
Qualitative networks: a symbolic approach to analyze bio-
logical signaling networks

Marc A Schaub1, Thomas A Henzinger1 and Jasmin Fisher∗1

1School of Computer and Communication Sciences EPFL, 1015 Lausanne, Switzerland

Email: Marc A Schaub - marc.schaub@a3.epfl.ch; Thomas A Henzinger - tah@epfl.ch; Jasmin Fisher∗- jasmin.fisher@epfl.ch;

∗Corresponding author

Abstract

Background: A central goal of Systems Biology is to model and analyze biological signaling pathways that

interact with one another to form complex networks. Here we introduce Qualitative networks, an extension of

Boolean networks. With this framework, we use formal verification methods to check whether a model is

consistent with the laboratory experimental observations on which it is based. If the model does not conform to

the data, we suggest a revised model and the new hypotheses are tested in-silico.

Results: We consider networks in which elements range over a small finite domain allowing more flexibility than

Boolean values, and add target functions that allow to model a rich set of behaviors. We propose a symbolic

algorithm for analyzing the steady state of these networks, allowing us to scale up to a system consisting of 144

elements and state spaces of approximately 1086 states. We illustrate the usefulness of this approach through a

model of the interaction between the Notch and the Wnt signaling pathways in mammalian skin, and its

extensive analysis.

Conclusions: We introduce an approach for constructing computational models of biological systems that

extends the framework of Boolean networks and uses formal verification methods for the analysis of the model.

This approach can scale to multicellular models of complex pathways, and is therefore a useful tool for the

analysis of complex biological systems. The hypotheses formulated during in-silico testing suggest new avenues

to explore experimentally. Hence, this approach has the potential to efficiently complement experimental studies

in biology.

1

Background

The emerging field of Systems Biology aims to gain high-level understanding of complex biological systems

by studying the structure and dynamics of cellular functions [1,2]. The construction and analysis of models

describing biological processes are at the core of this new approach. Computer science provides methods

for simulating and analyzing these models. This allows performing in silico experiments that lead to new

predictions and thus complement traditional experimental approaches. Considering biology from a systems

point of view also allows the use of methods designed for the engineering of artificial systems. A wide array

of formalisms originating from computer science have already been used to model biological systems. These

include process calculi [3], Statecharts and Live Sequence Charts [4–6], variants of Petri nets [7–9], and

hybrid models [10,11]. Recently, the term executable biology has been proposed for models that consist of

an algorithm which mimics the behavior of a studied biological system [12].

Executable models of biological systems can be analyzed using formal verification methods, which were

originally designed for the validation of computer systems. Two possible approaches are testing and model

checking. Model checking [13] consists of an exhaustive exploration of the state-space of a given system in

order to verify that it always adheres to a set of requirements. In the case of biological systems,

requirements are derived from experimental observations. The consistency of a putative executable model

can thus be tested with respect to the data on which the model is based (cf. [14] where this method has led

to new predictions about vulval development of C. elegans, [15–17] where it is used for the analysis of

biochemical networks, and [18,19] for the analysis of probabilistic models).

In order to construct executable models of biological pathways, it is necessary to precisely define the

interactions between biochemical components. One of the widely used formalism for representing

interactions in biology are Boolean networks [20,21]. A Boolean network consists of a set of Boolean

variables representing the activity of biochemical components such as proteins or genes. A Boolean

function is associated to every component. This function updates the value of the corresponding

component at every step of the execution of a Boolean network. In the context of biological pathways, a

Boolean network can be built from a graph representing biochemical interactions. Every node of this graph

2

represents a biochemical component. The arcs of the graph are used to represent the interactions between

components. Their weight can be positive (for activation) or negative (for inhibition). This graph is used

to define Boolean functions for every component. The function sets the value of a component to true if the

amount of activation is higher than the amount of inhibition. Else the value of the component is set to

false. Boolean networks therefore provide a highly abstracted view of protein activity or gene expression.

This level of abstraction often corresponds to the available qualitative experimental data. Furthermore, the

interactions between components are represented in a very similar way in the diagrammatic models that

are widely used by biologists. Boolean networks therefore appear to be well suited for the qualitative

analysis of biological processes. They have been used recently for modeling a wide array of biological

systems, such as the Arabidopsis thaliana flower morphogenesis [22], the influence of physical stimuli on

cell fate [23], the segment polarity gene network in Drosophila Melanogaster [24] and the yeast cell

cycle [25]. Boolean networks have been extended in several ways, including probabilistic Boolean

networks [26] and the so-called generalized logical approach using multivalued levels of concentration [27].

The generalized logical approach has been combined with formal verification methods [16], and constraint

programming was used for finding steady states of large networks [28].

In this work, we propose an extension of Boolean networks called Qualitative networks. We use this

framework to construct an executable model which is analyzed using formal verification methods. We

introduce two changes to the Boolean networks framework. First, we use discrete variables instead of

Boolean variables for representing gene expression and protein activity levels. Second, we capture a richer

set of interactions between components than only activation and inhibition. Any function of the current

state of the system can be used to define the target towards which a component will move at the next step.

At each step, the level of a component changes towards this target by at most one level. We use simulation

and model checking to verify that the implementation of the Qualitative network adheres to a set of

specifications derived from the laboratory experimental observations. If necessary, we can incorporate new

hypotheses into the model (iterative improvement). Once these are tested in-silico, they should also be

validated experimentally. We propose that the stable states of the biological system correspond to the

infinitely visited states of the executable model. We introduce an efficient symbolic algorithm for verifying

if all infinitely visited states of a Qualitative network satisfy the specifications. We consider the

performance of this algorithm for models of different size and complexity, and show that it can be used to

analyze large and complex Qualitative networks. We illustrate the ability of Qualitative networks to

provide a valid qualitative representation of a studied biological system using a model of the incoherent

3

type-1 feed-forward loop in the E.coli gal system.

Our approach to the modeling of signaling pathways allows the detection of gaps in the mechanistic

understanding of the studied process, and suggests new biochemical interactions at a similar level of

abstraction to the one observed in diagrammatic models. We illustrate this approach by a multicellular

model of the interaction between the Notch and the Wnt pathways in mammalian skin cells.

Results
Qualitative networks

In this study we propose an approach for constructing executable models of signaling pathways which is

based on Qualitative networks, an extension of Boolean networks. In this section, we first explain how

biological pathways can be modeled using Boolean networks and then define Qualitative networks.

Interactions in biological pathways can be represented as an edge-weighted interaction graph G(V,E). A

node vi ∈ V represents a biological component such as a gene or a protein. An edge eij ∈ E from node vi

to node vj has a weight αij , corresponding to the effect of the component represented by vi on the

component represented by vj . Activation is specified by a positive value of αij , inhibition by a negative

value. This graph therefore represents the type of interaction between components as well as their strength

in a similar way to the diagrammatic models used by biologists. Li et al. propose the use of Boolean

networks for studying the interactions defined in such a graph [25].

A Boolean network B(C,F) consists of a set of components C and a list of boolean functions F . Each

component ci ∈ C has a state, which can take two values: ci = 1 if the component is active and ci = 0 if

the component is absent or inactive. We use k to represent the number of components (k = |C|). The

state s of a Boolean network corresponds to the vector (c1, ..., ck) ∈ {0, 1}k of the states of all components

of the Boolean network. A boolean function fi ∈ F is assigned to every component. This function maps

the current state of the system to a boolean value representing the next state of the corresponding

component (fi : {0, 1}k → {0, 1}). Time in Boolean networks is represented by a discrete variable t. We

use the notations ci(t) and s(t) to represent the state of a component, respectively the state of the whole

system, at time t. The value of each protein at the next time step is computed by applying the

corresponding boolean function to the current state of the system:

ci(t + 1) = fi(s(t)) (1)

Given an interaction graph G(V,E), a Boolean network B(C,F) can be obtained as follows: each node of

4

V corresponds to a component in C. The Boolean function should reproduce the following behavior for

every component: if the cumulative activation is higher than the cumulative inhibition, the state of the

component is set to active (1) and, vice-versa, if the inhibition is higher than the activation, it is set to

inactive (0). Hence, the Boolean function corresponding to each component is defined as follows:

fi(s) =



0 if
∑
cj∈s

αjicj < 0

1 if
∑
cj∈s

αjicj > 0

ci if
∑
cj∈s

αjicj = 0

We extend the Boolean network framework by using discrete domains to represent the state of a

component and by allowing a rich set of interaction between components. The state of an active

component can take several values, rather than being simply ON. These values correspond to qualitative

levels of gene expression or protein activity, for example, low, medium, high. This representation therefore

is a middle ground between the Boolean abstraction and quantitative models. The use of discrete domains

requires to modify the way the updates of the network are defined. We introduce a target function that

computes the discrete level towards which a component moves in the next step. The target function is not

restricted to modeling activation and inhibition. Every function of the current state of the system can be

used as target function. This makes it possible to model interactions that cannot be represented in

interaction graphs. One such example is complexation, where the amount of produced protein is bounded

by the availability of the proteins required for the interaction. This situation can be modeled by using the

minimum of the level of these proteins as a target function. More elaborate target functions can also be

used to represent situations in which the effect of a specific activating or inhibiting edge is dependent on

the level of additional proteins. We call this extended framework Qualitative network. In the following

paragraphs, we give a detailed description of Qualitative networks.

