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“For it is simply a fact of observation that the guiding prin-
ciple in every cell is embodied in a single atomic association
existing only in one copy (or sometimes two) — and a fact of
observation that it results in producing events which are
paragons of orderliness […] the situation is unprecedented, it is
unknown anywhere else except in living matter.”

Erwin Schrödinger What is Life?
(Cambridge University Press, 1944)

When Erwin Schrödinger wrote What is Life?,
he was interested in whether new physical
laws were necessary to describe biological
systems. He was acutely concerned with
how “a single group of atoms existing in

one copy produces orderly events”. Although the molecular
basis of genetics did not require new physical laws, how cells
function and process information when the underlying
molecular events are random still remains an open question.
Gene expression, for example, involves a series of single-
molecule events and belies a deterministic description. As
each of these molecular events is subject to significant
thermal fluctuations, gene expression is best viewed as a
stochastic process. Even in cases where population
measurements are regular and reproducible, single-cell
measurements often display significant heterogeneity1.
Overall, these observations suggest that the molecular events
underlying cellular physiology are subject to fluctuations
and have led to the proposal of a stochastic model2–4 for gene
expression and biochemistry in general. Other cellular
processes influenced by noise include ion-channel gating5,
neural firing6, cytoskeleton dynamics7 and motors8,
although here we focus primarily on the role of noise in
intracellular networks.

How do we explain the complex, highly orchestrated and
robust physiology of the cell when the underlying molecular
events are basically random? Despite the stochastic function of
the foundations of regulatory circuits within cells, most cellu-
lar events are ordered and precisely regulated. Development in
Caenorhabditis elegans is so regular that we can trace the 
differentiated state of nearly every cell9. One example where the
transition from disorder to order has been measured is in
Drosophila melanogasterembryos10. Although the anterior-to-
posterior gradient of the maternal morphogen Bicoid in 

D. melanogaster embryos displays significant variability, the
profile of the hunchback gap gene, regulated by Bicoid, is pre-
cise. The need for order has led to the proposal that robustness
is an intrinsic property of intracellular networks11,12.

Although most cellular processes are ordered, not all
noise is rejected. Cell fate and population heterogeneity is
viewed increasingly as a noise-driven process. In the phage
lambda infection process, which is governed by the
lysis–lysogeny decision circuit, only a fraction of infecting
phage chooses to lyse the cell. The remainder become 
dormant lysogens awaiting bacterial stress signals to enter
the production phase of their life cycle13. Another example of
population heterogeneity can be found in the soil-growing
bacterium Bacillus subtilis, which responds to environmen-
tal stress with an arsenal of probabilistically invoked survival
strategies. B. subtilis can become motile and swim towards
new food sources, secrete degradative enzymes to scavenge
resources, secrete antibiotics to eliminate competitors, 
produce stress-resistant spores, or become competent for
genetic transformation14. The particular fate of each cell
seems random, although biased by environmental and
intercellular signals. Still more examples of population het-
erogeneity include differentiation of progenitor
haematopoietic stem cells15, non-genetic individuality in
bacterial chemotaxis16, and epigenetic inheritance and
incomplete penetrance of transgenes in mice17. However,
even heterogeneity is ordered; once a particular fate is 
chosen, the resulting process is tightly controlled.

Does the noise manifested as random cell fate and popu-
lation heterogeneity help or hurt the organism, or does it
have an indifferent effect? In at least some cases, randomness
and heterogeneity seem to be a boon to survival. Phase varia-
tion in pathogenic bacteria, where cells alternate randomly
between expressing certain genes and silencing others, is
thought to be a form of cultivated noise18. Type 1 pili 
expression in uropathic Escherichia coli18–21, pili expression
in Neisseria gonorrheae22, polysaccharide intercellular
adhesin synthesis in Staphylococcus epidermidis23,
lipopolysaccharide epitope expression in Haemophilus
influenzae24, and capsular polysaccharide expression in 
Vibrio vulnificus25 are just a few examples of this common
mode of control26. Even though the molecular events 
leading to phase variation seem random in the individual,
regulatory factors tune the variation to ensure mean levels of
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heterogeneity for the population. Environmental factors can shape
population diversity, presumably allowing for an adaptive response
to the conflicting demands of offence (infection of the host) and
defence (immune system recognition and destruction of the
pathogen)13,26.

