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Abstract. Recent significant attention has been dedicated to the models of opinion dynamics
in which opinions are described by real numbers, and agents update their opinions synchronously by
averaging their neighbors’ opinions. The neighbors of each agent can be defined as either (1) those
agents whose opinions are in its “confidence range,” or (2) those agents whose “influence range”
contain the agent’s opinion. The former definition is employed in Hegselmann and Krause’s bounded
confidence model, and the latter is novel here. As the confidence and influence ranges are distinct for
each agent, the heterogeneous state-dependent interconnection topology leads to a poorly-understood
complex dynamic behavior. In both models, we classify the agents via their interconnection topology
and, accordingly, compute the equilibria of the system. Then, we define a positive invariant set
centered at each equilibrium opinion vector. We show that if a trajectory enters one such set, then
it converges to a steady state with constant interconnection topology. This result gives us a novel
sufficient condition for both models to establish convergence, and is consistent with our conjecture
that all trajectories of the bounded confidence and influence models eventually converge to a steady
state under fixed topology.
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1. Introduction. Models of social networks are structures made up of individu-
als that are tied based on their interdependency. Such models explain the confidence
or influence flow in populations without relying on detailed social psychological find-
ings. The process of opinion dynamics evolves along the networks of social confidence
or influence and affects the structure of the network itself. A common feature among
many models of opinion dynamics is bounded confidence or influence, which means
that an individual only interacts with those whose opinions are close enough to its own.
This idea reflects the psychological concept called selective exposure [22]. Broadly de-
fined, “selective exposure refers to behaviors that bring the communication content
within reach of one’s sensory apparatus” [35]. In the field of social networks, opinion
dynamics is of high interest in many areas including: politics, as in voting prediction
[1]; physics, as in spinning particles [2]; sociology, as in the diffusion of innovation [31],
the electronic exchange of personal information [23], and language change [29, 7]; and
finally economics, as in price change [28].

1.1. Literature Review. The study of opinion dynamics and social networks
goes back to the early work by J.R.P. French [9] on “A Formal Theory of Social Power.”
This work explores the patterns of interpersonal relations and agreements that can
explain the influence process in groups of agents. Subsequently, F. Harary provides
a necessary and sufficient condition to reach a consensus in French’s model of power
networks [12]. The modeling of “continuous opinion dynamics”, in which opinions are
represented by real positive numbers, is initially studied in [27, 6, 15]. In contrast
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to the classical case of “binary opinion dynamics” [32, 10], the continuous case deals
with the problem of what happens to the worthiness of a choice or the probability
of choosing one decision over another. Recently, bounded confidence (BC) models
of opinion dynamics, a label coined by Krause in 1998 [16], have received significant
attention. BC models are models of continuous opinion dynamics in which agents have
bounded confidence in others opinions. The first version of BC models was formulated
by Hegselmann and Krause [13], called HK model, where agents synchronously update
their opinions by averaging all opinions in their confidence bound. The other popular
version of BC models was developed and investigated by Deffuant and Weisbuch [33],
called DW model. The HK and DW models are very similar, they differ in their update
rule: in DW model a pairwise-sequential updating procedure is employed instead of
the synchronized one.

In the HK model, the set of neighbors of the ith agent is defined as those agents
whose opinions differ from the ith opinion by less than the ith confidence bound.
Hence, this model is dealing with endogenously changing topologies, that is, state
dependent or changing from inside, in contrast to the exogenously changing topolo-
gies. For instance, [14, 24, 7, 5] study a synchronized linear averaging model with
time-dependent exogenously changing topologies. The HK models are classified based
on various factors: a model is called agent- or density-based if its number of agents is
finite or infinite, respectively; and a model is called homogeneous or heterogeneous if
its confidence bounds are uniform or agent-dependent, respectively. The convergence
of both agent- and density-based homogeneous HK models are discussed in [3]. The
agent-based homogeneous HK system is proved to reach a fixed state in finite time [8],
the time complexity of this convergence is discussed in [21], its stabilization theorem
is given in [17], and its rate of convergence to a global consensus is studied in [25]. The
heterogeneous HK model is studied by Lorenz who reformulated the HK dynamics
as an interactive Markov chain [18] and analyzed the effects of heterogeneous confi-
dence bounds [20]. The convergence of the agent-based heterogeneous HK systems is
experimentally observed, but its proof is still an open problem.

1.2. Contributions. In this paper, to distinguish between the HK and DW
models, we call a discrete-time agent-based heterogeneous HK model a synchronized
bounded confidence (SBC ) model. Additionally, we introduce a model similar to the
SBC model and call it the synchronized bounded influence (SBI ) model. The differ-
ence is that in an SBI model the set of neighbors of the ith agent is defined as those
agents j whose influence range contain the ith agent’s opinion. We analyze SBC and
SBI models with heterogeneous bounds of confidence or influence, respectively. In-
deed, if the SBC and SBI models have agents with homogeneous bounds, then both
models are equivalent to the homogeneous HK model. These heterogeneous models of
opinion dynamics, in spite of the considerable complexity of their dynamics, describe
features of a real society that cannot be explained by homogeneous models. Specifi-
cally, the behavior of a heterogeneous opinion dynamics model is richer than that of a
homogeneous model in the following ways: (1) an agent may trust an individual but
not be trusted back by that same individual; (2) in steady state, an agent can keep its
own opinion constant while listening to dissimilar opinions, (whereas, in the steady
state of a homogeneous society, any two agents are either disconnected or in consen-
sus); (3) one can observe pseudo-stable configurations, i.e., “configurations that have
a subset of agents that is stationary, and the rest are the reason for further dynamics”
[30]; (4) it is possible for two disconnected agents to reconnect, and an agent with
a large bound of confidence or influence can pull clusters of agents towards or away
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from each other; (5) the order of opinions is not preserved along the system evolution;
(6) ”given an average level of confidence, diversity of bounds of confidence enhances
the chances for consensus” [20]; and (7) convergence in infinite time is possible.

Based on numerical evidence, we formulate our main conjecture that along the
evolution of an SBC or SBI system there exists a finite time, after which the topology
of the interconnection network remains unchanged, and as a result, the trajectory
converges to a limiting opinion vector. We also observe that each trajectory either
reaches a fixed state in finite time or exhibits a pseudo-stable behavior. This observa-
tion is verified assuming that the main conjecture is true. Furthermore, the following
results put together partly prove our main conjecture: (1) We design an appropriate
classification of agents in both SBC and SBI systems. This classification is a func-
tion of state-dependent interconnection topology of the system, and can explain the
observed pseudo-stable behavior. (2) We introduce the new notion of final value at
constant topology, and based on our classification, we formulate the map under which
this value is an image of the current opinion vector. The set of final values at constant
topology is a superset of the equilibria of the system. We derive necessary and suffi-
cient conditions for the final value at constant topology to be an equilibrium vector.
(3) For each equilibrium opinion vector, we define its equi-topology neighborhood and
invariant equi-topology neighborhood. We show that if a trajectory enters the invariant
equi-topology neighborhood of an equilibrium vector, then it remains confined to its
equi-topology neighborhood, and sustains an interconnection topology equal to that
of the equilibrium vector. This fact establishes a novel and simple sufficient condition
under which: the initial opinion vector converges to a steady state; the topology of the
interconnection network remains unchanged; and the limiting opinion vector is equal
to the final value at constant topology of the initial opinion vector. (4) We explore
some interesting behavior of classes of agents when they update their opinions under
fixed interconnection topology for infinite time. For instance, we compute agents rates
and directions of convergence, and show the existence of a leader group for each group
of agents that determines the follower’s rate and direction of convergence.