A Qualitative network Q(C, T,N) consists of a set of components C and a list of target functions T . The

state of a component ci ∈ C is an integer value between 0 and N . These values represent qualitative levels

of the components with 0 the lowest and N the highest possible level for that component. For each

component ci, there exists a target function targeti ∈ T which specifies the level towards which the value

of the component should move. This function is computed on the state of the whole system

(targeti : {0, ..., N}k → {0, ..., N}). At each step, the value of the state of a component can only increase or

decrease by a single level. The value of each component at the next time step is therefore computed as

5

follows:

ci(t + 1) =


ci(t)− 1 if targeti(S(t)) < ci(t)
ci(t) + 1 if targeti(S(t)) > ci(t)
ci(t) if targeti(S(t)) = ci(t)

(2)

When N = 1, this update function is equivalent to the update function of Boolean networks (Equation 1).

It follows that Qualitative networks are a generalization of Boolean networks: the Qualitative network

Q(C,F, 1) is equivalent to the Boolean network B(C,F).

A particular kind of target function is directly obtained from the qualitative graph describing the studied

biological system. It is used to model activation and inhibition in a similar way to the one describe for

Boolean networks. In Boolean networks, the sum of all contributions was sufficient to decide on the next

value of a component. Here we need to obtain a target function that ranges over {0, ..., N}, and for which

intermediate values are meaningful. In order to obtain the target function for component ci, we compute

separately the amount of activation acti and the amount of inhibition inhi sensed by this component. Both

of these values are scaled so that they are proportional to the weighted amount of activation, respectively

inhibition. When all activating components are at their highest value, then acti = N . Similarly, when all

inhibiting components are at their highest value then inhi = N .

acti(s) =

∑
αji>0

αjicj∑
αji>0

αji

inhi(s) =

∑
αji<0

αjicj∑
αji<0

αji

The target function is the difference between the amount of activation and the amount of inhibition. When

there is no inhibition, the output of the target function corresponds to the amount of activation. The level

of the component will not exceed the amount of the activation. When the amount of inhibition is higher

than the amount of activation, the value of the target function is zero. We need to consider a special case

when all incoming edges of a component are inhibitions. In this case, we must assume that the mechanism

leading to the presence of this component is not modeled, and that, in the absence of inhibition, the target

function of this variable will return the maximal value. We obtain the following definition of the target

function:

6

targeti(s) =

{
max(0, acti(s)− inhi(s)) if max(αji) > 0
N − inhi(s) if max(αji) ≤ 0

(3)

We use Qualitative networks to define executable models of biological systems. The list of target functions

specifies how the different molecules in the system influence each other. When creating a model based on

the mechanistic understanding of a biological process, we use this information to define a set of target

functions. Where necessary, we separate the representation of protein activity from the expression level of

the corresponding gene. This is useful for modeling cases in which there are interactions at the

transcription level as well as protein-protein interactions. During the analysis process, we may modify the

definition of the target functions. While Qualitative networks allow for any kind of target function, we use

a subset of functions that represent specific biological interactions, such as the activation/inhibition

function described above. This ensures that new hypothesized interactions between components are defined

at a level where they have a clear biological meaning. The implementation of models defined as Qualitative

networks is described in the Methods section.

Iterative Model Improvement

A model in general, and an executable model in particular, is meant to represent how the system that we

study actually works. Thus, it is natural to expect that the model would be consistent with the data

obtained from laboratory experimentation with this system. We use simulation and model checking [13],

which allows to formally check all the different executions of the model against a formal specification. By

exploring all the possible states and transitions of the model we can determine whether some requirement

holds for the model. In the case that the property does not hold, the model-checking algorithm supplies a

counter example: an execution of the system that does not satisfy a given requirement. We use the

information provided by this counter example to suggest modifications of the Qualitative network

representing the studied system.

Our methodology in using Qualitative networks is the iterative improvement process (Figure 1). We stress

that the usage of Qualitative networks is not restricted to this methodology. The advantages of multiple

values, flexible target functions, and the analysis algorithms suggested below, can be used regardless of the

modeling methodology chosen by the user.

The iterative improvement process consists of the following. We first derive a set of specifications from

prior laboratory experimental results. We build an initial putative model based on the current mechanistic

understanding of the studied biological process and the working hypotheses we would like to evaluate. We

7

then use formal verification methods to verify if the proposed model conforms with the specification. If the

model fails this test, we deduce that the model does not conform to the data. We use counter examples, to

suggest a revised model by making new hypotheses. The new model is then evaluated again, and these

steps are repeated until no contradiction is found between the model and the specifications. At this point,

we might have had to modify our hypotheses, both in discarding unverifiable assumptions and in adding

assumptions that are necessary for the model to comply with the specifications. The resulting model, and

the corresponding new set of hypotheses, are then known to be consistent with the experimental results.

At this stage, it is possible to query the model to gain additional knowledge about the biological system.

This can be done either by modifying the model to evaluate or by adding specifications that could provide

additional information on the behavior of the system. Hypotheses and changes in the model leading to

interesting behaviors are candidates for experimental validation. The result of such an experiment, whether

confirming the information gained from the computational analysis or not, can then be added to the

specification. This creates a second, outer, improvement loop which combines computational and

experimental validation.

The specifications derived from laboratory experimental results can be separated into two categories.

Low-level specifications involve changes in the level of protein activity or gene expression (e.g.

over-expression of a given protein leads to a decrease of another protein). High-level specifications consider

changes at the cellular level, such as cell fate or susceptibility to carcinogenesis. Since we can only observe

the level of individual proteins, we need to define how these relate to changes at the cellular level.

Experimental results are often related to manipulation, such as gene over-expression or knockout. These

manipulation lead to changes in the behavior of the model. The Methods section provides additional

details on how specifications are defined and verified.

This iterative improvement approach can be applied to highly non-deterministic models, hence the use of

model checking. Qualitative networks, like Boolean networks, have a deterministic behavior, and it is

therefore sufficient to perform one execution per initial state, and verify if each of these executions satisfies

the specifications. If some executions do satisfy the specifications, but others do not, then the model is not

constrained enough, and we need to formulate hypotheses that allow avoiding the executions which do not

satisfy the specifications. Ideally, the new hypotheses would not contradict the current mechanistic

understanding of the system, but rather suggest additional putative interactions between components. If

there is a specification which is not satisfied by any execution of the model, then there is a contradiction

between the mechanistic understanding of the system and the experimental data. In this case, the

8

modifications needed for the model to satisfy the requirement will suggest alternative mechanistic models

of the studied system that are more consistent with the experimental data.

In the following sections, we describe two additional methods for analyzing the model during the

improvement process: the use of non-determinism on parts of the model, and the efficient computation of

all infinitely visited states.

Use of non-determinism

In the case where every interaction in the model is precisely defined, enumerative networks are

deterministic. Non-determinism can, however, be used to represent unknown interactions. In particular,

rather than studying a complete multicellular model, the model of a single cell can be studied by

representing inter-cellular interactions non-deterministically.

The level of proteins that are external to the cell are modeled by non-deterministic variables. These

variables cannot jump arbitrarily from one value to another value, but only change by one level per time

step. At each time step, the variable can either increase, decrease or remain constant. This is sufficient to

capture any possible behavior since updates of components are bounded by Equation 2. The set of possible

behaviors of the state of this protein is therefore a superset of the possible behaviors for any possible target

function.

Instead of simulation, we use model checking, which explores all possible executions of a non-deterministic

system. This leads to the analysis of a superset of the possible executions of any model with more

constrained inter-cellular interactions. If no execution of the system satisfies the specification, then it is

impossible that any model including this cell can satisfy the specifications, no matter how the inter-cellular

interactions are defined. If some executions satisfy the specifications, but other do not, then it is not

possible to predict the behavior of the cell with more constrained inter-cellular interactions. This approach

is therefore useful for finding out if the improvement should be performed at the level of the inter-cellular

communication or at the intracellular level.

Finding infinitely visited States

We propose an efficient symbolic algorithm for computing the infinitely visited states of a Qualitative

network. A state S is said to be infinitely visited if there is an execution of the network in which the state

appears infinitely often. In a biological context, the infinitely visited states correspond to the stable states

of the system. In the context of specification-based analysis of the model, we are therefore interested in

9

knowing if the specification holds on all infinitely visited states. This captures the fact that, as opposed to

computerized systems, biological system do not have an initial state, but rather are continuously behaving.

After cell division, for example, the two resulting cells would have proteins levels that are at a qualitative

level similar to the levels in the original cell. States that are not infinitely visited can thus be considered as

unstable states. If the model is in such a state, it will evolve towards an infinitely visited state in a

bounded number of steps, and then remain in infinitely visited states for an indefinite time. Therefore, we

do not insist that the specification holds on states that are not infinitely visited.

Analysis of Boolean networks also include studies of the attractors of the model. In discrete, deterministic

models, attractors are loops of one or more states that are visited infinitely often. Questions of interest

include: does the system end up in one or several attractors, and what initial conditions lead to which

attractor. This analysis requires exploring the executions starting from all initial states. The number of

possible initial states is exponential in the number of variables, and therefore we try to prune them by

using the available information on the system. In case that no biologically meaningful definition of the set

of initial state exists, it is necessary to consider all states as being initial. In this case, enumerative

exploration is practically intractable even for relatively small models. In the Methods section, we describe a

symbolic algorithm for finding all the attractors of a model, based on compact representation of sets of

states using Binary Decision Diagrams (BDDs) [29].

The algorithm we propose uses the structure of multicellular Qualitative networks by interleaving

composition and computation of infinitely visited states. We first consider a partial model consisting only

of the first cell. The behavior of components in neighbor cells are abstracted by allowing them to change

non-deterministically. We compute the set of infinitely visited states of this partial model. This set

contains the projection of any infinitely visited state of the complete model onto the variables of the partial

model. We use this information to compute the infinitely visited states of a partial model consisting of the

first two cells. This process is repeated to obtain the complete model and the set of infinitely visited states.