Although examples of tightly ordered or potentially noise-
exploiting cellular processes abound, how cells are able to reign in 
biochemical noise remains unknown. Where does noise arise in the
cell? By what means do regulatory networks attenuate this noise? And
how and why do networks exploit noise? These questions present one
of the most challenging and fascinating problems for systems (if not
all) biologists, as they open questions in physiology, development and
evolutionary biology. The answer likely resides in the complex 
networks that underlie cellular physiology. Computational models are
the ideal tool for such investigations, because they allow us to express
formally the current state of knowledge about network composition
and structure, and to explore network dynamics. These tools allow us
to test and generate hypotheses about the fundamental operating prin-
ciples of a network and the sources and consequences of intracellular
noise, something not possible with qualitative arguments.

Modelling tools
Biochemical reactions are described traditionally in terms of kinetic
rates that describe how the concentrations of the various species (for
example, proteins or metabolites) in a cell (or test tube) change with
time. The reaction rates are embodied by rate laws such as mass action
or Michaelis–Menten kinetics, and the biochemical dynamics are
described with differential equations. A typical form of the equation is

}
dC

d
(
t
t)

}4vr(C)

where the variables C(t), t, v and r(C) represent the concentrations,
time, stoichiometric matrix and the rate law, respectively. Implicit in
the above formulation is the assumption that the cell is well mixed
and homogenous. This assumption is not limiting as the model can
be formulated with a spatial component that describes phenomena
such as cytoplasmic heterogeneity, compartmentalization, diffusion
and wave phenomena. Literally hundreds of software packages (both
commercial and freeware) are available to construct and solve, either
analytically or numerically, equations of these forms27,28.

These models are deterministic; if the starting conditions are
fixed, then the future evolution is also fixed precisely. Despite this, it is

possible to study the effects of noise to a first approximation using
bifurcation and spectral analysis. These approaches assume 
noise arises from an exogenous source and tacitly ignore intrinsic
fluctuations in pathway (for example, a noisy ligand signal is
assumed and fluctuations arising in the signal-transduction cascade
are ignored).

Molecular fluctuations can be incorporated explicitly by 
including random variables (or rather stochastic processes) in the
model. The easiest approach is to append a noise term to the end of
the differential equation
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where x(t) is the additive (white) noise term. The equation above is
often referred to as the Langevin equation or a stochastic differential
equation29. The appeal of the Langevin approach is that it builds on
the deterministic formulation (Fig. 1).

While many algorithms exist for simulating the Langevin equa-
tion30, often one calculates the probability density function instead.
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Figure 2 A comparison of the isomerization reaction with 10 and 100 molecules using
a discrete stochastic model with k141 s–1 and k241 s–1. a, The sizes of fluctuations
decrease as the number of molecules increases. Simulations were performed using
the Gillespie algorithm. b, The steady-state probability density function. As the number
of molecules increases, the density becomes sharper. The figure shows a plot of the
analytic solution for the steady-state master equation. The distribution is given by the
expression
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Figure 1 Comparison of the deterministic and stochastic solution for an isomerization
reaction with dissociation constant Kd41. The deterministic solution predicts a
constant equilibrium (green line). The stochastic solution obtained by solving a
Langevin equation includes fluctuations about the equilibrium concentration. The
Langevin equation was solving using a first-order Euler method.
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The Fokker–Planck (or Kolmogorov’s forward equation) describes
the evolution of the probability density function
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where p(C,t) is the probability density function and the matrix sij is
the covariance of the noise process x(t). The quantity p(C,t)!C is the
probability of finding a cell with a concentration of a certain chemical
between C and C&!C at time t. One advantage of working with the
Fokker–Planck equation is that it is possible to analyse the model.
Tools such as sensitivity analysis and bifurcation theory are applica-
ble. However, for systems involving more than a few species, it is
impossible to solve the Fokker–Planck equation, even numerically.
Most researchers analyse these models using Monte-Carlo methods,
where one solves the Langevin equation many times and then uses
statistics to estimate the probability density function. Compared to
deterministic equations, Monte-Carlo methods are time consuming
when simulating many molecules and reactions, although they 
currently are the only option for complex (that is, realistic) models.