In our extensive simulation results, we observe that for uniformly randomly gener-
ated initial opinion vector and bounds vector, the SBC and SBI trajectories eventually
satisfy our novel sufficient condition for convergence with probability one. We give
some intuitive explanation for this observation. Finally, we conjecture that the SBI
trajectories reach a fixed state in finite time more often than the SBC trajectories. To
substantiate this conjecture, we present a sufficient condition for SBC and SBI sys-
tems separately that guarantees reaching an agreement opinion vector, which occurs
in finite time and is a general case of reaching a global consensus. Based on these
sufficient conditions, we explain our last conjecture.

1.3. Organization. This paper is organized as follows. In Section 2, the math-
ematical models, conjectures, agents classification, and spectral properties of the ad-
jacency matrices are presented. In Section 3, the final value at constant topology is
introduced and characterized. Section 4 contains the novel sufficient condition for
constant topology and convergence, and for convergence in finite time. In Section 5,
the simulation results and intuitive explanations are presented. In Section 6, the be-
havior of the system assuming that its interconnection topology remains unchanged in
a long run is analyzed. Finally, Section 7 contains the conclusion and open questions.

2. Mathematical Models. Consider n interacting agents and assume that each
agent’s opinion is expressed by a real number, say yi for agent i ∈ {1, . . . , n}. In
bounded confidence interaction, the opinion yi is affected by the opinion yj if |yi−yj | ≤
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ri, where the positive number ri is the confidence bound of agent i. In bounded
influence interaction, the opinion yi is affected by the opinion yj if |yi − yj | ≤ rj ,
where the positive number rj is the influence bound of agent j. The opinion vector
y ∈ Rn and the bounds vector r ∈ Rn

>0 are obtained by stacking all yi’s and ri’s,
respectively. We associate to each opinion vector y two digraphs, both with nodes
{1, . . . , n} and edge set defined as follows: denoting the set of out-neighbors of node
i by Ni(y)

• in a synchronized bounded confidence (SBC) digraph,Ni(y) = {j ∈ {1, . . . , n} :
|yi − yj | ≤ ri}; and

• in a synchronized bounded influence (SBI) digraph, Ni(y) = {j ∈ {1, . . . , n} :
|yi − yj | ≤ rj}.

We let Gr(y) denote one of the two proximity digraphs, its precise meaning being clear
from the context.

We associate to the SBC and SBI digraphs two dynamical systems, called the
SBC and SBI systems respectively. Both dynamical systems update a trajectory
x : N → Rn according to the discrete-time and continuous-state rule

(2.1) x(t + 1) = A(x(t))x(t),

where the i, j entry of the adjacency matrix A(y) ∈ Rn×n for any y ∈ Rn is defined
by

aij(y) =

{
1

|Ni(y)| , if j ∈ Ni(y),

0, if j /∈ Ni(y),

and |Ni(y)| is the cardinality of Ni(y). Note that i ∈ Ni(y), in other words, every
agent has some self-confidence or self-influence. This assumption is a key factor in
the convergence of infinite products of adjacency matrices [19]. In the following, we
present our conjectures on SBC and SBI systems, and the trajectories of Figure 2.1
support these conjectures.

Conjecture 2.1 (Existence of a limiting opinion vector). Every trajectory of
an SBC or SBI system converges to a limiting opinion vector.

Conjecture 2.2 (Constant-topology in finite time). For any trajectory x(t) of
an SBC or SBI system, there exists a finite time τ after which the state-dependent
interconnection topology, or equivalently Gr(x(t)), remains constant.

Before proceeding, let us define a term borrowed from [30]. A trajectory x(t) ∈ Rn

that is converging to limiting opinion vector x∞ ∈ Rn is said to have a pseudo-stable
behavior after τ , if the node set V = {1, . . . , n} is composed of two non-empty subsets
Vfixed and Vconverging such that, for all t ≥ τ ,

(2.2)

{
xi(t) = x∞,i, if i ∈ Vfixed,

xi(t) < xi(t + 1) < x∞,i or xi(t) > xi(t + 1) > x∞,i, if i ∈ Vconverging.

Conjecture 2.3 (Pseudo-stable behavior). For any SBC or SBI trajectory,
there exists a finite time after which the trajectory either reaches a fixed state or
exhibits a pseudo-stable behavior.

Conjecture 2.4 (Convergence of SBI systems versus SBC systems). For any
initial opinion vector and bounds vector that are generated uniformly randomly, the
SBI system is more likely to converge in finite time than the SBC system.

This paper aims to study these conjectures.
4
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Fig. 2.1. The trajectory of an SBC system (left) and an SBI system (right) are illustrated.
Both systems have the same initial opinion vector and bounds vectors that are randomly generated.
However, the SBI trajectory reaches a fixed state in six time steps, while the SBC trajectory converges
in infinite time. The interconnection topology of the agents in the SBC system remains constant
after t = 64, and hence its trajectory exhibits a pseudo-stable behavior.

2.1. Agents Classification. In this section, we introduce a classification of
agents for both SBC and SBI systems based on their state-dependent interaction
topology at each time step. This classification is used later to find the limiting opin-
ion vector and explain the pseudo-stable behavior. First, let us quote some relevant
definitions from graph theory, e.g. see [4]. A node of a digraph is globally reachable
if it can be reached from any other node by traversing a directed path. A digraph is
strongly connected if every node is globally reachable. A digraph is weakly connected
if replacing all of its directed edges with undirected edges produces a connected undi-
rected graph. A maximal subgraph which is strongly or weakly connected forms a
strongly connected component (SCC) or a weakly connected component (WCC), re-
spectively. Every digraph G can be decomposed into either its SCC’s or WCC’s.
Accordingly, the condensation digraph of G, denoted C(G), is defined as follows: the
nodes of C(G) are the SCC’s of G, and there exists a directed edge in C(G) from
node H1 to node H2 if and only if there exists a directed edge in G from a node of
H1 to a node of H2. A node with out-degree zero is named a sink. Knowing that the
condensation digraphs are acyclic, each WCC of C(G) is also acyclic and thus has at
least one sink. In a digraph, i is a predecessor of j and j is a successor of i if there
exists a directed path from node i to node j.

