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Abstract

Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete for limited
resources, exhibit apparently chaotic fluctuations. This Lettgugmes a purely deterministic mechanism for evolving robustly
but weakly chaotic systems that exhibdzgotation, self-orgamation, sporadic volatility, rzd punctuated equilibria.
0 2004 Elsevier B.V. All rights reserved.
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An ongoing debat§l,2] among ecologists centers ally attributed to random external influences, may be
on the fact that while most theoretical models pre- evidence of chaos.

dict instability and extinction of most speci§®-5], Many different mathematical modeld.3] have
observations in nature suggest that complex and di- been used to study the dynamics of interacting species
verse ecologies are relatively stalpte-8]. While lab- or agents in a variety of different contexts and sys-

oratory experiments with flour beetles suggest chaos tems. The parameters in such models can be deter-
[9,10], there is scant evidence of chaos in nature per- mined in several ways, including using values taken
haps because of the dynamical complexity and mea- from real ecologie§14], using random valuefl5],
surement limitation$11,12] Our work suggests that  or building up the values by choosing species ran-
erratic fluctuations, which are common and are usu- domly from some large pool containing species of
various typeg16]. In addition, the parameters can be
changed in time to model evolution, mutation, extinc-
tion, etc.[17-19] The majority of these models use
S, . random or stochastic terms, which can give rise to
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non-evolutionary models produce chaos over a rela-
tively narrow range of parameters, bounded on one
side by stable behaviour and on the other by extinc-
tion.

Here we show that a simple model with realis-
tic and purely deterministic adaptation can produce
highly complex systems in which most species coex-
ist with weakly chaotic fluctuations independent of the
initial conditions. The proposed mechanism offers a
possible explanation for the observed biodiversity and
at least some of the fluctuations and unpredictability in
nature, and it suggests why it may be difficult to stabi-
lize such systems by human intervention.

Our model is a variant of the generalized Lotka—
Volterra equationf20,21] This model was chosen be-
cause of its simplicity and the fact that it can be viewed
as the first approximation in a Taylor series expansion
for a much wider class of mod€82]. We considetV
competing species with population for i =1 to N

satisfying
N
(l — Z aijx]) s
j=1

where the vector of growth rates and the matrix

of interactionsa;;, are the parameters which model
the biology (economics, sociology, etc.). The elements
a;ij, which are positive to indicate competition, de-

dxi
— = TriXi

7 1)
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ignores mutualism and the effect of varying individual
prey populations on the predators. However, the results
are not substantially altered if some of g are al-
lowed to be negative. Finally, without further loss of
generality, we can take the self-interaction terms
equal to unity, which is equivalent to measurirgin
units of its carrying capacity in the absence of the other
species.

For competitive systems, chaos is not possible with
fewer than four species because the dynamics occur on
an (N — 1)-dimensional carrying simplex. For larger
ecologies, a sense of the rarity of parameter values that
lead to chaotic solutions follows from the observation
that choosingy;; from a random exponential distribu-
tion (so as to have a broad spectrum of positive values)
with mean 1.0, withV = 4 leads to chaotic solutions
with all species coexisting in only about 1 in°l@ases
for a sample of 10 cases, and foN =5 in only 1 in
4 x 10° cases. Coexisting chaotic systems for realisti-
cally largeN (> 100) are vanishingly rare and almost
impossible to find in such a random search, although
work of Smale[24] guarantees their existence. The
conditions for coexistence (an equilibrium with al
positive) and for chaos (the equilibrium being locally
unstable) are somewhat mutually exclusive and occur
in very small regions of this vast space of parameters.

Nature probably does not choose randomly from
all possible ecologies, but instead individual species

scribe the average extent to which members of speciesadapt to their environment so as to enhance their sur-

J compete with members of specie®\ key point that

vival. Many models have attempted to include such

is often overlooked in these models is that as any given adaptation, as mention earlier. These models often as-

species approaches extinction, the averaging athe
elements for this speciasill occur over smaller and
smaller populations, and hence more variability be-
comes possible, causing the model to fail.

In a general ecology, one expects the linear growth
ratesr; to be different for each species as well as the
species interactions;;, to be both positive and neg-
ative, especially if the sgTies are animals rather than
plants. However, Coste et §23] have shown that any
suchN-dimensional Lotka—Volterra system can be ex-
tended to an equivaleritv + 1)-dimensional system
with positivea;; and equal growth rates. Since we are
concerned with high-dimensional systems, in the in-
terest of simplicity, we take;; > 0 andr; = 1 for
1<i,j < N. Taking all thea;; positive, i.e. look-

sume extinction when a species drops below a critical
level [25,26]or modify the basic equations to prevent
such extinctiorf27], but we believe there is consider-
able justification to instead consider models in which
adaptation occurs primarilgt these points. The indi-
viduals in a nearly extinct species are presumably the
most fit and are those best able to survive by finding al-
ternate resources and by evading their predators. Thus,
as a species approaches extinction, the increased vari-
ability of theq;; coefficients in Eq(1) along with the
effects of directional selection may lead to a shift in
the a;; coefficients. Also, when the population of a
species becomes too small, its predators may find it
too inefficient to prey upon, and it is thus better able to
compete for resources. Finally, the model could be in-

ing at competitive systems, also guarantees that theterpreted as species becoming extinct and then being

solutions remain bounded in the range 0 to 1, but it

replaced with new similar (perhaps mutated) species
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Fig. 1. Evolution of the largest Lyapunov exponenD@full scale), total biomass (0.05 full scale), and biodiversity (1 full scale) showing how
a typical system with 100 species slowly evolves toward a weakly chaotic state with high diversity and then remains there with fluctuations in
the biodiversity suggestive of sporadic volatility and punctuated equilibria.