Implicit, however, in either differential or Langevin equations 
is a continuous description of molecular species, where the dynamics
are cast in terms of infinitesimal changes in concentration. This

description is limiting when modelling processes involve a few mole-
cules, discrete structures or single-reaction events such as the binding
of a transcription factor to its cognate promoter.

Recent research in biological noise has been directed towards
modelling molecular species (such as proteins, messenger RNA and
ribosomes) as discrete entities using elements of probability theory.
In this framework, reaction events replace reaction rates, and each
distinct reaction event is explicitly modelled. The likelihood of a 
reaction event (for example, a protein undergoing a transition) is
analogous to a reaction rate. Rather than referring to a differential
rate, we assign a probability that the protein will undergo a transition
in an infinitesimal amount of time. Consider a protein existing in two
states A or B. We can now write a differential equation of the form

}
dP(n

d
a,

t

nb;t)}4 1(k1na&k2nb)P(na,nb;t)&

k1(na&1)P(na&1,nb11;t)&

k2(nb&1)P(na11,nb&1;t)

which describes how the probability P(na, nb;t) that na proteins exist
in state A and nb proteins exist in state B changes as a function of time.
The parameters k1 and k2 denote the likelihood of an A-to-B and B-to-
A transition, respectively. This equation is called a master equation
and describes what statisticians call a birth–death process. It also
defines a homogenous Markov chain, and is actually no different
mathematically than the equations used commonly in sequence
analysis, population biology and theoretical genetics. The master
equation is linear and, from a mathematical perspective, it is about as
simple an equation as one can hope for. The caveat is that the equa-
tion is large, so large you never want to write it down. Because the
problem above is simple, we can calculate an analytic solution for the
steady-state probability distribution (Fig. 2).

As with the Fokker–Planck equation, the master equation is
deterministic in the sense that if the starting probabilities are fixed,
then the future probabilities are fixed. The main difference between
the two formulations is how the species are represented: the descrip-
tion is continuous in the Fokker–Planck equation, but discrete in the
master equation. When modelling only a few reacting molecules, 
the discrete representation is believed to be more accurate than the 
continuous representation. However, as the number of molecules
increases this difference becomes less significant. In fact, the master
equation is asymptotically equivalent to the Langevin equation 
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where x(t) is a unit white-noise process31–33. This equation predicts that
the relative magnitude of the molecular fluctuations scales roughly as
the inverse square root of the number of reacting molecules.

Rarely do we work directly with the master equation, as many
equations are necessary to model systems involving more than few
reactions or species. For example, the master equation requires ten
thousand equations to describe a three-step linear pathway involving
one hundred molecules, as an equation is necessary to account for
each possible combination of molecules. Rather than enumerate
every state (the tumour suppressor p53 has at least 11 phosphoryla-
tion and acetylation sites, implying 211 distinct states for the
monomer and potentially 244 states for the tetramer34), it is easier to
simulate the random evolution of the system and use Monte-Carlo
approaches. This solution was formulated by Gillespie35, who 
proposed a simple, elegant algorithm for simulating stochastic kinet-
ics. This task is then repeated many times to estimate the relevant
probabilities and statistics. Although this procedure may be time
consuming, it is far easier than forming and then solving the 
master equation. In Gillespie’s algorithm, the time for the next reac-
tion event is calculated and the system is updated accordingly in an
iterative manner.
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Figure 3 Switches and chattering. a, A simple reaction network with positive feedback
produces a switch. b, The steady-state behaviours of two switches as a function of the
signal X. The left curve is a hysteresis whereas the right curve is ultrasensitive.
Differences between the two curves result from the use of different kinetic parameters
in the model. c, The dynamic behaviour of the two switches subject to similar noisy X
signals was simulated using the Gillespie algorithm. The hysteresis of the first switch
provides a buffer so that the switch is robust to noise. The second switch, which is
ultra-sensitive and lacks such a buffer, is sensitive to noise and subject to accidental
switching (indicated by arrow). Hysteretic switches provide one mechanism to reduce
switching chatter.
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An alternative approach to the Gillespie algorithm for stochastic
simulation is the StochSim algorithm36,37. In StochSim, the master
equation is discretized to facilitate numerical approximations of the
transition probabilities describing the evolution of the biochemical
dynamics. The approach is reminiscent of an explicit forward Euler
method for solving differential equations. It is not ‘exact’; the error is
proportional to the size of the time increments. If, however, we
choose small time increments, the error is negligible and StochSim is
asymptotically equivalent to the Gillespie algorithm. An alternate
approach to the master equation, tailored for diffusion processes in
complex geometries such ion transport in synapses, is MCELL
(http://www.mcell.cnl.salk.edu/). MCELL uses a ray-tracing algo-
rithm for tracking molecular motion and interactions. For systems in
thermodynamic equilibrium, the problem can often be recast in
terms of the Boltzmann equation, and Monte-Carlo solutions can be
obtained using the Metropolis algorithm and variants thereof.