For opinion vector y ∈ Rn, let Gr(y) denote either of its SBC or SBI digraphs.
We classify the SCC’s of Gr(y) into three classes. An SCC of Gr(y) is called a closed-
minded component if it is a complete subgraph of Gr(y) and corresponds to a sink
of C(Gr(y)). An SCC of Gr(y) is called a moderate-minded component if it is a
non-complete subgraph of Gr(y) and corresponds to a sink of C(Gr(y)). The rest
of SCC’s of Gr(y) are called open-minded SCC’s. Now, the open-minded subgraph of
Gr(y) is the remaining subgraph after removing Gr(y)’s closed- and moderate-minded
components and their edges. A WCC of the open-minded subgraph of Gr(y) will be
called an open-minded WCC, see Figure 2.2.

Remark 2.5. Previously, (Lorenz, 2006) classified the agents of an SBC system
into two classes of essential and inessential. An agent is essential if any of its succes-
sors is also a predecessor, and an agent is inessential if it has a successor who is not
a predecessor [19]. This classification is similar to the one used for Markov chains
[26, Chapter 1.2]. It is easy to see that the closed- and moderate-minded components
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Fig. 2.2. Consider the opinion vector x = [0.1 0.24 0.27 0.3 0.34 0.37 0.39 0.4 0.5 0.6 0.67
0.68 0.75 0.85 0.86 0.87 1]T and bounds vector r =[0.5 0.04 0.04 0.04 0.031 0.021 0.011 0.061 0.25
0.01 0.04 0.03 0.3 0.07 0.07 0.07 0.135]T : (a) shows the SBC digraph of x, Gr(x), with its closed-
(red), moderate- (green), and open-minded (blue) components, and each thick gray edge represents
multiple edges to all agents in one component; (b) shows the condensation digraph of Gr(x); and
(c) shows the open-minded subgraph of Gr(x) that is composed of two open-minded WCC’s.

are in essential class, and the open-minded components are inessential.

2.2. Spectral Properties of Adjacency Matrix. For any opinion vector
y ∈ Rn in an SBC or SBI system (2.1), the adjacency matrix A(y) is a non-negative
row-stochastic matrix, and its nonzero diagonal establishes its aperiodicity. Since
C(Gr(y)) is an acyclic digraph, its adjacency matrix is lower-triangular in an appro-
priate ordering [4]. In such ordering, the adjacency matrix of Gr(y) is lower block
triangular. Based on the classification of the SCC’s in Gr(y), we put A(y) into the
canonical form A(y), by an appropriate canonical permutation matrix P (y),

(2.3) A(y) = P (y)A(y)PT (y) =

 C(y) 0 0
0 M(y) 0

ΘC(y) ΘM (y) Θ(y)

 .

The submatrices C(y), M(y), and Θ(y) are block diagonal. Each diagonal block Ci(y),
with size ni(y), is the adjacency matrix of the ith closed-minded component, and is
equal to Ci(y) = 1ni(y)1T

ni(y)/ni(y). Let us call a matrix with such structure a complete
consensus matrix, whose spectrum is found to be {1, 0, . . . , 0}. Similarly, each diagonal
block Mi(y) is the adjacency matrix of the ith moderate-minded component. Each
entry in ΘC(y) or ΘM (y) represents an edge from an open-minded node to a closed-
or moderate-minded node, respectively. Finally, in the submatrix Θ(y), each diagonal
block Θi(y) corresponds to one open-minded WCC, and is block lower triangular and
strictly row-substochastic. By strictly row-substochastic we mean a square matrix
with nonnegative entries so that every row adds up to at most one, and there exists
at least one row whose sum is strictly less than one. Note that the adjacency matrix
of each SCC in Gr(y) is a diagonal block of A(y) and is row-stochastic, nonnegative
and primitive. On account of the properties of the open-minded class, the following
lemma is proved.

Lemma 2.6. For any row k of the submatrix Θ(y), there exists pk ∈ N such that
the kth row sum of Θ(y)pk is strictly less than 1.

Proof. Every WCC of C(Gr(y)) contains at least one sink. Hence, from any
open-minded agent k, there exists a directed path of length pk to an agent s in either
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a closed- or moderate-minded component. Now, consider the canonical adjacency
matrix to the power pk,

A(y)pk =

 C(y)pk 0 0
0 M(y)pk 0

Θ(pk)
C (y) Θ(pk)

M (y) Θ(y)pk

 .

Existence of such directed path, by [4, Lemma 1.32], implies that the (k, s) entry of
A(y)pk , which belongs to either of the submatrices Θ(pk)

C (y) or Θ(pk)
M (y), is nonzero.

Consequently, the kth row sum of Θ(y)pk is strictly less than 1.
It follows from Lemma 2.6 that limt→∞Θ(y)t = 0, for a proof of which refer to

[26, Theorem 4.3]. Therefore, the spectral radius of Θ(y) is strictly less than one.
Example 2.7. Consider the SBC system of Figure 2.2 with the permuted opinion

vector x = [x2 x3 x4 x5 x6 x7 x8 x10 x11 x12 x14 x15 x16 x17 x9 x1]T . Then,
the canonical form of the adjacency matrix A(x) contains the following submatrices:

C(x) =


1

1
2

1
2

1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 , M(x) =



1
2

1
2

1
3

1
3

1
3

1
2

1
2

1
2

1
2
1
2

1
2
1
2

1
2

1
4

1
4

1
4

1
4


,

Θ(x) =


1
2

1
8

1
8

1
11

1
11
1
10

1
10

 , ΘC(x) =


1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
11

1
11

1
11

1
11

1
10

 ,

ΘM (x) =


0 . . . 0
0 . . . 0

1
11

1
11

1
11

1
11

1
10

1
10

1
10

1
10

1
10

1
10

1
10

 .

3. Equilibria and Final Value at Constant Topology. An opinion vector
y0 is an equilibrium opinion vector of the dynamical system (2.1) if and only if y0 is
an eigenvector of the adjacency matrix A(y0) for the eigenvalue one or, equivalently,
y0 = A(y0)y0. Next, based on Conjecture 2.2, we introduce the following definition.

Definition 3.1 (Final value at constant topology). For any opinion vector
y ∈ Rn we define its final value at constant topology fvct : Rn → Rn to be the
limiting opinion vector of an SBC or SBI system whose initial opinion vector is y and
the interconnection topology of its agents remains unchanged for all t ≥ 0. That is,

fvct(y) = lim
t→∞

A(y)ty ∈ Rn.

The final value at constant topology of any equilibrium opinion vector is equal to
itself, that is, fvct(y0) = limt→∞A(y0)ty0 = y0. Therefore, the set of final values at
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constant topology is a superset of the equilibria of the system, and the set of equilibria
is a superset of the limiting opinion vectors. The condition under which a final value
at constant topology is an equilibrium is discussed as follows.