that are less susceptible to the prevailing competition encroachmenf30]). The values are not critical, but
[28,29] We model this process as follows: initially the  they should be small and are here takemas 10~*
elementsy;; are taken from an exponential distribu- ande; = 10-6. There may be some advantage to start-
tion with mean 1, although any distribution of posi- ing with relatively larges values and slowly reducing
tive values will suffice. The system converges fastest them in the spirit of simulated annealing.

to the weakly chaotic state if the meayy is close In this way, the system is guaranteed to have\all

to the desired final value, which is typically on the species coexisting with near optimal fithess. Note that
order of \/1I0/N. A time on the order of = 10° is this model is purely deterministic (no stochastic com-
usually required to reach a state that is chaotic in the ponent) even while it is adapting, and thus any persis-
absence of adaptation. Initia} values are not criti-  tent aperiodic fluctuations are evidence of determinis-
cal, and they can be either random in the range 0 to tic chaos. In addition to its ecological plausibility, the
1 or purely deterministic. At each iteration for which method provides a powerful numerical algorithm for
any x; falls below 10, x; is clamped at 10° and finding the rare chaotic solutions for large

its matrix elements;; are replaced with;; (1 —e1x;) Such a system slowly evolves into one that is
for j =1to N andj #i until the decline is arrested.  weakly chaotic with a typical largest Lyapunov expo-
In addition to this species-specific adaptation, all the nent of Q001+ 0.001, whereupon it remains chaotic
off-diagonal elements of the matrix are increased by with all or most of the species coexisting even if the
the factor (14- £2) every 20 iterations to model general adaptation mechanism de#xd above is turned off.
adaptation of the entire esgstem over time toward The Lyapunov exponeriB1,32]is a measure of the
enhanced competition or to model a slowly increasing sensitivity to initial conditions, with a positive value
environmental stress (e.g., climate change or humansignifying chaos. Abrupt or premature termination of
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Fig. 2. Typical chaotic fluctuations in the total biomass and biodiyefsr a system with 100 species after adaptation has been turned off.
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Fig. 3. A portion of the strange attractor for the same typical systemRigir2 with 100 species after adaptation has been turned off.

the adaptation mechanism, however, may result in the of sporadic volatility andounctuated equilibrig33].
extinction of some species and the suppression of the A similar final state is reached if the initia}; values

chaos.
Fig. 1 shows the evolution of the largest Lyapunov
exponent along with the total biomass

1 N
M= ;xi 2)
and biodiversity
1 N Xi
p=1-s oyl ®

i=1
for a typical highly competitive case that starts with

most of the 100 species on the verge of extinction and

are small, giving a high initial degree of coexistence
and stability with a tempailly increasing Lyapunov
exponent.

Fig. 2 shows the chaotic fluctuations in the total
biomass and biodiversity for a typical such system
with N = 100 after adaptation has been turned off.
Note the very different time scales for the adaptation
in Fig. 1 and the fluctuations ifrig. 2 Fig. 2 can be
viewed as a slice of the dynamicshig. 1over a short
time scale where adaptation is negligible. Fluctuations
in the population of individual species are much larger
than in the total biomass.

Fig. 3 shows a portion of the strange attractor for

strongly chaotic dynamics. As it evolves, the largest the same system projected onto the space of total bio-
Lyapunov exponent generally decreases but remainsmass and biodiversity. The Kaplan—Yorke dimension

mostly positive, while the biomass and biodiversity in-

[34] of the attractor is about 6.3 with two positive Lya-

crease. Fluctuations in the biodiversity are suggestive punov exponents, making it hyperchaotic, although
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only weakly so with a largest Lyapunov exponent of
about 0.0021. This value implies that the system has
memory and predictability on the time scale of 500
growth times for a typical species.

There does not appear to be a unique distribution of
a;; toward which the model evolves, suggesting that
a wide variety of weakly chotic ecologies is possi-
ble, although the mean value of the matrix elements
for the case irFigs. 2 and 3s about 0.38, which is
typical of cases withV = 100. We have generated
model ecologies with up to 400 surviving species by
this method. Since these systems are fully connected
with relatively large connection strengths, they violate
the May—Wigner stability conditiof85], which states
that a network whose stability matrix contains ele-
ments from a normal random distribution with mean
zero and variance? is almost certainly stable (and
hence non-chaotic) iNCo? < 1, where the connec-
tivity C is the probability that a matrix element is
non-zero.

In conclusion, we expect that the evolution method
would work for almost any network model character-
ized by a matrix of interactions between its agents,
and it is not restricted to models of ecology. Other net-
works that involve competition for resources and that
are subject to crashes include financial markets, the
electrical power grid, the Internet, traffic flow, and the
brain. It is possible that all these systems are pushed
toward a weakly chaotic dynamic by a mechanism
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