There are still many unresolved issues regarding stochastic simu-
lation, computational efficiency being the most pressing. Although a
few strategies have been proposed to increase the efficiency of the
Gillespie algorithm38,39, there are currently no satisfactory approach-
es for simulating processes concurrently across multiple scales of
time, space or concentration. An alternative approach is to separate
timescales explicitly and reduce the model by singular perturba-
tions40. Yet other approach is to construct hybrid models involving
continuous and discrete representations41. Both these approaches
require direct intervention by the modeller — a cumbersome and
sometimes impossible task. The long-term goal is to develop 
algorithms that do this both automatically and adaptively. But the
challenge to multiscale simulation is rare events. How do we simulate
the rare events of interest without wasting computational resources
simulating frequent events that are irrelevant to the question being
asked? One can envision algorithms analogous to adaptive methods
used to solve stiff differential equations, whose realization will likely
involve a time discretization similar to the StochSim algorithm.

How is a modeller to choose between modelling approaches — an
implicit or explicit treatment of noise, a continuous or discrete repre-
sentation of molecules? When simulating processes that involve only
a few molecules, discrete stochastic models are superior to continu-
ous models. However, in many processes, there are many copies of
some species and few of others. In these circumstances, it is not
always clear which approach is better. Detailed mechanisms are easier
to include using discrete representations. For example, we can 
explicitly model the structure of the chromosome, transcription,
translation, ribosome and polymerase queues on mRNA and DNA
respectively, and events such as convergent transcription42. The 
disadvantage of discrete models is that they are more difficult to for-
mulate, test and solve computationally. As multiscale approaches for
simulating stochastic processes are desperately lacking, personal
proclivities currently dictate the choice of approach, as modelling
and simulation are, at this stage, more art than science.

Noise analysis
The modelling tools described above allow us to address questions
concerning intracellular noise. A few of these questions  include
where noise arises in cells, how pathways function robustly in spite of
noise, how molecular noise can selectively generate population 
heterogeneity, and how cells potentially exploit noise.

Origin of noise
To study the origins of noise in gene expression, McAdams and
Arkin4 proposed a stochastic model for gene expression in 
prokaryotes. Their model suggests that proteins are produced in 
random bursts. As a single mRNA transcript can produce multiple
copies of a protein, protein translation amplifies transcriptional
noise. Numerous other models have further validated and extended
this hypothesis by analysing the mechanisms contributing to noise 
in gene expression43–45. As an experimental verification, van Oude-

naarden and colleagues studied how the frequencies of transcription
and translation contribute to variability in gene expression by 
measuring expression of a green fluorescent protein (GFP) marker46.
Their results provided explicit evidence that most noise arises during
translation.