Proposition 3.2 (Properties of the final value at constant topology). For any
opinion vector y ∈ Rn in an SBC or SBI system, whose adjacency matrix can be found
from equation (2.3):

(i) fvct(y) is well defined, and is equal to
(3.1)

fvct(y) = PT (y)

 C 0 0
0 M∗ 0

(I −Θ)−1ΘCC (I −Θ)−1ΘMM∗ 0

 (y)P (y)y,

where the submatrix M∗(y) is set equal to limt→∞M(y)t and is well defined.
(ii) If the two networks of agents with opinion vectors y and fvct(y) have the same

interconnection topology or, equivalently, Gr(y) = Gr(fvct(y)), then
(a) fvct(y) is an equilibrium opinion vector,
(b) Gr(y) contains no moderate-minded component, and
(c) in any WCC of Gr(fvct), the maximum and minimum opinions belong

to its closed-minded components.
Proof. Let us first drop the y argument for matrices for readability. Regarding

part (i),

fvct(y) = lim
t→∞

Aty = PT lim
t→∞

A
t
Py = PT lim

t→∞

 Ct 0 0
0 M t 0

Θ(t)
C Θ(t)

M Θt

Py.

From Section 2.2, Ct = C for any t ≥ 1, limt→∞Θt = 0, and each diagonal block Mi,
with size ni, is a row-stochastic primitive nonnegative matrix. For such matrices the
Perron-Frobenius Theorem tells us that the spectral radius is equal to one, and the
essential spectral radius is strictly less than one. Thus, if we let νi ∈ Rni be a left
eigenvector of Mi for the eigenvalue one, then from [4, Remark 1.69],

(3.2) M∗
i = lim

t→∞
M t

i = (νi1ni)
−11niνi.

Using the solution to the infinite products of transition matrices of a Markov chain,
given in [11, Chapter 5], it can be shown that limt→∞Θ(t)

C = (I − Θ)−1ΘCC, and
limt→∞Θ(t)

M = (I −Θ)−1ΘMM∗.
Regarding part (ii)a, Gr(y) = Gr(fvct(y)) results in A(y) = A(fvct(y)), and hence

A(fvct(y)) fvct(y) = A(y) lim
t→∞

A(y)ty = lim
t→∞

A(y)ty = fvct(y).

Regarding part (ii)b, by contradiction assume that Gr(y) contains at least one
moderate-minded component with the opinion vector yM1 and the adjacency matrix
M1. The trajectory of each sink in C(Gr(y)) is independent of other nodes, hence
fvctM1(y) = limt→∞M t

1yM1 , and by equation (3.2), fvctM1(y) = (ν11n1)
−11n1ν1yM1 .

Since (ν11n1)
−1ν1yM1 is a scalar, all agents in one moderate-minded component are in

consensus in final value at constant topology, and their adjacency matrix is no longer
M1, but rather a complete consensus matrix, which contradicts the assumption of
Gr(y) = Gr(fvct(y)).

Regarding part (ii)c, let i denote the agent with the minimum final value at
constant topology in one WCC of Gr(fvct(y)). By contradiction, assume that i is
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open-minded. Granted that the confidence or influence bounds are strictly greater
than zero, in the set of out-neighbors of each open-minded agent there exists at least
one agent with distinct opinion. Since i has the smallest opinion among its neighbors,
fvcti(y) increases after taking an average of i’s out-neighbors opinions. In other words,
the ith entry in the vector A(fvct(y)) fvct(y) is strictly larger than fvcti(y), which
contradicts the fact that fvct(y) is an equilibrium opinion vector and invariant under
matrix A(fvct(y)). Same can be proved for the agent with the maximum opinion.

4. Convergence Analysis. In this section, motivated by Conjectures 2.1 and
2.2, we drive sufficient condition which guarantees that an SBC or SBI trajectory
converges to a limiting opinion vector. Next, to explain Conjecture 2.4, we study
sufficient conditions for SBC and SBI systems separately that guarantee reaching a
fixed state in finite time.

4.1. Sufficient Condition for Constant Topology and Convergence. Our
sufficient condition is based on specific neighborhoods of each opinion vector, which
is introduced in the following.

Definition 4.1 (Equi-topology distances and neighborhoods). Consider an SBC
or SBI system with opinion vector z ∈ Rn.

(i) The equi-topology distance of z is a vector of non-negative entries ε(z) ∈ Rn
≥0

defined by, for i ∈ {1, . . . , n},

(4.1) εi(z) = 0.5 min{||zi − zj | −R| : j ∈ {1, . . . , n} \ {i}, R ∈ {ri, rj}},

and the equi-topology neighborhood of z is the set Bet(z) of opinion vectors
y ∈ Rn such that

|yi − zi| < εi(z), for all i ∈ {1, . . . , n} with εi(z) > 0, and
|yi − zi| = εi(z), for all i ∈ {1, . . . , n} with εi(z) = 0.

(ii) The invariant equi-topology distance of z is the vector of non-negative entries
δ(z) ∈ Rn

≥0 defined by, for i ∈ {1, . . . , n},

(4.2) δi(z) = min{εj(z) : j is a predecessor of i in the graph Gr(z)},

and the invariant equi-topology neighborhood of z is the set Biet(z) of opinion
vectors y ∈ Rn such that

|yi − zi| < δi(z), for all i ∈ {1, . . . , n} with δi(z) > 0, and
|yi − zi| = δi(z), for all i ∈ {1, . . . , n} with δi(z) = 0.

Note that in any SBC or SBI digraph, each node has a self-loop, and hence each
agent is a predecessor of itself. Therefore, for any opinion vector z ∈ Rn and for all
i ∈ {1, . . . , n}, we have δi(z) ≤ εi(z), which results in Biet(z) ⊂ Bet(z).

Lemma 4.2 (Sufficient condition for equal topologies). Consider an SBC or SBI
system with opinion vectors y, z ∈ Rn. If y belongs to the equi-topology neighborhood
of z, then the two networks of agents with opinion vectors y and z have the same
interconnection topology, or equivalently Gr(y) = Gr(z).

Remark 4.3. For any y ∈ Rn, if y ∈ Bet(fvct(y)), then by Lemma 4.2 we have
Gr(y) = Gr(fvct(y)). Hence, by Proposition 3.2, fvct(y) is an equilibrium opinion
vector, and Gr(y) contains no moderate-minded component.
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Proof. For any i, j ∈ {1, . . . , n} two cases exists:
1. j is an out-neighbor of i in Gr(z), hence |zi − zj | ≤ r, where in an SBC system
r = ri and in an SBI system r = rj . In either system, since y ∈ Bet(z),

|yi − yj | ≤ |zi − zj |+ εi(z) + εj(z) ≤ |zi − zj |+ ||zi − zj || − r| = r.

2. j is not an out-neighbor of i in Gr(z), hence |zi − zj | > r, with r defined above. If
both εi(z) and εj(z) are zero, then y ∈ Bet(z) gives us

|yi − yj | = |zi − zj | > r,

and if at least one is nonzero, then

|yi − yj | > |zi − zj | − εi(z)− εj(z) ≥ |zi − zj | − ||zi − zj | − r| = r.

Therefore, the neighboring relation of agents in Gr(z) is preserved in Gr(y). One can
also prove that any neighboring relation in Gr(y) is preserved in Gr(z).