We further optimize this algorithm by using partitioned transition relations [30]. Based on the target

functions list of the Qualitative network, we define a transition relation for a single cell. We then use it

repeatedly to compute the next state of the multicellular system, rather than using a single transition

relation for the whole model. The Methods section contains a detailed description of this algorithm.

10

Modeling Network Motifs using Qualitative networks

Transcription regulation networks contain patterns that occur significantly more often in a real network

than in a random network with the same characteristics. These patterns are called network motifs [31].

The multiple values used by Qualitative networks may be required to accurately model the qualitative

behavior of common network motifs in a way that would be difficult, if not impossible, to achieve with

Boolean values. We illustrate this ability by considering the case of the incoherent type-1 feed-forward loop

(I1-FFL) in E. coli.

In this motif, transcription factor X activates transcription factor Y and gene Z, and transcription factor

Y represses Z. The response time is defined as the time needed for Z to increase halfway to its

steady-state level. Compared to simple regulation (only X activates Z), the I1-FFL has a shorter response

time to the activation of X. When X is activated, the level of both Y and Z start to increase. Once the

level of Y exceeds the repression threshold for the Z promoter, it will start repressing Z. As a consequence,

the level of Z starts decreasing towards a low steady-state level. The response time is thus shorter, because

the steady-state level of Z is lower than for simple activation, but its initial transcription rate is the same

in both cases. This behavior has been observed both using quantitative models [32] and experimentally in

the gal system in E. coli [33].

In the gal system (Figure 2a), an I1-FFL links the activator CRP to the galactose utilization operon

galETK. When there is glucose starvation, CRP gets activated. CRP then activates both galETK and

GalS, and GalS inhibits galETK, hence the I1-FFL motif. In addition, β-D-galactose or D-fucose

(henceforth called GalSinh) unbind GalS from the galETK promoter region, thus cancelling its inhibitory

effect. Finally, GalS negatively auto-regulates its own expression. We construct a Qualitative network

model of this system based on these interactions. This model needs to satisfy two requirements to be

realistic. First, the activation of CRP must lead to the activation of galETK independently of the level of

GalSinh. Second, the time needed by galETK to increase halfway to its steady-state needs to be shorter

when GalSinh is absent than when it is present. Figure 2b shows the evolution over time of the level of

galETK after CRP is activated for both case. This result is qualitatively similar to the experimental

measurements of the galETK expression performed by Mangan et al. [33].

Qualitative networks are able to provide realistic qualitative approximations of the behavior of further

common network motifs, such as other types of feed-forward loops and regulated-feedback motifs that

appear in developmental transcription networks [34].

11

Case Study: a Model of the Interaction between the Notch and Wnt signaling Pathways

We apply our modeling approach to a model representing the crosstalk between the Notch and Wnt

pathways in mammalian keratinocytes. Both pathways play a key role in the control of cell proliferation

and differentiation and have been linked to several types of cancer. We first present the biological

background, then introduce the Qualitative network model for a single cell and for a model with five cell

representing the multiple layers of the mammalian epidermis. We define a set of specifications derived from

laboratory experimental perturbations on these pathways, and use them to analyze the possible executions

of the model.

Crosstalk between the Notch and Wnt Signaling Pathways

Notch signaling plays a key role in the control of the development of various tissues, with the particularity

that, depending on the context, it can either induce differentiation or maintain cells in a proliferating state

(role in carcinogenesis reviewed in [35]). The Notch receptor protein is located across the cell membrane

and is composed of two parts - an extracellular component and a cytoplasmic part. The extracellular

component of Notch can bind to a ligand expressed on the membrane of a neighboring cell. In mammals,

there are four types of Notch proteins, three types of Delta-like ligands and two types of Serrate-like

ligands, which are called Jagged. The binding of a ligand to the Notch receptor leads to a proteolytic

cleavage of the two parts of the Notch protein, thus releasing its cytoplasmic part - the Notch intracellular

domain (Notch-IC). Notch-IC then travels to the nucleus, where it binds to the transcription factor CSL.

In the absence of Notch-IC, CSL acts as a transcription inhibitor, but the presence of Notch-IC converts it

to a transcription activator, thus leading to the expression of its transcriptional targets.

The Wnt signaling pathway has a critical regulating role in stem cells, and has been associated with cancer

in several tissues (reviewed in [36]). The central player in the canonical Wnt signaling pathway (reviewed

in [37]) is the protein β-Catenin. In the absence of Wnt signaling, the newly formed β-Catenin is found in

a degradation complex composed of the proteins adenomous polyposis coli (APC), the scaffolding protein

Axin and the glycogen-synthase kinase-3β (GSK3β). The GSK3β phosphorilates β-Catenin, which is then

degradated by proteasomes. Wnt is a short range signaling protein which interacts with a serpentine

receptor of the Frizzled family. The consequence of this interaction are not completely understood, but it

appears that an axin-binding molecule, Dishevelled (DSH), gets phosphorylated and starts inhibiting the

degradation of β-Catenin. This β-Catenin can therefore accumulate in the cytoplasm and travel to the

nucleus, where it interacts with the Tcf/Lef DNA-binding proteins. In the absence of β-Catenin, a

12

co-repressor like Groucho binds to Tcf/Lef, thus blocking the transcription of its downstream target genes.

When interacting with β-Catenin, Tcf/Lef becomes a transcription activator, thus leading to the activation

of the downstream target genes of the Wnt signaling pathway.

The outermost layer of the human skin, the epidermis, can be divided into several layers: the basal layer,

which is the closest to the underlying dermis, the suprabasal layer, and the cornified layer, which is mainly

composed of dead cells (Figure 3). In normal tissue, most proliferating keratinocytes are located in the

basal layer. They migrate to the suprabasal layer when they have initiated terminal differentiation and

then stop proliferating. Notch is expressed in the human epidermis, at a higher level in the suprabasal

layers than in the basal layer. The Jagged ligand is co-expressed with Notch in the skin and has been

proposed as a positive feedback mechanism for sustained Notch signaling triggering differentiation [38].

The interaction between the Notch and the Wnt pathways are involved in the transition from a

proliferating to a differentiated state in keratinocytes. In vitro experiments have shown that Notch

signaling induces terminal differentiation in both murine and human skin [39]. The tissue specific ablation

of the Notch1 receptor in mouse epidermis leads to hyperplasia in the epidermis, the development of

tumors and an increased susceptibility to chemical carcinogens - thus indicating that Notch acts as a tumor

suppressor in mammal skin [40]. Notch was suggested to interact with the Wnt pathway through its direct

transcriptional target p21, which is a negative transcription regulator of Wnt [41].

Model Construction

We build a model of the Notch and Wnt pathways in the epidermal layer of mammalian skin. Our model is

composed of five identical keratinocytes, each of them representing one layer of the epidermis. Protein

activity and gene expression are represented by variables that can take four values: off, low, medium and

high. All activation and inhibition interactions have an equal weight (αij ∈ {−1, 0, 1}). Figure 4 represents

the two pathways in a single cell. Except for the intracellular part of Notch (Notch-IC), the target function

of all other components is the difference between activation and inhibition, as defined by Equation 3. The

target function of the Notch-IC component is the minimum between the level of Notch receptor on the cell

membrane and the level of ligand on the membrane of the neighboring cells.

The complete model consists of a single row of five cells, which are named Cell1 to Cell5. Neighboring cells

are connected both through the Wnt and the Notch pathways (Figure 3). Cell1, the leftmost cell on the

visualization of the model, represents the lowest layer of keratinocytes of the epidermis, which means that

the dermis is to its immediate left. This cell should adopt a proliferating fate. The upper skin, to which

13

the keratinocytes migrate before they die, is represented on the right side of the model. We consider that

the two immediate neighbors contribute to the level of ligand sensed by a cell. The level of ligand sensed

by a cell (Ligandext) is activated by the level of ligand on the membrane of its immediate neighbor, and is

thus maximal when the level of ligand in both neighbors is high. The level of Jagged on both extremities of

the model is constant at medium. Similarly, we connect the level of Wnt produced by a cell to the level of

Wnt sensed by the nearby cells. We consider the case in which a cell does not sense Wnt emitted by itself.

In this case we can use the same double activation scheme as for the ligands. On the left side of the model,

the level of Wnt is fixed to high since the dermis is known to emit Wnt signaling proteins. In contrast, the

level on the right side is fixed to low since Wnt signaling does not occur in the upper layers of the skin.

Specifications

In order to be able to define high level specifications, we need to map changes in the level of protein

activity to a certain cell fate. We consider the balance between the downstream target genes of Wnt

signaling (referred as Gene Target 1, or GT1) and the downstream target genes of Notch signaling (Gene

Target 2, or GT2). The downstream targets of the Wnt signaling are known to maintain the cells in a

proliferating state, whereas the downstream targets of Notch initiate differentiation. Therefore, we make

the assumption that a cell in which GT1 > GT2 is proliferating, whereas a cell in which GT1 < GT2 is

differentiated. Furthermore, since an increase in the level of GT1 or a decrease in the level of GT2 makes a

cell more likely to be proliferating, we assume that this change also makes the cell more sensitive to

chemically-induced carcinogenesis. For experiments involving the knockout or the over-expression of a

gene, we compare the level of components when the wild type model is in a stable state to the level of the

proteins when the altered model reaches a stable state again.

The first high level specification (H1) defines the wild type state, and can be split into two parts: Cell1 is

proliferating (H1.1), and Cell4−5 are differentiated (H1.2).

H1.1: GT1 > GT2 in Cell1

H1.2: GT1 < GT2 in Cell4−5

We do not use Cell2−3 in these specification, but if a cell has adopted a differentiated fate, cells in a higher

sub-layer (on its right in the model) cannot be proliferating. We formulate this as an additional

requirement:

H2.1 GT1 = GT2 in Celli ⇒ ∀j > i, GT1 ≤ GT2 in Cellj .