What fraction of noise is attributable to fluctuations in gene
expression and what fraction to external (or extrinsic) fluctuations
arising from other cellular components? To discriminate between the
two sources, Elowitz and colleagues47 measured differential expres-
sion of distinguishable cyan and yellow fluorescent protein markers
under the control of identical promoters. The degree of correlation in
a single cell provides a measure of discrimination; as fluctuations in
gene expression increase, the degree of correlation decreases. By
varying levels of gene expression using a lac promoter, they showed
that fluctuations in gene expression decrease as the expression
increases. Likewise, extrinsic noise decreases with increased levels of
gene expression, although remarkably it first passes through a 
maximum at intermediate levels of expression. In other words, at low
levels of expression both forms of noise are present, whereas extrinsic
noise dominates at intermediate levels, and both forms are absent at
high levels. It was also shown that noise has a genetic component;
recA mutants are twice as noisy as their wild-type counterparts.

Noise control mechanisms
Many researchers have found it useful to invoke analogies from signal
processing when investigating noise48,49. From this perspective, a
pathway is viewed as an analog filter and is classified in terms of its 
frequency response. Cascades and relays such as two-component 
systems and the mitogen-activated protein kinase pathway have
inherent noise-rejecting properties50. In terms of signal processing,
these pathways function as low-pass filters, as they transduce low-
frequency signals whereas high-frequency signals are attenuated. In
fact, most physical systems attenuate high-frequency noise on input
signals because of inherent time lags and delays. But noise also arises
in the pathway as a result of internal molecular fluctuations, and we
cannot simply ignore this noise or separate noise in the signal from
that in the pathway. Where this type of separation has been attempt-
ed, it has been observed that in certain network topologies, such as
cascades, there seems to be a trade-off between noise attenuation of
an input signal and inherent noise generated at each step of the 
pathway. van Oudenaarden and colleagues examined this trade-off
for cascade structures, and suggested that there is an optimal cascade
length for attenuating noise51. This analysis illustrates how conclu-
sions regarding noise may be derived from deterministic models
through indirect analysis.

Perhaps the simplest and most common noise-attenuating regu-
latory mechanism is negative feedback. The principle of negative
feedback is to measure whether the behaviour is acceptable, and to
make corrections based on the ‘error’ between the desired and 
measured behaviours. In the fields of engineering and economics, it
is well known that negative feedback is necessary to operate robustly
in an uncertain environment. Not surprisingly, feedback is ubiqui-
tous in biology as it provides a simple mechanism to attenuate the
effects of noise52–54. In terms of its signal-processing capabilities, a
simple negative feedback loop functions as a low-pass filter. Becksei
and colleagues55 demonstrated this effect by constructing a negative 
feedback module in E. coli. Their experiments showed that constitu-
tive expression of the GFP is highly variable, in terms of the measured
fluorescence intensity, whereas the addition of the negative feedback
using the tetracycline repressor significantly reduces the measured
variability, as expected.

Whereas simple negative feedback results in a low-pass filter,
another type of feedback — integral feedback — shapes a band-pass
filter. Integral feedback is a form of negative feedback that uses an
internal memory state to amplify intermediate frequencies and
attenuate low and high frequencies. Bacterial chemotaxis is an exam-
ple of a system using integral feedback56. Here, integral feedback
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measures temporal changes in chemical concentrations, rather than
steady-state changes, and results in biased motion towards attrac-
tants and robust adaptation.

In addition to intrinsic chemical damping, negative feedback and
integral feedback, many other simple mechanisms attenuate noise in
systems. One example is redundancy mechanisms such as gene
dosage and parallel cascades57,58. These mechanisms attenuate the
effects of noise by increasing the likelihood of gene expression or
establishing a consensus from multiple signals. Another example is
regulatory checkpoints59. Best characterized in the cell cycle and fla-
gellar biosynthesis, checkpoints ensure that each step in a pathway is
successfully completed before proceeding with the next step. Yet

another example is kinetic proofreading in protein translation,
where mechanisms are in place to correct possible errors60.