Theorem 4.4 (Sufficient condition for constant topology and convergence). Con-
sider a trajectory x(t) of an SBC or SBI system. Assume that there exists an equi-
librium opinion vector z ∈ Rn for the system such that x(0) ∈ Rn belongs to the
invariant equi-topology neighborhood of z. Then, for all t ≥ 0:

(i) x(t) takes value in the equi-topology neighborhood of z, and hence Gr(z) =
Gr(x(t));

(ii) Gr(x(t)) contains no moderate-minded component; and
(iii) x(t) converges to fvct(x(0)) as time goes to infinity.
Remark 4.5 (Interpretation of Theorem 4.4). This theorem tells us that if the

trajectory of an SBC or SBI system enters a specific ball around any equilibrium
opinion vector of that system, then it remains in some larger ball around that vector
for all future iterations. Moreover, the proximity digraph of the trajectory and the
equilibrium opinion vector remain equal.

Remark 4.6. Under the condition of Theorem 4.4, a trajectory x(t) converges
to its final value at constant topology fvct(x(t)) = fvct(x(0)). However, fvct(x(t)) is
not necessarily equal to the equilibrium opinion vector z, and the proximity digraphs
Gr(fvct(x(t))) and Gr(x(t)) can be different, see Figure 4.1.

Remark 4.7. One special case of Theorem 4.4 is when x(0) ∈ Biet(fvct(x(0))),
which implies that fvct(x(0)) is an equilibrium opinion vector, again see Figure 4.1.
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Fig. 4.1. The SBC trajectory x(t) with x(0) = [0 0.6 1]T

and confidence bounds r = [0.25 1 0.25]T is illustrated. It can
be computed that fvct(x(0)) = [0 0.5 1] and δ(fvct(x(0))) =
[0.25 0.25 0.25]. Clearly, x(0) ∈ Biet(fvct(x(0))), i.e., the ini-
tial vector satisfies the special case of Theorem 4.4 stated in Re-
mark 4.7. Hence, x(t) converges to fvct(x(0)), and their prox-
imity digraphs are equal. However, if the confidence bounds are
equal to r = [0.5 1 0.25]T , then δ(fvct(x(0))) = [0 0 0], and
x(t) /∈ Biet(fvct(x(0))) for all t ≥ 0. Therefore, x(t) converges to
fvct(x(0)), while their proximity digraphs are different. Both tra-
jectories with the two confidence bounds vectors are the same.

Proof. [Proof of Theorem 4.4] Regarding statement (i), by induction we prove
that x(t) ∈ Bet(z) for all t ≥ 0, which by Lemma 4.2 results in Gr(x(t)) = Gr(z). The
first induction step is x(0) ∈ Bet(z), which is true knowing that x(0) ∈ Biet(z) and
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Biet(z) ⊂ Bet(z). To complete the induction argument, assume that the statement (i)
holds at times t = 0, . . . , τ , which implies that A(z) = A(x(t)). The equilibrium
opinion vector z satisfies z = A(z)z, thus we have x(t+1)−z = A(x(t))x(t)−A(z)z =
A(z)(x(t)− z) or, equivalently

(4.3) xi(t + 1)− zi =
1

|Ni(z)|
∑

j∈Ni(z)

(xj(t)− zj).

One can see that

(4.4) |xi(τ + 1)− zi| ≤ max
j∈Ni(z)

|xj(τ)− zj | ≤ max
`∈Nj(z),j∈Ni(z)

|x`(τ − 1)− z`|

≤ · · · ≤ max
k∈M

|xk(0)− zk|,

whereM is a subset of successors of i in Gr(z), and thus for any k ∈M, equation (4.2)
tells us that δk(z) ≤ εi(z). Here again two cases exists: First, if for all k ∈ M,
δk(z) = 0, then the condition x(0) ∈ Biet(z) implies that xk(0)−zk = 0, and it follows
from inequality (4.4) that xi(τ + 1)− zi = 0. Second, if there exists ` ∈M such that
δ`(z) > 0, then εi(z) > 0 and

|xi(τ + 1)− zi| ≤ max
k∈M

|xk(0)− zk| < max
k∈M

δk(z) ≤ εi(z).

Therefore, x(τ + 1) ∈ Bet(z).
Regarding statement (ii), according to Section 3, an equilibrium opinion vector is

equal to its own final value at constant topology. Hence Gr(z) = Gr(z∗(z)), and by
Proposition 3.2, Gr(z) and thus Gr(x(t)) contain no moderate-minded component.

Regarding statement (iii), according to the definition of the final value at con-
stant topology, if the topology remains constant for all t ≥ 0, then x(t) converges to
fvct(x(0)).

Motivated by Conjecture 2.1, the existence of a limiting opinion vector is required
in the following lemma.

Lemma 4.8 (Sufficient condition for a limiting opinion vector to be an equilib-
rium). Pick a trajectory x(t) of an SBC or SBI system that is convergent. Denote
the limiting opinion vector of x(t) by x∞. If mini∈{1,...,n} εi(x∞) > 0, where ε(x∞) is
the equi-topology distance of x∞ , then there exists time T such that for all t ≥ T :

(i) Gr(x∞) = Gr(x(t)), and
(ii) x∞ = fvct(x(t)), and is an equilibrium opinion vector.
Proof. According to the definition of convergence, for any δ ∈ R>0, there ex-

ists T such that for all t ≥ T , ‖x(t) − x∞‖∞ < δ. Now, if we let δ be equal to
mini∈{1,...,n} εi(x∞), then ‖x(t) − x∞‖∞ < mini∈{1,...,n} εi(x∞) for all t ≥ T , and
it follows from Lemma 4.2 that Gr(x∞) = Gr(x(t)). Under fixed topology, x(t)
converges to its final value at constant topology, thus x∞ = fvct(x(t)). Moreover,
the equality Gr(x(t)) = Gr(fvct(x(t))) tells us that fvct(x(t)), and hence x∞, is an
equilibrium opinion vector.

Corollary 4.9. An equilibrium opinion vector z is a Lyapunov stable equilib-
rium vector for the system if mini∈{1,...,n} εi(z) > 0.

4.2. Sufficient Condition for Convergence in Finite Time and Consen-
sus. In this subsection, we discuss the sufficient conditions for SBC and SBI systems
to converge to an agreement opinion vector. In an agreement opinion vector, any two
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agents are either disconnected or in consensus. Reaching global consensus, in which
all agents hold the same opinion, is an special case of convergence to an agreement
opinion vector. Note that it is possible for an SBC or SBI system to reach an opinion
vector that contains two neighbor agents with separate opinions in finite time. For
instance, the trajectory of an SBC system with initial opinion vector [0 2 3 4.5 7]T

and bounds vector [0.01 3 0.01 3 0.01]T exhibits convergence to a fixed pro-
file in finite time. While, the SBC digraph of the limiting opinion vector contains
open-minded agents.

