be very small providing there are many more possi-
ble phenotypes than a genotype has neighbors with differ-
ent phenotypes. This is the case for all three system classes
[43,44,50,51,85]. Thus, the phenotypic differences between
different neighborhoods need no special explanation.

Robustness is widely held to be a key factor influencing
evolvability [85–90]. In the framework discussed here it
becomes especially clear why robustness is qualitatively
important for phenotypic variability. Robustness brings
forth extended genotype networks that facilitate the ex-
ploration of novel phenotype by a population, while allow-
ing the population to preserve existing phenotypes.

Environmental change and the origins of robustness
Because mutational robustness is important for the ability
of genetic systems to innovate, we need to ask about the
evolutionary origins of robustness in different system clas-
ses. Two principal origins are possible. The first is that
natural selection directly favors systems with high muta-
tional robustness, and increases robustness over time.
Population genetic theory shows that this origin requires
populations that are polymorphic in mutational robust-
ness, and this in turn requires large populations or very
large mutation rates – because populations that do not
fulfill these criteria are generally monomorphic [91,92].
These conditions might not hold for many organisms and
systems.

The second candidate origin involves broadly defined
change in the environment. For an organism and its meta-
bolic network, such change could affect nutrients in the
extracellular environment, whereas in a protein it might
also include intracellular fluctuations in ions, metabolites,
and various regulators. Mutational robustness in any one
environment can arise because most biological systems
need to persist in multiple environments. In other words,
it can be a by-product of selection for robustness to chang-
ing environments [93–95]. In contrast to mutations, which
are rare perturbations, environments change constantly
for systems at all levels of organization, thus providing
ample pressure to increase robustness. And although
exceptions exist, mutational robustness and robustness
to environmental change are usually positively correlated
[94–100].

Metabolic networks are best-suited to illustrate the
role of environmental change in promoting mutational
robustness. Most reactions in a metabolic network such as
that of E. coli or yeast are silent in both chemically
complex and minimal environments, and even those reac-
tions through which metabolites flow are mostly dispens-
able [44,80,101–103]. For example, in E. coli, more than
70% of reactions do not reduce biomass growth when
eliminated [44]. This is not a peculiarity of the E. coli
metabolic network but is a general property of viable
networks with similar numbers of reactions [44]. If
E. coli lived in only one environment, such as the above
glucose minimal environment, it could eliminate most of
its chemical reactions without detrimental consequences.
The price would be a dramatic loss of robustness, as is
observed in endosymbionts that live in highly stable
environments [104–106].

As a metabolic generalist [107], the E. coli metabolic
network can synthesize its biomass from dozens of alter-
native carbon sources [43,108]. Each requires one or more
reactions that are specifically necessary to metabolize this
carbon source. If one requires viability on all these carbon
source, more than 100 previously dispensable reactions
become essential [43]. Many of the remaining dispensable
reactions would become indispensable in environments
that vary in sources of other elements and of energy. When
we examine a metabolic network with multi-environment
viability in only one or few of these environments, as
laboratory studies typically do, we would see exactly what
we see in E. coli: many of its reactions are dispensable in
one environment. In the language of metabolic genotype
space, such a network has many neighbors that preserve
viability. It is robust to genetic change in this environment.
However, any one reaction that is dispensable in this
environment might be essential in a different environ-
ment. If not, the reaction would eventually disappear –

that is, the gene encoding the required enzyme would
become eliminated from the genome.

Concluding remarks
Metabolic networks, regulatory circuits, and macromole-
cules are systems whose phenotypic variability is involved
in most if not all evolutionary innovations, from the mo-
lecular to the macroscopic level. These systems typically
need to be able to sustain life in multiple environments,
and this can be a major cause of mutational robustness.
Such robustness in turn brings forth genotype networks
that extend far through genotype space, and that have
phenotypically diverse neighborhoods. Together, these
observations satisfy five requirements that a systematic
understanding of evolutionary innovation – a theory of
innovation – needs to meet.

First and foremost, they explain how biological systems
can preserve old phenotypes while exploring many novel
phenotypes. Second, they offer a unified understanding of
phenotypic variability, and of how systems at different
levels of organization can bring forth innovations. Third,
the genotype space framework captures the combinatorial
nature of innovation because it represents innovations as
combinations of chemical reactions (enzymes), regulatory
interactions, and amino acids that already exist and are re-
used for a new purpose [33,34]. Fourth, this framework can
readily account for the multiple origins of many innova-
tions [31]. Any two very different genotypes with the same
phenotype can be viewed as different solutions to a prob-
lem that living systems face. The size and extent of geno-
type networks shows that most problems have not only
more than one but many solutions. Fifth, this framework
makes a strong statement about the role of environmental
change in phenotypic variability and innovation.

Several other phenomena, such as phenotypic plasticity,
gene duplication, and gene cooption, are also important in
407
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evolutionary innovation. I show elsewhere how the frame-
work presented here can help explain their role in innova-
tion [109] and how this framework can also apply to
technological innovation [110].

To understand phenotypic variability and how it affects
innovations we need to understand genotype spaces. I here
highlighted qualitative similarities among different sys-
tem classes, but these system classes could show even more
differences than similarities. We know little about these
differences because systematic exploration of genotype
spaces – aided by high-throughput genotyping and compu-
tation – is only now beginning to develop. And so is our
systematic understanding of the ability of life to innovate –

its innovability [109].
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