14

H2.2 GT1 < GT2 in Celli ⇒ ∀j > i, GT1 < GT2 in Cellj .

We derive further specifications from the experiments performed by Nicolas et al. on mouse

keratinocytes [40]. They note that Notch knockout leads to increased proliferation, which we translate into

a requirement that Cell4 is also proliferating.

H3: Notch = KO → GT1 > GT2 in Cell4

After several months, mice in which Notch is knocked out begin to develop basal cell-like carcinoma. They

are also significantly more sensitive to chemically induced carcinogenesis. In order to relate these long-term

changes to variations at the protein level, we assume that the short term effect of the Notch knockout is an

increase of GT1 in several cells, or a decrease of GT2 in several cells, or both.

H4: Notch = KO → GT1 increases in Cell1−5 or GT2 decreases in Cell1−5

The impact of p21 knockout was also considered. Mice with p21 deficiency were more sensitive to

chemically induced carcinogenesis, but did not develop tumors on their own. We relate this result to the

level of GT1 and GT2 in a similar way to Notch knockout.

H5: p21 = KO → GT1 increases in Cell1−5 or GT2 decreases in Cell1−5

The work by Nicolas et.al. on Mice keratinocytes [40], as well as the work of Devgan et.al. [41] on the link

between Notch and Wnt through p21, also leads to several low level specifications. These specifications

were directly considered when constructing the model and are not detailed here.

Analysis of the Model

We compute the set of infinitely visited states of the model described above. We obtain a total of 6561

states. All of these states adhere to the specifications H1 and H2. These states, however, differ as far as

the fate of Cell2 is concerned. This cell is either proliferating (GT1 > GT2 in 2916 states), differentiated

(GT1 < GT2 in 3645 states) or in transition from proliferating to differentiated (GT1 = GT2 in 2916

states). Several of these attractors consist of more than one state, and the relation between GT1 and GT2

in Cell2 can change between the different states of a single attractor. We can therefore conclude that, in

this model, Cell2 is no longer receiving constant signals for proliferation, but has not yet committed to

terminal differentiation. After the model reaches a stable state, modifying it to knockout Notch or p21

allows to verify that the model also satisfies specifications H3, respectively H4.

15

Further insights can be gained by studying variations of the model. We consider the hypothesis that

Notch-IC activates the transcription of β-Catenin, thus partially compensating its inhibitory influence on

β-Catenin through the Wnt pathway. This hypothesis can be rejected by analyzing a single cell model with

non-deterministic levels for both external Wnt and sensed ligand (Ligandin). No execution of this model

can satisfy requirement H1.1 (GT1 > GT2) for all the states of the execution that occur infinitely often.

This means that in any multicellular model with this interaction, no cell could be proliferating. We can

therefore conclude that some other mechanism activating β-Catenin must exist. Notch-IC may play a role

in the activation of β-Catenin, but cannot be the only activating protein.

We also consider the hypothesis that Notch signaling uses the Delta ligand instead of the Jagged ligand.

While there is a positive feedback mechanism from Notch-IC to Jagged, Notch-IC inhibits the expression of

the Delta ligand on the cell surface. We find that such a model cannot reproduce the wild type behavior

(specification H1). By analyzing the counterexample traces, we notice that due to the inhibition of the

ligand, sustained Notch signaling cannot be achieved in the higher layers of the epidermis. This is

consistent with the experimental analysis of the level of Delta in the epidermis showing that Delta is

expressed in the basal layer only [42]. In their analysis, Lowell et al. describe stem-cell clusters with local

concentration of Delta. In order to model and analyze local effect such as cell clusters, it would be

necessary to consider significantly larger multidimensional models.

Performance Analysis

In this section, we describe the performance of the symbolic algorithm used to compute all infinitely visited

states of a Qualitative network. We first consider variations of the Notch/Wnt model described above. We

then use an arbitrary model to show that the method can be applied to models of more complex

interactions between components. Finally, we show that our algorithm performs better than simpler

symbolic algorithms. The Methods section gives additional details about the settings used for these

analyses.

The computation of all infinitely visited states of the five-cells Notch/Wnt model takes 21 minutes. This

model has 460 ≈ 1036 initial states. This is a significantly larger number than previously studied by

Boolean networks (for example, the model used by Li et al. [25] has 211 = 2048 states). In order to

evaluate the performance of our symbolic algorithm on larger models, we extend the Notch/Wnt model up

to 12 cells. We add cells both to the basal layer (on the left side of the model) and to the suprabasal layer

(on the right side of the model). As in the five-cells model, the level of Notch receptor is set to off in the

16

basal layer, and to high in the suprabasal layer. While the original model has only one cell with an

intermediate level of Notch receptor, we introduce a second cell in the larger model in order to obtain a

gradient. These models have been developed for the purpose of performance analysis only, and do not

provide additional biological insights. Table 1 shows the time needed to compute the set of all infinitely

visited states for models with 3 to 12 cells. The results illustrate that we can compute the set of infinitely

visited states of a model which has more than 1086 initial states.

It can be observed that adding a cell in the basal layer has a significantly smaller impact on the

performance than adding a cell in the suprabasal layer. This is due to the fact that the possible behaviors

of the cells in the basal layer are very limited due to the lack of Notch signaling. In general, the

performance of symbolic algorithms is dependent on how compact the representation of the sets of states

and the transition relation are. This complexity is directly dependent on the structure of the model. In the

case of Qualitative networks, choosing a different combination of target functions has an impact on the

performance even though the number of components stays the same. We illustrate this by constructing an

arbitrary Qualitative network (Figure 5), which has no biological meaning except that we only use the

activation/inhibition target function. This model contains the same number of components per cell as the

Notch/Wnt model. The interactions between the components are more complex. In order to compare the

complexity of the two models, we consider the size of the BDD used to represent the transition relation of

a single cell. This size, measured as the number of nodes in the BDD, relates more or less to the required

memory. The arbitrary Qualitative network is represented using 279’504 BDD nodes, compared to 39’564

BDD nodes for the Notch/Wnt model. This increase in complexity is reflected in the performance of the

infinitely visited states computation. When considering only three cells this computation takes 33 seconds

for the Notch/Wnt model, and 113 minutes for the arbitrary Qualitative network.

Our algorithm interleaves the composition of a multi-cellular model with the computation of infinitely

visited states. This approach outperforms symbolic algorithms that directly compute the set of infinitely

visited states of the complete model. The application of the direct algorithm to models of the Notch/Wnt

pathway with four or more cells fails, because the symbolic representations of the sets of states becomes

too large. On the three-cell model, our algorithm needs 33 seconds and the direct algorithm 231 seconds.

The advantage of first computing the infinitely visited states on partial models is that the sets of

potentially infinitely visited states is smaller than in the direct algorithm. This is illustrated in Table 2,

which provides details about the application of our method to the ten-cells Notch/Wnt model. For each

partial model, we indicate the initial set of states we start from, as well as the set of infinitely visited states

17

of the partial model after the computation. In particular, it can be noted that the computation of the

infinitely visited states of the complete model starts from a set of approximately 1013 states. An algorithm

that directly computes all infinitely visited states would start from the set of all states of the system

(approximately 1072).

The symbolic approach we propose is able to compute the infinitely visited states for large multicellular

Qualitative networks and to handle complex models. By tailoring the algorithm specifically for Qualitative

networks, we can analyze larger models than by directly computing the infinitely visited states.

Discussion

In this work, we extend Boolean networks to Qualitative networks; networks that allow variables to take

discrete values representing qualitative levels of protein activity or gene expression. By introducing a

target function, we allow a rich set of interactions between components. We propose a method for

analyzing Qualitative networks, that uses formal verification of specifications derived from experimental

observations for iteratively improving the model. In order to efficiently analyze the properties of infinitely

visited states of large models, we introduce a symbolic algorithm which builds on the structure of our

modeling method. We apply this method to build and analyze a multicellular model of the interactions

between the Wnt and Notch pathways in mammalian keratinocytes. We show that the proposed symbolic

algorithm can be applied to large and complex multicellular models.

Model Analysis Approach

Our modeling approach is aimed at using formal verification methods for the analysis of signaling networks

in an iterative improvement process which is based on specifications that are directly derived from

experimental results. This work therefore combines formal verification methods with the widely used

formalism of Boolean network, and its extension to qualitative domains. Since Boolean networks are a

particular case of Qualitative networks, the iterative improvement approach can be directly applied to

Boolean networks as well.

Our method allows to build a model at a level of abstraction that is similar to the one commonly used in

cell biology, and to analyze it using specifications that are directly derived from experimental studies. This

approach is therefore useful for biologists to identify gaps between the hypothesized mechanistic

description of a pathway of interest, and the experimental data on which the hypothesis has been

formulated. Furthermore, the careful analysis of counter examples found using this approach can lead to

18

new hypotheses on how to reconcile the model with the experimental data. We illustrate the usefulness of

this approach by an example showing that we can infer a known interaction from the analysis of a model in

which this interaction was purposefully ignored. It is known that in mammalian keratinocytes, Notch

activates the expression of its ligand Jagged. For the purpose of this example, we ignore that information,

and consider that Notch inhibits the expression of the Delta ligand, as it is the case in Drosophila when

building our original model. Such a model is not able to reproduce the wild type specification (as

formulated in the results section), and we have thus identified a gap between the hypothesized model and

the experimental data. The counter example traces we obtain indicate that the model is unable to

reproduce the sustained Notch signaling that is necessary in order to reproduce the observed wild type

behavior. This strongly suggests that the type of interaction between Notch and its ligand in keratinocytes

needs to be changed from inhibition to activation. Applying this change to the model and then running the

verification algorithm again shows that the modified model is consistent with all specifications. This means

that our refinement process allows us to infer the hypothesis that was left out in this example.