Proposition 4.10 (Properties of agreement opinion vectors). For any agreement
opinion vector ỹ ∈ Rn in an SBC or SBI system:

(i) mini∈{1,...,n} εi(ỹ) > 0, where ε(ỹ) is the equi-topology distance of ỹ; and
(ii) if ỹ is the limiting opinion vector of a trajectory, then the trajectory reaches

ỹ in finite time.
Proof. Regarding statement (i), by contradiction assume that mini∈{1,...,n} εi(ỹ) =

0. Then based on equation (4.1), there exist agents i and j such that |ỹi − ỹj | = ri.
The latter equation tells us that j ∈ Ni(ỹ) in an SBC digraph or i ∈ Nj(ỹ) in an SBI
digraph, while their opinions are different from each other by ri, which contradicts the
definition of agreement opinion vectors. Regarding statement (ii), consider trajectory
x(t) that converges to ỹ. Then, previous statement shows that the limiting opinion
vector of x(t) satisfies the condition of Lemma 4.8. Therefore, there exists time
step τ such that the proximity digraphs Gr(ỹ) and Gr(x(t)) are equal for all t ≥ τ .
On the other hand, the proximity digraph of an agreement opinion vector contains
only closed-minded components. Hence, the agents in each WCC of Gr(x(τ)) reach
consensus at the next iteration.

One sufficient condition that guarantees asymptotic consensus in “agreement al-
gorithms”, which includes SBC and SBI systems, is given in [25, Theorem 2.4] and is
as follows. Take a trajectory x(t) of an SBC or SBI system with proximity digraph
Gr(x(t)) =

(
V,E(x(t))

)
, where V and E(x(t)) are the sets of nodes and edges of the

digraph, respectively. If there exists τ such that the graph
(
V,E(x(kτ)) ∪ E(x(kτ +

1))∪ · · · ∪E(x((k +1)τ −1))
)

is strongly connected for all k ∈ Z≥0, then all entries of
x(t) converge to one real number. However, this sufficient condition requires knowl-
edge of the system for infinite time, and is the same for both SBC and SBI systems.
Hence, we derive sufficient conditions that are required to hold in one time step, and
also make it possible to compare SBC and SBI systems in support of Conjecture 2.4.
Let us first define the opinion interval of any subgraph of an SBC or SBI digraph be
a closed interval in R between that subgraph’s minimum and maximum opinions.

Proposition 4.11 (Sufficient conditions for convergence to an agreement opinion
vector). Consider the opinion vector y ∈ Rn in an SBC or SBI system with the
following properties:

(i) the opinion intervals of any two WCC’s of the proximity digraph are separated
from each other by a distance strictly larger than the maximum confidence or
influence bounds of the agents in those WCC’s; and

(ii) it is true that:
• for any WCC of y’s SBC digraph, with m agents, at least m− 1 agents

have confidence bounds larger than that WCC’s opinion interval; and
• for any WCC of y’s SBI digraph, at least one agent has influence bound

larger than that WCC’s opinion interval.
Then, the trajectories of both SBC and SBI systems with the initial opinion vector
y converge to agreement opinion vectors in finite time. Moreover, in every WCC of
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Fig. 5.1. In one thousand simulations of SBC systems, the time step τ at which the trajec-
tory of each system satisfied the sufficient condition of Theorem 4.4 is plotted versus the number
of agents in that system. The left and right plots, respectively, illustrate time τ for trajectories
that converged in finite time and infinite time. Each initial opinion vector and bounds vector are
generated randomly and uniformly distributed on [0, 1] and [0, 0.3], respectively. For each agent
number hundred simulations are performed. All trajectories satisfied the special case of sufficient
condition of Theorem 4.4, stated in Remark 4.7 in finite time.

either of the SBC or SBI digraphs, at least one node is an out-neighbor of all nodes
in that WCC for all t ≥ 0.

Remark 4.12. Any trajectory of an SBC or SBI system that converges to an
agreement opinion vector will eventually satisfy the conditions of Proposition 4.11.

Proof. [Proof of Proposition 4.11] Let us denote either of the SBC or SBI digraphs
of y by Gr(y). In an SBC or SBI system, the smallest and largest opinions in a separate
WCC of the proximity digraph are, respectively, non-decreasing and non-increasing
in one iteration [3]. This fact tells us that for all t ≥ 0: first, under the condition (i),
the two sets of nodes of two separate WCC’s in Gr(x(0)) remain separate in Gr(x(t));
second, if the condition (ii) holds for Gr(x(0)), then it also holds for Gr(x(t)). Now,
under condition (ii) for both SBC and SBI systems, any WCC of Gr(x(t)) contains at
least one agent that is an out-neighbor of all agents in that WCC for all t ≥ 0. Denote
one such agent in a WCC by s, then that WCC’s agents with maximum and minimum
opinions update their opinions by taking an average of their out-neighbors, including
s. Hence, at the next iteration, their opinions will converge to s’s opinion, which
results in an strict decrease in the opinion interval of the WCC. Since the confidence
or influence bounds are strictly greater than zero, there exists a time step after which
the opinion interval of the WCC is larger than the minimum confidence or influence
bound. Consequently, all agents become each others out-neighbors, and the WCC
becomes one closed-minded component.

5. Numerical Analysis. In this section, we provide extensive simulation results
that demonstrate the results of Section 4 and are consistent with our conjectures. We
performed 2000 simulations: 100 simulations of both SBC and SBI systems for ten
different agent numbers. In each simulation, the initial opinion vector and bounds
vector are generated randomly and uniformly distributed on [0, 1] and [0, 0.3], respec-
tively. The time steps τ at which trajectories satisfied the condition of Theorem 4.4
are plotted in Figures 5.1 and 5.2. All the 2000 SBC and SBI trajectories eventually
satisfied the special case of the sufficient condition of Theorem 4.4, stated in Re-
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Fig. 5.2. In one thousand simulations of SBI systems, the time step τ at which the trajectory of
each system satisfied the sufficient condition of Theorem 4.4 is plotted versus the number of agents
in that system. The left and right plots, respectively, illustrate time τ for trajectories that converged
in finite time and infinite time. As shown, only four SBI trajectories converged in infinite time.
Each initial opinion vector and bounds vector are generated randomly and uniformly distributed on
[0, 1] and [0, 0.3], respectively. For each agent number hundred simulations are performed. All
trajectories satisfied the special case of sufficient condition of Theorem 4.4, stated in Remark 4.7 in
finite time.

mark 4.7. In other words, for each trajectory x(t), there exists time τ such that x(τ)
belongs to the invariant equi-topology neighborhood of its own final value at constant
topology fvct(x(τ)). Thus, fvct(x(τ)) is an equilibrium opinion vector, and is equal
to the limiting opinion vector of x(t). The frequency of occurrence of this special case
is intuitively explained by the following statements: First, by Conjecture 2.1, for each
trajectory a limiting opinion vector x∞ exists. Second, for any randomly generated
opinion vector y and bounds vector r, the probability of having mini∈{1,...,n} εi(y) = 0,
where ε(y) is the equi-topology distance of y, is equal to zero, and one can assume
that the same holds for any limiting opinion vector. Third, Lemma 4.8 tells us that
if the limiting opinion vector satisfies mini∈{1,...,n} εi(x∞) > 0, then the trajectory
eventually satisfies the mentioned special case of condition of Theorem 4.4.