Noise amplification and exploitation
Complementary work has focused attention on cellular processes
that amplify or exploit noise in some sense, rather than just 
controlling or eliminating it. These processes fall into two classes —
mechanisms that give rise to population heterogeneity (and thus
diversity), and mechanisms that use noise to attenuate noise. 
Isogenic heterogeneity seems to arise from a noisy step in the 
commitment portion of an otherwise ordered process. One example
is the genetic circuit governing development in phage lambda, where
it was proposed42 that molecular fluctuations cause an initially
homogenous population to partition into a heterogeneous lytic and
lysogenic population. The basic mechanism governing the decision
circuit involves two antagonistic feedback loops — crossed repressive
feedback loops generate a switch, and molecular fluctuations parti-
tion the population statistically so that individuals may (by chance)
follow one path or the other. These results illustrate how intrinsic
molecular noise is used to generate diversity.

The fimnetwork regulates phase variation of type 1 pili in uropath-
ic E. coli. Type 1 pili, which are adhesive organelles expressed on the
surface of the cell, are virulence factors in urinary tract infections18,20.
A mechanism was proposed61 where the system components 
(invertible DNA element and the global regulators and invertases that
act stochastically upon it) realize a number of devices that together
transduce environmental signals into inversion probabilities and thus
the heterogeneity level of the population, presumably creating piliat-
ed populations in the bladder and unpiliated populations outside the
host. This network includes a switch based on the ratio of regulatory
proteins, a temperature tuning device capable of reading the tempera-
ture and increasing piliation at mammalian body temperature, and a
delay line using feedback as memory to prevent rapid cycling between
ON and OFF switching states (discussed below). This system provides
an example of how integrated regulatory modules in a network can
function to both shape and filter noise, thereby creating environmen-
tally tuned heterogeneity in a cell population.

The fim network seems to include a delay that decreases the sensi-
tivity of the switch to noise. Switches may be sensitive to both noise
and ‘chatter’ (Fig. 3). Chattering arises commonly in engineering,
where noisy signals may cause switches to rapidly turn off and on, and
it was proposed that the flagellar motor in bacterial chemotaxis 
possesses a mechanism to prevent chatter62. The expected fluctua-
tions in the response regulator CheY were shown not correlate with
the switching behaviour, suggesting that the flagellar motor has a
mechanism that decreases sensitivity to noise in CheY. Latter experi-
ments showed that the flagellar switch may possess a hysteresis63, one
mechanism known to reduce chatter.

Feedback can also amplify the effects of noise by autocatalytic
mechanisms64,65 (that is, positive feedback). In an experimental study
by Becksei and colleagues66, a synthetic positive feedback loop in
yeast was constructed using the tetracycline transactivator and a 
GFP marker (Fig. 4). In this system, activation of the feedback loop is
variable and randomness at the single-cell level leads to a mixed
colony of cells.

In addition to generating heterogeneous populations, cells also
use noise to filter noise. Whereas in most systems noise degrades a
signal, noise actually enhances a signal when certain nonlinear effects
are present. One example is stochastic resonance67; numerous 
examples of this exist in biology, such as electroreceptors in paddle-
fish68, mechanoreceptors in the tail fins of crayfish69 and hair cells in
crickets70. It has also been suggested that noise can potentially
increase sensitivity in certain signalling cascades71.

Complex interactions and multiple feedback loops
Some of the elementary mechanisms for noise attenuation, amplifi-
cation and exploitation enumerated above present the illusion of
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Figure 4 Construction of the synthetic positive feedback loop of Becksei and
colleagues66. a, Constitutive expression of the tetracycline-responsive transactivator
(rtTA). The degree of activation, measured by expression of the green fluorescent
protein (GFP), is proportional to the amount of inducer, doxycycline, added. Cells were
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response is indicated by the bimodal distribution. (Images courtesy of A. Becskai and
EMBO Journal 66).
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tractability (that is, they appear simple and readily identifiable).
However, elementary mechanisms typically do not function in 
isolation, but rather interact in complex networks involving multiple
feedback loops. These regulatory networks can produce diverse phe-
nomena ranging from switches to memory to oscillators72,73.
Although it is straightforward to understand how a single feedback
loop shapes noise, it is far more difficult to understand the composite
behaviour of multiple mechanisms interconnected in complex 
architectures. 