Furthermore, a similar approach, although using a different formalism, has lead to new biological insights

about the vulval development in C. elegans [14].

We believe that the possibility of in-silico execution of putative models is an efficient way to help biologists

understand the behavior of a complex signaling networks. Counter example traces are helpful not only to

detect that a model does not behave as expected, but also to provide a concrete basis on which one can

reason about why this is indeed the case. In addition, by querying the model, interesting executions could

suggest new experiments to be tested in the lab. We therefore expect that the application of our modeling

methodology to other biological systems will help provide new biological insights.

An area in which our approach appears to be particularly useful is the analysis of cell-cell communication

in multicellular models. Given the size of such models, efficient algorithms are required. The efficient use of

the modularity in multicellular models by our symbolic algorithm makes it particularly suitable for

analyzing cell-cell communication processes together with complex intracellular pathways, a level of detail

that would be intractable for enumerative or simpler symbolic algorithms. The utility of this algorithm

extends beyond the scope of our iterative improvement approach. The computation of attractors of

Boolean networks is, for example, mainly done using enumerative methods. Such methods become

intractable even for small models, and since Boolean networks are a particular instance of Qualitative

networks, our symbolic algorithm can be directly applied to this problem.

19

Modeling Approach

In addition to being well suited for our formal verification based iterative improvement approach, using

Qualitative network has several benefits compared to using other existing frameworks, such a quantitative

models using differential equations and Boolean networks. In this section, we discuss these advantages, and

then stress the benefit of clearly separating the modeling of a system using a well defined framework like

Qualitative networks from its implementation.

Using discrete qualitative variables sets, allows modeling at a level of abstraction which is similar to the

one used in many biological studies. Quantitative methods, such as differential equation-based models,

allow continuous and precise modeling of the execution of a system, but require fine-tuning of multiple

parameters that are often not easily available for many biological systems. The amount of precision

provided by such methods may be unnecessary to analyze a putative model on the basis of experimental

results that only provide qualitative levels for the components of the system. The results obtained using

Qualitative network models of network motifs that occur frequently, such as the I1-FFL, indicate that the

Qualitative networks approach provides a realistic qualitative approximation of the experimentally

observed behavior of the system.

The iterative improvement approach used for the construction of a consistent model as well as our analysis

algorithms can be applied to Boolean networks. However, extending Boolean networks allows both to create

more detailed models in terms of granularity, and to model a richer set of biological interactions thanks to

the introduction of the target function. Using more than two levels is necessary if an experimental result

cannot be formulated as a requirement over boolean values. This is the case if, for example, the knockout

of gene A leads to an increase in the level of protein B, but the combined knockout of genes A and B leads

to a significantly larger increase. An additional example for which at least three levels are needed is the

case when in one experiment the level of a protein decreases, while in another it increases.

The advantages of using Qualitative networks are not limited to the increased expressive power of the

specifications. Boolean networks are not sufficient to model some commonly observed patterns. For

example, the action of two transcription activators of a gene can be cumulative, whereas Boolean networks

only allow modeling the case in which the presence of one transcription factor is sufficient for transcription

to happen. Furthermore, while the influence of the I1-FFL motif on the response time can be modeled

using Qualitative networks, this is not the case with Boolean networks. In the case of the studied example,

the requirement that the presence of CRP necessarily leads to the activation of galETK implies that, in a

Boolean network, the value of galETK will necessarily depend directly on the value of CRP , and the

20

contribution of GalS needs to be ignored. An even simpler example that cannot be reproduced by Boolean

networks is negative auto-regulation, where a transcription factor represses its own expression. Negative

auto-regulation has been shown to lead to faster response times [43]. In Boolean networks, it is necessary

to ignore negative auto regulation, since considering an inhibitory interaction of a component with itself

would lead to oscillations.

These examples illustrate the need for extending Boolean networks to the qualitative domain. Depending

on the structure of the studied network and the corresponding specifications, Boolean networks may

however be sufficient in some cases. Since it is still possible to use the exact same analysis approach,

Boolean values should be used in such a situation to reduce the size of the state space. Possible extensions

of the Qualitative network framework include the addition of probabilities, resulting in Markov processes,

for which formal verification methods exist. However, the necessary data for such models is often not

available, and verification of probabilistic systems is computationally harder.

Separation between the Model and the Implementation

We specify the molecular interactions between components by defining a Qualitative network of the studied

system. Compared to directly implementing an executable model, this approach allows to clearly separate

this specification from the implementation. This allows discussion at the level of the Qualitative network,

and thus leads to a improvement process at the level of abstraction often observed in diagrammatic models,

which are commonly used by biologists. Furthermore, the clarity and coherence of the model is increased by

defining a small set of target function that are consistently reused to model the same kind of interactions.

The benefits of a clear separation between the model and its implementation extend beyond Qualitative

networks. Using a modular approach based on simple building blocks allows a faster development of

coherent executable models. Each type of building block represents a specific kind of biological interaction

between components. This approach separates the executable model into two distinct parts: the definition

of the interactions between proteins such as activation or inhibition, and the internal implementation of the

building blocks. This modular design is particularly useful for fast search of multiple variations in the

interaction model. Once the set of basic building blocks is implemented, interactions between biological

elements of the model can be changed by replacing one building block by another, and new elements can

be added as instances of the appropriate kind of building blocks, all this with minimal changes in the

implementation of the model. Changes to the implementation of building blocks only need to be made in

one place and can then be reused by all variations of the model. In the case that we want to explore the

21

behavior of the model when we use different ways for representing the interactions between biological

elements, it is sufficient to replace one set of basic building blocks by another set of basic building blocks.

The clear separation between the interaction model and the implementation is also helpful for assessing the

validity of the Qualitative networks approach to modeling biological systems. Rather than having to

understand the behavior of every single protein of every variation of the model, our approach allows to first

agree on the definition of specific target functions, and then assess the plausibility of a particular

Qualitative network, whose representation is close to the common visualization of biochemical pathways.

The clear distinction between what we model and how we do it therefore makes the whole approach easier

to understand. The clear and concise definition of the behavior of a small set of basic building blocks

makes it possible to evaluate (and criticize) the conceptual elements of our approach. Finally, this

approach allows to clearly separate methodological issues from issues that are only related to a particular

Qualitative network.

Notions of Concurrency

Qualitative networks, like Boolean networks, are synchronous. At each time step, the state of all variables

is updated according to the previous state of the system. In this section, we discuss the applicability of

other notions of concurrency in the context of Qualitative networks. The variables we use are qualitative

representations of the level of protein activity or gene expression. Hence, these variables represent a large

population of individual molecules. The interactions between individual molecules are highly stochastic.

When using discrete levels of protein activity or gene expression, we consider that the biochemical

reactions have a delay. The stochasticity of the individual reactions results in small variations of this delay.

The level of all variables is updated according to the previous values. A change therefore takes one time

step to propagate from one variable to the next. The time step can thus be considered as being the delay

of the biochemical reactions. In case there are major differences between the delays of the different

reactions, it is possible to use target functions on the previous states of the systems rather than on the

current state. The impact of the small variations of the delay depend on the granularity of the model. The

minimal difference between two possible values of a variable is inversely proportional to the granularity of

the variable. In a model with a small granularity, variations of the delay would lead to the same value due

to rounding. In this case, the synchronous execution is sufficient to reproduce the behavior of the model.

As the granularity increases, rounding is no longer sufficient for handling the variability of the delays. In

order to model this variability, it is necessary to introduce non-determinism by allowing asynchronous

22

execution of the model. In a totally asynchronous system, a scheduler would choose any subset of the

system which would be updated, while the other remain constant. This means that the delay of an

interaction is completely independent of the delay of other interactions of the system as well as of the

previous delays of the same interaction. This independence is thus an over-approximation of the expected

behavior of the system, and is therefore likely to result in unrealistic executions. Therefore, while a

synchronous execution is appropriate when the granularity is low, more precise models in terms of

granularity call for a better handling of concurrency.

The State Explosion Problem

The exhaustive exploration of all possible executions of a system is exponential in the number of variables

of the system. This issue is called the state explosion problem. For example, in the case of finding all

infinitely visited states, the unrestricted number of initial states of a system with k variables and

granularity N is Nk. Enumerative methods are practically intractable even for small values of k.

Furthermore, the complexity of the Notch/Wnt model also caused the direct application of symbolic

methods to fail for models of more than three cells. The number of variables of a system not only depends

on the size of the studied pathways, but also on the number of cells represented in the model. Hence, the

number of initial states is also exponential in the number of cells, which makes multicellular models hard

to analyze. In order to be able to analyze larger models, it is therefore necessary to use more elaborate

methods that have the potential for circumventing the state explosion problem in specific cases. We

provide an illustration of this approach in the symbolic algorithm used for computing the infinitely visited

states. We use both the modularity and the specific characteristics of transitions of our model in order to

allow interleaving composition and computation of infinitely visited states. The characteristics of our

model also make it well suited for the use of partitioned transition relations. We are able to compute the

set of infinitely visited states for a 12 cells model, which has 4144 ≈ 1086 initial states. Our approach is

therefore well suited for analyzing multicellular Qualitative networks. This kind of model is particularly

useful for studying pathways that involve inter-cellular communication.

In addition to using the specificity of the model for tailoring the verification algorithm, methods used in

software and hardware modification, such as assume-guarantee reasoning [44], or Counterexample-guided

Abstraction Refinement [45] could also be applied to models of biological systems. Doing so has the

potential for making it possible to analyze larger models. In the context of the Notch/Wnt model, this

could allow studying multidimensional tissues with larger numbers of cells, and thus the analysis of local

23

effects, such as cell clusters.