In above mentioned simulations, for each agent number, the percentage of SBC
and SBI trajectories that reached a fixed profile in finite time are plotted in Figure 5.3.
Clearly, Figure 5.3 supports Conjecture 2.4. To explain this frequency of convergence
of SBI trajectories in finite time as compared with SBC trajectories, we use the results
of Subsection 4.2. For uniformly randomly generated opinion vector and bounds
vector, an SBI digraph is more likely to satisfy condition (i) of Proposition 4.11 than
an SBC digraph. One can assume that the same holds for a trajectory with uniformly
randomly generated initial opinion vector and bounds vector.

In the next section, based on our “constant topology in finite time” conjecture, we
assume that the interconnection topology in an SBC or SBI system remains constant
for infinite time and address the following questions: How the three classes of agents
behave? How groups of agents affect each other? And can one explain the observed
pseudo-stable behavior of trajectories, as stated in Conjecture 2.2?

6. The Rate and Direction of Convergence under Fixed Topology. In
this section, we analyze the rates and directions of convergence of separate classes
of agents in the SBC and SBI systems under fixed interconnection topology as time
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Fig. 5.3. For each agent number 100 SBC systems and 100 SBI systems are simulated, as
explained in Figures 5.1 and 5.2. The percentage of SBC (blue) and SBI (green) trajectories that
reached their limiting opinion vector, which is an agreement opinion vector, in finite time is plotted
versus agent number.

goes to infinity. This analysis proves that the system shows a pseudo-stable behavior
under fixed topology.

Definition 6.1 (Agent’s per-step convergence factor). In an SBC or SBI system
with trajectory x(t) ∈ Rn, we define the per-step convergence factor of an agent i
whose xi(t)− fvcti(x(t)) is nonzero to be

ki(x(t)) =
xi(t + 1)− fvcti(x(t))

xi(t)− fvcti(x(t))
.

The per-step convergence factor of a network of agents was previously introduced
in [34] to measure the overall speed of convergence toward consensus.

Remark 6.2. Consider a converging trajectory x(t) whose limiting opinion vector
is equal to fvct(x(t)) for all t ≥ 0. Then, x(t) exhibits a pseudo-stable behavior, see
equation (2.2), if and only if for all i ∈ {1, . . . , n}{

0 < ki(x(t)) < 1, if ki(x(t)) exists,
xi(t) = xi(t + 1) = fvcti(x(t)), otherwise.

Definition 6.3 (Leader SCC). For opinion vector y ∈ Rn, let Gr(y) denote
either its SBC or SBI digraph. Consider an SBC or SBI system with opinion vector
y ∈ Rn. For any open-minded SCC, Sk(y), of Gr(y), denote the set of its open-minded
successor SCC’s, including Sk(y), by M(Sk(y)). We define Sk(y)’s leader SCC to be
the SCC whose adjacency matrix has the largest spectral radius among all SCC’s of
M(Sk(y)).

Note that in SBC and SBI digraphs, the adjacency matrix of a large SCC has a
large spectral radius, hence that SCC tends to become a leader SCC for its predeces-
sors.

Theorem 6.4 (Evolution under constant topology). Consider an SBC or SBI
system, denote its trajectory by x(t) and proximity digraph by Gr(x(t)). Assume that
there exists a time τ after which Gr(x(t)) remains unchanged, that is, Gr(x(t)) =
Gr(x(τ)). Then, the following statements hold:
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(i) fvct(x(t)) = fvct(x(τ)) for all t ≥ τ .
(ii) Gr(x(τ)) contains no moderate-minded component.
(iii) Consider any open-minded SCC Sk(x(t)) of Gr(x(t)) and its leader SCC

Sm(x(t)), with adjacency matrices denoted by Θk and Θm, respectively. Then,
(a) for any i ∈ Sk(x(t)), either xi(t) − fvcti(x(t)) = 0 or its per-step con-

vergence factor converges to the spectral radius of Θm as time goes to
infinity, and

(b) if the spectral radius of Θk is strictly less than that of Θm, then there
exists t1 ≥ τ such that for all i ∈ Sk(x(t)), j ∈ Sm(x(t)), and t ≥ t1,

xj(t1) < fvctj(x(t1)) =⇒ xi(t) ≤ fvcti(x(t)),
xj(t1) > fvctj(x(t1)) =⇒ xi(t) ≥ fvcti(x(t)).

(iv) There exists time t2 ≥ τ such that for all t ≥ t2, x(t) exhibits a pseudo-stable
behavior, see equation (2.2).

Remark 6.5 (Interpretation of statement (iii) in Theorem 6.4). Parts (a) and (b)
tell us, respectively, that the rates and directions of convergence of opinions in an open-
minded SCC toward the final value at constant topology are governed by the direction
and rate of convergence of its leader SCC. It is easy to that the per-step convergence
factor has an inverse relation with the rate of convergence to the final value at constant
topology. Therefore, Theorem 6.4 implies that under fixed interconnection topology,
individuals converge to a final decision as slow as the slowest group of agents whom
they listen to.

Proof. Statement (i) is a direct consequence of A(x(t)) = A(x(τ)) for all t ≥ τ .
Statement (ii) can be proved similar to part (ii)b of Proposition 3.2. It was shown
that under fixed interconnection topology, all agents in one moderate-minded SCC of
an SBC or SBI digraph reach consensus as time goes to infinity. Since, the bounds
vector is strictly greater than zero, there exists a time step after which the adjacency
matrix of one moderate-minded SCC transforms into a complete consensus matrix,
which contradicts the assumption of having fixed topology for infinite time. Before
proving statement (iii), since the canonical permutation matrix remains unchanged,
let us assume that the opinions in x(τ) are ordered such that A(x(τ)) = A(x(τ)).
Furthermore, owing to the fixed interconnection topology, we drop the x(t) argument
for simplicity. Therefore, by equation (2.3),

A(x(t)) =
[

C 0
ΘC Θ

]
.

Now, for all t > τ we have

x(t)− fvct(x(τ)) =
[

CxC(τ)
xΘ(t)

]
−

[
CxC(τ)

fvctΘ(x(τ))

]
=

[
0

xΘ(t)− fvctΘ(x(τ))

]
,

where xC(t) and xΘ(t) are the opinion vectors of agents in closed- and open-minded
classes respectively. Using fvct(x(τ)) = A(x(τ)) fvct(x(τ)), the following recurrence
relation holds

(6.1) xΘ(t + 1)− fvctΘ(x(τ)) = Θ(xΘ(t)− fvctΘ(x(τ))) ∀ t ≥ τ.

Consider an open-minded WCC of Gr(x(t)), denoted by W1. Let Θ1 denote W1’s
adjacency matrix, and x1(t) denote the trajectory of nodes of W1. Under fixed inter-
connection topology, the trajectory of each WCC is independent of others, thus for
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all t ≥ 0, x1(t + τ) − fvct1(x(τ)) = Θt
1(x1(τ) − fvct1(x(τ))). According to the block

lower triangular from of Θ1,

Θt
1 =

 Θt
11 0

Θ(t)
21 Θt

22
...