It is for these interactions that computational models are most
useful. For example, the network that controls circadian rhythms
consists of multiple, complex, interlocking feedback loops. Many
researchers have investigated the mechanisms for noise resistance in
circadian rhythms, using both deterministic and stochastic 
models74–77. General models of chemical oscillators are sensitive to
kinetic parameters. However, the proposed mechanisms for 
circadian rhythms produce regular oscillations in the presence of
noise. Remarkably, the stochastic model is able to produce regular
oscillations when the deterministic models do not76, suggesting that
the regulatory networks may utilize molecular fluctuations to their
advantage. 

Other examples of complex networks functioning in the presence
of noise are early expression of hox genes78 and bacterial chemo-
taxis79,80. As with the previous example, noise attenuation arises from
the systematic properties of the network rather than from a single
mechanism. What specific mechanisms confer robust functionality
in the presence of noise? Apparently, noise attenuation arises from
complex mechanisms involving multiple feedback loops. Although
theoretical and computational tools exist for analysing the properties
of a given network, no good theory exists (and perhaps never will) for
identifying all possible mechanisms that generate robust networks.

It is clear that large, complex networks are able to function reliably
despite inherent noise attributable to molecular fluctuations.
Although simple, specific mechanisms to explain this phenomenon
can be elusive, robustness has been hypothesized as an intrinsic 
property of intracellular networks. In two landmark papers, Leibler
and colleagues showed that the chemotaxis pathway in E. coli is
robust11,81; the pathway is functional for a wide range of enzymatic
activities and protein concentrations. Other examples of robustness
include developmental processes12,82 and phage lambda regulation83.
Although robustness is often studied independently of noise, the two
problems are not distinct. When studying robustness, the typical
question is how sensitive the behaviour of a network is to the 
parameters in the model. As these parameters are subject to fluctua-
tions, a noise-resistant network is likely to be robust. But a network
that is insensitive to the kinetic parameters may still be sensitive to
molecular noise, as internal and external noise are rarely parameter-
ized explicitly in these models. A comprehensive investigation of
robustness needs to account explicitly for noise.

Beneath the noise
The studies described above highlight the need for understanding the
role of noise in biology. We are still far from answering the question
“How does order arise from disorder?”, but we are beginning to get a
glimpse of some of the mechanisms by which cells control and 
exploit noise.

Considerations of noise and robustness offer insight into the
design and function of intracellular networks84–86. In particular, what
design features or constraints are necessary for pathways to function
robustly in the presence of noise? Design and function often imply
teleological arguments. Rather than teleology, the hypothesis is that
the function of a network and the need for robustness impose 
constraints on its design and canalize evolution. For example, 
protein function often implies a specified chemistry, such as a 
membrane protein having a hydrophobic region, a soluble globular
protein having a hydrophobic core, and the active site of serine 
protease containing a Ser-His-Asp catalytic triad. We expect similar

constraints on networks; in particular, function imposes a specific
regulatory and information structure. We do not suggest that net-
works are designed optimally for fitness, but rather that certain
design features are necessary for a stable phenotype. These design
constraints allude to a theoretical biology distinct from physics and
chemistry, more akin to engineering than the new physical laws that
Schrödinger originally envisioned. ■■
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In this Insight Review Article, the right panel of Fig. 3c incorrectly
appeared blank. Figure 3c should have appeared as shown:

..............................................................

corrigendum

Altered performance of forest
pests under atmospheres
enriched by CO2 and O3

Kevin E. Percy, Caroline S. Awmack, Richard L. Lindroth, Mark E. Kubiske,
Brian J. Kopper, J. G. Isebrands, Kurt S. Pregitzer, George R. Hendrey,
Richard E. Dickson, Donald R. Zak, Elina Oksanen, Jaak Sober,
Richard Harrington & David F. Karnosky

Nature 420, 403–407 (2002).
.............................................................................................................................................................................

In this Letter, the conversion to SI units led to several errors.
On page 404, left column, lines 16 and 17, the values should read
10–15 and 30–40 nanolitres per litre. On page 405, right column,
lines 3 and 4, the values should read 360 microlitres per litre
and 36.0–38.8 nanolitres per litre. On page 407, left column, lines
3 and 4, the values should read 560 microlitres per litre, and 46.4 to
55.5 nanolitres per litre. The conclusions of the paper are not
affected. A
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