Conclusions

In this work we propose an extension to Boolean networks by allowing variables that represent the level of

protein activity or gene expression to range over larger domains, combined with more flexible update

options for these values. We show that a Qualitative networks model of a frequent network motif offers a

valid qualitative approximation of the experimentally observed behavior of this motif. This framework can

be used to model recurrent networks. In addition we use formal verification methods to analyze the steady

state behavior of Qualitative networks. Reasoning about sets of states rather than individual states, and

using a partition reduction allows us to scale-up to very large models. In particular, Qualitative networks

can be used to analyze multi-cellular models, and thus to study pathways that involve cell-cell

communication. Similar to Boolean networks, this approach could be useful for the analysis of biological

pathways even where quantitative data is missing. We believe that the ability to formally verify a

biological model versus the laboratory observations offers great advantages in improving working

hypotheses and suggesting new experimental directions that are likely to yield new findings.

Methods

We use the Reactive Modules (RM) formalism [46] to implement executable models based on Qualitative

networks. In this section, we first introduce RM, then describe how we make use of its modular structure

for this implementation. We describe how specifications are derived from experimental data, and how the

implementation of the model is verified against them. Finally, we describe the symbolic algorithm used to

compute the infinitely visited states of a Qualitative network.

Verification of Reactive Systems
Reactive Modules

Reactive modules is a modeling language for reactive systems [46]. RM is designed to describe systems

which are discrete, deadlock-free, and non-deterministic. The elementary particles in RM are variables. We

describe the behavior of variables and the combinations of atoms into modules. Modules can be combined

to create more complicated modules (including combinations of several copies of the same module). This

process is called parallel composition. The variables of a module are defined as either private, interface or

external. The scope of a private variable is limited to its module. An interface variable is controlled by an

24

atom of the module and its value can be used by other modules. An external variable is not controlled by

any atom in the module. An interface variable of one module can be connected to an external variable of

another module or also few other modules. Each variable ranges over a finite set of possible values. An

atom describes the possible updates on variables. An atom can be synchronous, meaning that it updates

the variables it controls in every step of the system, or asynchronous, meaning that it updates the variables

it controls from time to time. An update of a variable may depend on the value of itself as well as the

values of other variables. There can also be dependencies between the mutual update of several variables in

the same step. In order to compute the future value of a variable it controls, an atom can either read the

current state of variables or await the future state of variables. It is necessary to make sure that the await

relation between variables is loop-free. RM enables non-determinism by allowing multiple overlapping

update options.

Mocha

Mocha [47] is a software tool for the design and analysis of RM. Mocha can simulate a model by following

step by step evolution of the variables in the model. Simulations show the sequence of values assumed by

variables during the simulation. In simulation of non-deterministic models, the user is expected to choose

the next step between different non-deterministic options. The simulation engine can highlight the variable

values that lead to the assignment of a certain value. Mocha supports invariant model checking directly (to

check that all reachable states satisfy some property that relates to the values of variables in the state), as

well as model checking of safety properties using monitors (to check that all executions satisfy some

property). Counter-examples are presented as sequences of variable values.

Modular Implementation of Qualitative networks

The implementation of Qualitative networks extends and adapts the modularity of reactive modules to

biological models. The list of target functions defines the relation between components by specifying one

target function per variable. We separate this model into building blocks, where each building block controls

one variable. Each building block is an instance of a basic building block. For each kind of target function

(such as the minimum target function or the activation/inhibition target function), we create one basic

building block. Note that, since Mocha does not accept parameters, we cannot create a single basic building

block for the activation/inhibition target function, and we need to create one for each combination of the

parameters αij used in the model. Instances of the basic building blocks are combined together according

25

to the list of target functions by connecting the output variables of one building block to the input

variables of one or several other building blocks. A cell is represented by the parallel composition of several

building block instances that hides internal components (makes them private variables) and represents

interactions between the cell and the environment as interface and external variables, thus allowing for

connection with other cells. This architecture is a consequence of the modular approach of RM, which uses

a concept of connection similar to the connections between components in an electrical circuit.

The implementation of each basic building block constitutes one Module, with one or more external

variables (corresponding to the input of the target function) and one interface variable (the value of the

component controlled by the building block). An additional variable is used to control the behavior of the

building block. This variable is only awaited and therefore does not contribute to the size of the state

space. The building block is composed of two atoms. The first atom computes the value of the target

function of the building block based on the values of the input variables in the current state. This atom is

specific to every building block. It is obtained directly from the definition of the corresponding target

function, by mapping all possible valuations of the input to the corresponding target value. The second

atom implements Equation 2 to compute the value of the output value in the next state of the system

based on the target, the current value of the system and the control value. This atom is the same for all

building blocks. It makes sure that the output variable increases and decreases by at most one level per

step rather than directly jumping from its current state to the target. The control variable allows to

specify the initial value or to choose to non-deterministically start from every possible value.

We also introduce the possibility for a building block to determine the initial output value of a building

block based on the initial value of its inputs rather than having to set it arbitrarily or

non-deterministically. This allows to obtain an initial state of the system in which only a few variables are

set and the others are logically derived from them. Furthermore, choosing non-deterministic initial values

for a few variables and then deriving the other initial variables leads to significantly less possible initial

states than choosing the initial value of every variable non-deterministically, while still exploring the most

plausible initial states. In case that there are mutual dependencies between variables (i.e., a component

ultimately affects itself in a loop), this approach can be applied only to some of the substances. In such a

case, trying to simplify the initial state of all substances would create a loop of dependencies that cannot

be solved. It is therefore necessary to choose at least one variable in every loop of the model for which the

initial value is set or non-deterministic.

26

Formulating Specifications

Specifications play a key role in our approach: they are the link between the experimental results and the

computational model. A putative model needs to adhere to the specifications in order to be considered as a

potentially valid representation of the biological system. If the model does not adhere to a requirement of

the specification, then we already know that the model is not able to explain all the existing experimental

results, and therefore needs to be improved.

When defining specifications, we start from the description of the experiments and derive safety

requirements. The observed result can then be formulated as a predicate over the values of the different

components of the system. In the most simple case, the specification can be expressed as a predicate over

the current state of the system. We can therefore formulate an invariant which must hold on all states of

the system. It is however often necessary to consider that the model starts from an arbitrary initial state

and needs some iterations to stabilize. We therefore choose an arbitrary number of steps during which the

invariant is not checked. This setting allows to verify if the the wild type (normal) model satisfies certain

specifications.

We are also interested in verifying the outcome of experiments that include modifications of the biological

model. We first consider under which conditions the experiment has been performed. We consider

experimental conditions involving two kinds of manipulations: the over-expression of a gene, in which the

level of this gene remains at a high level and the knockout of a gene, in which a given gene is modified so

that it cannot be transcribed into a protein. In both cases, the influence of the upstream pathways onto

the modified variable is ignored. Experiments might involve every combination of these perturbations. In

order to be able to model these experiments, we modify the control atom of the basic building blocks by

adding two values to the control variable: gene knockout and gene over-expression. When the control

variable takes one of these values, the target function is ignored. In the case of gene knockout, the targeted

protein is not translated at all, and is not present in the cell. We model this situation by keeping the

output value at the lowest possible value when the control variable indicates that knockout has occurred.

Gene over expression occurs when the level of a given gene is kept constantly high, and we model it

similarly by keeping the output value at the highest possible value. We use a monitor, which is an

additional module that reads the level of the components and controls the control variable of the individual

building blocks. The monitor first lets the model stabilize over a certain number of iterations, then changes

the behavior of certain building blocks according to the experiment performed, then allows the model to

stabilize again over an arbitrary number of iterations, and then checks if the change induced to the

27

experiment corresponds to the outcome of the experiment. The monitor controls a boolean value, which is

true until this check is performed, and is then set to false if the execution does not reproduce the

specification. We can therefore use an invariant which corresponds to the monitor being true for all

possible states of the model.

Using monitors, we can therefore verify specifications that are richer than invariants but a subset of general

safety properties. The monitor described above allows to verify if all executions of the model satisfy a

certain specification. When this is not the case, we are interested in knowing if some execution satisfies the

specification. We can do this with monitors, by verifying if there is a trace on which the dual of the

specification is not satisfied on all states on which the specification is checked.

We are also interested in extending the notion of delays for stabilization of the model, by only verifying the

specification on the infinitely visited states. We consider an execution of the model as a prefix followed by

a loop in which the model stays indefinitely unless there is some change in the model. The change triggers

a similar behavior, with a second prefix and a second loop. Since Mocha does not provide a direct way of

detecting loops, we use an over-approximation of the length of the prefix and the loop as delay for the

stabilization. When a contradiction is found, we verify that the trace contains a loop, which means that

the contradiction occurred in the loop and is thus valid, else we know that we need to increase our

approximation. This solution is not usable when the number of different executions is large. In the section

below, we propose a symbolic algorithm which finds all infinitely visited states of the model, and verifies a

property only on these states. This method does not require the use of monitors.

Symbolic Computation of all infinitely visited States

We propose a symbolic algorithm for computing all infinitely visited states of a Qualitative network.

Infinitely visited states of the model represent the stable states of the biological system, and correspond to

the notion of attractors in Boolean networks. Our algorithm builds on the modularity of Qualitative

networks. It interleaves the computation of infinitely visited states of parts of the model with the

composition of these parts. This process ultimately results in a complete model and the set of infinitely

visited states of the model. In this section, we first introduce symbolic methods and the tool used for the

implementation of the algorithm, and then describe the algorithm.

28

Symbolic Methods

Symbolic methods are used to represent sets of states of a system in a compact way. Rather than

enumerating all the states of a set, a symbolic representation uses constraints identifying all states in the

set. A symbolic representation may therefore be exponentially more compact than the enumerative

representation of the same set. Hence, symbolic algorithms operate on representations of sets rather than

considering individual states. Symbolic algorithms are successfully used for model checking systems that

have very large state spaces [48].

Mocha offers both enumerative and symbolic methods for verifying invariants. However, in order to find

the infinitely visited states of large models, we need an algorithm which is specifically tailored for

Qualitative networks. We implement this algorithm using the Relational Manipulation Language. We also

need to translate the RM implementation of the model into this language, a process that we do not

describe here. We use CrocoPat [49] to execute the algorithm on the translated model. This tool is based

on Binary Decision Diagrams (BDDs) [29], a data structure for compact representation of large relations.

Algorithm

We want to find the set of all infinitely visited states of a module M . A region σM is a set of states of M .

The set of all states of M is represented by ΣM and the set of all variables of the module by XM . For a

given state s of M and a subset V of XM , we define the projection s[V] as the restriction of s to the

variables in V . Projection is generalized in the natural way to sets of states. The function post(σM) maps

the region σM to the union of the successors of all states in σM . This function is constructed according to

the definition of the module M .

In order to obtain the set of infinitely visited states of M , we compute the set of states that is mapped to

itself by the post function. This set is called the fix point of the function. We use the following algorithm

to obtain this fix point:

σ0
M = ΣM

i := 0

repeat

i := i + 1

σi
M := post(σi−1

M)

until σi−1
M = σi

M

σinf
M := σi

M

29

The region σi contains all states that can be visited at time step i or later. Therefore the region σinf

contains all states that are infinitely visited. In order to show that this algorithm terminates, it is sufficient

to show that σi
M ⊆ σi−1

M . We can do so by recurrence on σi
M , using the fact that the post function is

monotonous: σi−1
M ⊆ σi−2

M ⇒ post(σi−1
M) ⊆ post(σi−2

M) ⇒ σi
M ⊆ σi−1

M and σ1
M ⊆ σ0

M = ΣM .

We are interested in knowing if a predicate p holds on all infinitely visited states. We define [[p]] ⊆ ΣM as

the set of all states for which the predicate is true. Therefore we can say that the predicate holds on all

infinitely visited sets iff σinf
M ⊆ [[p]]. If this is not the case, we are interested in knowing if there is at least

one attractor for which the property holds for all states. We modify the algorithm in order to consider only

infinitely visited states for which the property holds:

σ0
M,p = σinf

M ∩ [[p]]

i := 0

repeat

i := i + 1

σi
M,p := post(σi−1

M,p) ∩ [[p]]

until σi−1
M,p = σi

M,p

σinf
M,p := σi

M,p

If σinf
M,p is empty, then there is no attractor on which the property holds for every state. Note that we start

from σinf
M since this set has already been computed, but that this fix point can also be used

with σ0
M,p = [[p]]. The kind of analysis we are interested in does not need explicit computation of the

individual attractors. Obtaining the explicit trace of each attractor would need to be done in an

enumerative way, and thus requires O(|σinf
M |) steps (for a deterministic Qualitative network).

The general algorithm described above can be applied to every kind of module. We use a more specific

algorithm tailored for Qualitative networks. Each module consists of an atom computing the target

function and a controller atom which enforces the transition rules specified in Equation (2). Rather than

directly computing the infinitely visited region of a composed module M = M1||M2, we first compute the

infinitely visited region of each module separately, and then do the parallel composition of them. The

separate modules might have external variables, whose behavior is not specified. Rather than allowing

them to have any random behavior, we enforce the transition rules of Equation (2). The set of possible

behaviors of an external variable is therefore a superset of the behavior of any building block. Using the

algorithm above, we compute the infinitely visited region σinf
M1

of M1. We consider the projection

30

σinf
M [XM1] of the infinitely visited states of M onto the variables of M1. Since the set of behaviors of the

non-deterministic building block are a superset of the behavior of any other building block we have that

σinf
M [XM1] is included in σinf

M1
. Similarly, we compute the infinitely visited region of M2, σinf

M2
. We can now

compute a superset of σinf
M : σinf

M ⊆ {s ∈ ΣM | s[XM1] ∈ σinf
M1

and s[XM2] ∈ σinf
M2

}. We use this smaller set

as initial set σ0
M for the computation of the infinitely visited states of M . By repeating this iteratively we

can handle larger compositions.

When applying this method to a multicellular model, we use partitioned transition relations [30]. Rather

than defining a single post function for the whole model, we define one function per cell, and apply them

successively.

Setting of the Performance Analysis

The performance tests are performed on a 3 GHz Intel Xeon computer running Linux Fedora Core 3

(Kernel version 2.6.11). The CrocoPat tool can use up to 3 GB of memory.

Authors’ contributions

MS carried out the modeling work, conceived the idea of the Qualitative network framework, and

performed the analysis of the model. JF conceived the study and participated in its design. TAH

participated in the design of this study. All authors collaborated for the elaboration of the manuscript,

read, and approved the final manuscript.

Acknowledgements

We thank Nir Piterman, Freddy Radtke and Grégory Théoduloz for fruitful discussions and Dirk Beyer for

assistance with the implementation of the symbolic algorithms. This work was supported in part by SNSF

grant 205301-111840.

References
1. Ideker T, Galitski T, Hood L: A new approach to decoding life: systems biology. Annu Rev Genomics

Hum Genet 2001, 2:343–372.

2. Kitano H: Systems biology: a brief overview. Science 2002, 295(5560):1662–1664.

3. Cardelli L: Abstract Machines of Systems Biology. Transactions on Computational Systems Biology 2005,
III(3737):145–168.

4. Efroni S, Harel D, Cohen IR: Toward rigorous comprehension of biological complexity: modeling,
execution, and visualization of thymic T-cell maturation. Genome Res 2003, 13(11):2485–2497.

5. Kam N, Harel D, Kugler H, Marelly R, Pnueli A, Hubbard EJA, Stern MJ: Formal Modeling of C. elegans
Development: A Scenario-Based Approach. In CMSB 2003:4–20.

31

6. Fisher J, Piterman N, Hubbard EJ, Stern MJ, Harel D: Computational insights into Caenorhabditis
elegans vulval development. Proc Natl Acad Sci U S A 2005, 102(6):1951–1956.

7. Goss PJ, Peccoud J: Quantitative modeling of stochastic systems in molecular biology by using
stochastic Petri nets. Proc Natl Acad Sci U S A 1998, 95(12):6750–6755.

8. Peleg M, Rubin D, Altman RB: Using Petri Net tools to study properties and dynamics of biological
systems. J Am Med Inform Assoc 2005, 12(2):181–199.

9. Dill DL, Knapp MA, Gage P, Talcott C, Laderoute K, , Lincoln P: The Pathalyzer: a Tool for Analysis of
Signal Transduction Pathways. In Proceedings of the First Annual Recomb Satellite Workshop on Systems
Biology (To appear) 2006. [San Diego, CA, Dec 2-4, 2005.].

10. Alur R, Belta C, Ivancic F: Hybrid Modeling and Simulation of Biomolecular Networks. In HSCC
2001:19–32.

11. Ghosh R, Tiwari A, Tomlin C: Automated Symbolic Reachability Analysis with Application to
Delta-Notch Signaling Automata. In Hybrid Systems: Computation and Control HSCC, Volume 2623 of
LNCS. Edited by Maler O, Pnueli A, Springer 2003:233–248.

12. Fisher J, Henzinger TA: Executable Biology. In Executable Biology. Proc. of Winter Simulation Conference
(WSC ’06) - Track on Modeling and Simulation in Computational Biology 2006. [To appear].

13. Clarke E, Grumberg O, Peled D: Model Checking. Cambridge, MA: MIT Press 2000.

14. Fisher J, Harel D, Hubbard EJA, Piterman N, Stern MJ, Swerdlin N: Combining State-Based and
Scenario-Based Approaches in Modeling Biological Systems. In CMSB 2004:236–241.

15. Chabrier N, Fages F: Symbolic Model Checking of Biochemical Networks. In CMSB 2003:149–162.

16. Bernot G, Comet JP, Richard A, Guespin J: Application of formal methods to biological regulatory
networks: extending Thomas’ asynchronous logical approach with temporal logic. J Theor Biol
2004, 229(3):339–347.

17. Batt G, Ropers D, de Jong H, Geiselmann J, Mateescu R, Page M, Schneider D: Validation of qualitative
models of genetic regulatory networks by model checking: analysis of the nutritional stress
response in Escherichia coli. Bioinformatics 2005, 21 Suppl 1:19–19.

18. Barbuti R, Cataudella S, Maggiolo-Schettini A, Milazzo P, Troina A: A Probabilistic Model for Molecular
Systems. Fundamenta Informaticae 2005, 67(1-3):13–27.

19. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O: Probabilistic model checking of complex
biological pathways. In CMSB 2006. [To appear].

20. Kauffman SA: Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of
Theoretical Biology 1969, 22(3):437–467.

21. Thomas R: Boolean formalization of genetic control circuits. J Theor Biol 1973, 42(3):563–585.

22. Mendoza L, Alvarez-Buylla ER: Dynamics of the genetic regulatory network for Arabidopsis thaliana
flower morphogenesis. J Theor Biol 1998, 193(2):307–319.

23. Huang S, Ingber DE: Shape-dependent control of cell growth, differentiation, and apoptosis:
switching between attractors in cell regulatory networks. Exp Cell Res 2000, 261:91–103.

24. Albert R, Othmer HG: The topology of the regulatory interactions predicts the expression pattern
of the segment polarity genes in Drosophila melanogaster. J Theor Biol 2003, 223:1–18.

25. Li F, Long T, Lu Y, Ouyang Q, Tang C: The yeast cell-cycle network is robustly designed. Proc Natl
Acad Sci U S A 2004, 101(14):4781–4786.

26. Shmulevich I, Dougherty ER, Kim S, Zhang W: Probabilistic Boolean Networks: a rule-based
uncertainty model for gene regulatory networks. Bioinformatics 2002, 18(2):261–274.

27. Thomas R, Thieffry D, Kaufman M: Dynamical behaviour of biological regulatory networks–I.
Biological role of feedback loops and practical use of the concept of the loop-characteristic state.
Bull Math Biol 1995, 57(2):247–276.

28. Devloo V, Hansen P, Labbé M: Identification of all steady states in large networks by logical
analysis. Bull Math Biol 2003, 65(6):1025–1051.

32

29. Bryant RE: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on
Computers 1986, 35(8):677–691.

30. Burch JR, Clarke EM, Long DE: Representing Circuits More Efficiently in Symbolic Model
Checking. In DAC 1991:403–407.

31. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: Simple building
blocks of complex networks. Science 2002, 298(5594):824–828.

32. Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Natl Acad
Sci U S A 2003, 100(21):11980–11985.

33. Mangan S, Itzkovitz S, Zaslaver A, Alon U: The incoherent feed-forward loop accelerates the
response-time of the gal system of Escherichia coli. J Mol Biol 2006, 356(5):1073–1081.

34. Bolouri H, Davidson EH: Modeling transcriptional regulatory networks. Bioessays 2002,
24(12):1118–1129.

35. Radtke F, Raj K: The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev
Cancer 2003, 3(10):756–767.

36. Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 2005, 434(7035):843–850.

37. Wodarz A, Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 1998,
14:59–88.

38. Luo B, Aster JC, Hasserjian RP, Kuo F, Sklar J: Isolation and Functional Analysis of a cDNA for
Human Jagged2, a gene Encoding a Ligand for the Notch1 Receptor. Mol Cell Biol 1997,
17:6057–6067.

39. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D,
Chambon P, Miele L, Aguet M, Radtke F, Dotto GP: Notch Signaling is a Direct Determinant of
Keratinocyte Growth Arrest and Entry into Differentiation. EMBO J 2001, 20:3427–3436.

40. Nicolas M, Wolfer A, Raj K, Kummer J, Mill P, van Noort M, Hui C, Clevers H, Dotto G, Radtke F: Notch1
functions as a tumor suppressor in mouse skin. Nat Genet 2003, 33(3):416–421.

41. Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP: p21WAF1/Cip1 is a Negative Transcriptional
Regulator of Wnt4 Expression Downstream of Notch1 Activation. Genes Dev 2005, 19:1485–1495.

42. Lowell S, Jones P, Le Roux I, Dunne J, Watt F: Stimulation of human epidermal differentiation by
delta-notch signalling at the boundaries of stem-cell clusters. Curr Biol 2000, 10(9):491–500.

43. Rosenfeld N, Elowitz MB, Alon U: Negative autoregulation speeds the response times of transcription
networks. J Mol Biol 2002, 323(5):785–793, [http://www.hubmed.org/display.cgi?uids=12417193].

44. Henzinger T, Qadeer S, Rajamani S: You assume, we guarantee: Methodology and case studies. In
CAV 98: Computer-Aided Verification, Lecture Notes in Computer Science 1427, Springer 1998:440–451.

45. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H: Counterexample-Guided Abstraction Refinement. In
CAV 2000:154–169.

46. Alur R, Henzinger T: Reactive modules. Formal Methods in System Design 1999, 15:7–48.

47. Alur R, de Alfaro L, Grosu R, Henzinger T, Kang M, Kirsch C, Majumdar R, Mang F, Wang B: jMocha: A
model-checking tool that exploits design structure. In Proceedings of the 23rd Annual International
Conference on Software Engineering, IEEE Computer Society Press 2001:835–836.

48. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ: Symbolic Model Checking: 1020 States and
Beyond. Inf. Comput. 1992, 98(2):142–170.

49. Beyer D: Relational Programming with CrocoPat. In Proceedings of the 28th International Conference on
Software Engineering (ICSE 2006, Shanghai, May 20-28), ACM Press 2006:807–810,
[http://mtc.epfl.ch/∼beyer/CrocoPat/].

33

Figures
Figure 1 - Iterative improvement of the model.

Schematic view of the iterative improvement process used to build a model which is consistent with the

experimental data. The verification process is represented in blue. The improvement of the model based on

counter examples is represented in red. The outer improvement loop, based on laboratory experiments, is

represented in green.

Figure 2 - Model of the gal system in E.coli

A: View of the gal system in E.coli. The activator CRP activates both galETK and GalS. GalS inhibits

galETK and negatively auto-regulates itself. GalSinh, which is a shortcut representing both β-D-galactose

and D-fucose, cancels the inhibitory effect of GalS on galETK.

B: Evolution of the level of galETK when CRP is activated at time t = 0. The level are represented using

relative values with respect to the stable state galETKSt. The situation in which no GalSinh is not

expressed is represented in blue. This corresponds to an I1-FFL. The situation in which GalSinh is present

is represented in red. In this situation, the model behaves like with a simple activation. The response time,

measured as the time needed to reach galETKSt/2 is shorter in the absence of GalSinh.

Figure 3 - Schematic view of the multicellular model

View of the different layers of the mammalian skin, and how they are represented in the multicellular

model. Connections through the Wnt pathway are represented in red and connections through the Notch

pathway are represented in blue. The level of Notch receptor of each cell is fixed, and the corresponding

values are indicated in the cells. Both the dermis and the cornified layer (composed of dead cells) are not

represented in the model. The required result for each cell in the case of wild type simulation is indicated

below the cell. Cells of the basal layer are proliferating, while cells of the suprabasal layers are

differentiated.

Figure 4 - Visualization of a single cell.

The components of the Wnt pathway are represented in red and the components of the Notch pathway in

blue.

The canonical Wnt pathway starts from the extracellular level of the short range signaling Wnt protein,

which we represent by the Wntext variable. This short range molecule binds to the Frizzled receptor, which

34

leads to an increase in the intracellular level of DSH. We therefore represent the interaction between these

molecules by an activation from Wntext to Frizzled and then to DSH. The level of the scaffolding protein

Axin is dependent on the level of DSH which acts as an inhibitor and Casein Kinase 1α (represented by

the variable Cask1α), which is assumed to be an activator. β-Catenin is phosphorylated by a complex

composed, amongst others, by Axin. We separately represent the expression level of β-Catenin,

β-Cateninexp. β-Catenin is activated by β-Cateninexp and inhibited by Axin. The family of downstream

target genes of the canonical Wnt signaling pathway, (GT1), are transcriptionally activated by β-Catenin.

The Notch pathway is based on the cell-cell interaction between the Notch receptor (whose level is

represented by the variable Notch) and the ligands expressed on the membrane of the immediate

neighboring cells (Ligandin). Since a successful binding between the receptor and the ligand leads to the

cleavage of the intracellular part of Notch (Notch-IC) we use the minimum target function to model this

interaction. We represent the level of the downstream target genes of Notch signaling as a single variable

(GT2), which is activated by Notch-IC. Amongst these targets is the protein p21, which is activated by

Notch-IC and inhibits Wnt. Wnt is an external variable of the cell. The downstream targets of Notch

signaling activate the Jagged ligand.

Figure 5 - Arbitrary pathways for performance evaluation.

This cell contains arbitrary chosen pathways that have no biological meaning. The interactions between

components in this example were chosen in order to obtain a complex transition function. The component

Aext is connected to the component I of the neighbor cells. The component Lext is connected to the

component H of the neighbor cells.

Tables
Table 1 - Execution times for variations of the Notch/Wnt model

Size Pattern Time Initial states Inf. visited states
3 OMH 33 sec. 436 ≈ 1021 1
4 OMHH 4 min. 27 sec. 448 ≈ 1028 256
5 OMHHH 21 min. 460 ≈ 1036 6561
6 OOMHHH 24 min. 472 ≈ 1043 6561
7 OOOMHHH 26 min. 484 ≈ 1050 6561
8 OOOLMHHH 63 min. 496 ≈ 1057 256
9 OOOLMHHHH 171 min. 4108 ≈ 1065 256
10 OOOOLMHHHH 181 min. 4120 ≈ 1072 256
11 OOOOLMHHHHH 513 min. 4132 ≈ 1079 256
12 OOOOOLMHHHHH 543 min. 4144 ≈ 1086 256

35

This table indicates the execution time for various sizes of the model. The patterns indicate the fixed

amount of Notch receptor chosen for each cell of the model. The letters O, L, M and H represents a cell in

which the amount of Notch receptor is set to respectively off, low, medium and high. The number of initial

states (which is equal to the number of states of the model) and the number of infinitely visited states are

also indicated.

Table 2 - Size of infinitely visited state sets for partial models
Size Before After BDD Nodes
1 1.4 · 106 3424 427
2 2.9 · 108 3424 451
3 2.9 · 108 3424 475
4 2.9 · 108 3424 499
5 4.5 · 108 1.3 · 106 1189
6 2.5 · 1011 5.2 · 106 23092
7 1.0 · 1012 7.2 · 108 70626
8 1.4 · 1013 5.6 · 108 146169
9 1.1 · 1014 5.5 · 109 253558
10 6.1 · 1013 255 8830

This table describes the execution of the algorithm on the 10 cells Notch/Wnt model. For each partial

model, the number of potentially infinitely visited states before the execution of the algorithm and the

number of infinitely visited states found by the algorithm are indicated. The size of the symbolic

representation of the infinitely visited states of the partition is indicated in terms of number of BDD nodes.

36