. . .

 ,

where each Θii is the adjacency matrix of an SCC, denoted by Sii, of W1. Let xii(t)
be the opinion trajectory of nodes of Sii. Clearly, S11 is one of the sink SCC’s in
W1, and Θii’s are ordered in Θ1 according to the distance of Sii’s to the sinks. For
simplicity, we prove statement (iii) for S11 and an SCC that is the direct predecessor
of S11. Without loss of generality, let S22 be one such SCC. The proof for the rest of
open-minded SCC’s is similar.

Each block Θii is nonnegative and primitive. By Perron-Frobenius Theorem: the
spectral radius of Θii, denoted by λi, is positive and a simple eigenvalue of Θii; and
there exists a positive eigenvector νi for Θii associated to λi. Any Θii can be written
in Jordan normal form by some similarity transformation

Θii = QJQ−1 =
[

νi Qe

] [
λi 0
0 Je

] [
wi

Q
(−1)
e

]
,

where wi is the first row of Q−1. Consequently,

(6.2) lim
t→∞

Θt
ii = lim

t→∞
(λt

iνiwi + QeJ
t
eQ

(−1)
e ) = lim

t→∞
λt

iνiwi.

In any open-minded WCC, the sink SCC is not effected by other SCC’s, hence a
sink SCC is its own leader. Therefore, for all t ≥ 0,

x11(t + τ)− fvct11(x(τ)) = Θt
11(x11(τ)− fvct11(x(τ))).

In the interest of simplicity, let us denote the vector xii(t) − fvctii(x(τ)) by ∆ii(t),
then we have

(6.3) lim
t→∞

∆11(t) = ν1w1∆11(τ) lim
t→∞

λt
1.

Regarding part (iii)a for S11, for the per-step convergence factor of any i ∈ S11 we
have

lim
t→∞

ki(x(t)) = lim
t→∞

λt+1
1 w1∆11(τ)ν1i

λt
1w1∆11(τ)ν1i

= λ1.

Regarding part (iii)b for S11, since λt
1w1∆11(τ) is a scalar, λ1 is positive, and ν1 is

a positive vector, all entries of vector ν1w1∆11(τ)λt
1 have the same sign. Therefore,

there exists time T ≥ τ after which all entries of ∆11(t) have the same sign for all
t ≥ T .

Here, we prove the two statements for S22. It can be computed that for all t ≥ 0

∆22(t + τ) =
t−1∑
i=0

Θi
22Θ21Θt−i−1

11 ∆11(τ) + Θt
22∆22(τ).

Now, to find limt→∞∆22(t), we consider three cases:
1) If λ1 > λ2, then S11 is S22’s leader. According to the transient analysis of the
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reducible Markov chains from [11, Section 5.6], and granted that λ1 and λ2 are strictly
less than one, see Section 2.2,

lim
t→∞

t−1∑
i=0

Θi
22Θ21Θt−i−1

11 =
(

lim
t→∞

t−1∑
i=0

Θi
22

)
Θ21 lim

t→∞
Θt

11

= (I −Θ22)−1Θ21 lim
t→∞

λt
1ν1w1.

Therefore,

(6.4) lim
t→∞

∆22(t) = (I −Θ22)−1Θ21ν1w1∆11(τ) lim
t→∞

λt
1.

Regarding part (iii)a for S22, for any i ∈ S22 we have

lim
t→∞

ki(x(t)) = lim
t→∞

λt+1
1 w1∆11(τ)[(I −Θ22)−1Θ21ν1]i
λt

1w1∆11(τ)[(I −Θ22)−1Θ21ν1]i
= λ1.

Regarding part (iii)b for S22, since (I − Θ22)−1Θ21ν1 is a nonnegative vector, all
entries of the vector on the right hand side of equations (6.3) and (6.4) have the same
sign as the scalar w1∆11(τ).
2) If λ1 < λ2, then S22 is its own leader. Similarly,

(6.5) lim
t→∞

∆22(t) = w2

(
Θ21(I −Θ11)−1∆11(τ) + ∆22(τ)

)
ν2 lim

t→∞
λt

2,

where w2

(
Θ21(I − Θ11)−1∆11(τ) + ∆22(τ)

)
is a scalar, λ2 is positive, and ν2 is a

positive vector. Regarding part (iii)a for S22, for any i ∈ S22 we have

lim
t→∞

ki(x(t)) = lim
t→∞

λt+1
2 w2(Θ21(I −Θ11)−1∆11(τ) + ∆22(τ))ν2i

λt
2w2(Θ21(I −Θ11)−1∆11(τ) + ∆22(τ))ν2i

= λ2.

Regarding part (iii)b for S22, all entries of the vector on the right hand side of equa-
tion (6.5) have the same sign.
3) if λ1 = λ2 = λ, then we have

lim
t→∞

∆22(t) =
(
αν2 + β(I −Θ22)−1Θ21ν1

)
lim

t→∞
λt,

where β = w1∆11(τ) and α = w2Θ21(I − Θ11)−1∆11(τ) + w2∆22(τ). Regarding
part (iii)a for S22, for any i ∈ S22 we have

lim
t→∞

ki(x(t)) = lim
t→∞

λt+1(αν2i + β[(I −Θ22)−1Θ21ν1]i)
λt(αν2i + β[(I −Θ22)−1Θ21ν1]i)

= λ.

Regarding part (iii)b for S22, notice that the theorem does not discuss the case with
equal spectral radii.

Finally, statement (iv) is proved utilizing previous statements. For any i ∈
Gr(x(t)) two cases exists. First, if i belongs to a closed-minded SCC, then xi(t) =
xi(τ + 1) for all t > τ , and hence ki(x(t)) does not exist. Second, if i belongs to an
open-minded SCC Sk(x(t)), then according to part (iii)a, either xi(t) = fvcti(t) or
ki(x(t)) converges to the spectral radius of the adjacency matrix of Sk(x(t))’s leader
SCC. This spectral radius is proved in Section 2.2 to be strictly larger than zero and
strictly smaller than one. In other words, there exists time t2 such that for all t ≥ t2,
0 < ki(x(t)) < 1. Therefore, according to Remark 6.2, x(t) exhibits pseudo-stable
behavior.

In Figures 6.1 and 6.2, we provide numerical examples to facilitate the under-
standing of the conditions and results of Theorem 6.4.
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Fig. 6.1. The trajectory of an SBC system (left) and the per-step convergence factor of its
open-minded agents (right) are illustrated. The initial opinion vector and confidence bounds vector
are generated randomly. This system satisfies the condition of Theorem 4.4 at t = 50. Moreover,
since x(50) ∈ Biet(fvct(x(50))), the SBC digraph Gr(x(t)) is equal to Gr(fvct(x(50))) for all t ≥ 50.
The digraph Gr(fvct(x(50))) contains two open-minded SCC’s, denoted by S1 and S2, while S2 is a
predecessor of S1. The spectral radii of the adjacency matrices of S1 and S2 are equal to 0.6667 and
0.8381, respectively. Therefore, both S1 and S2 are their own leader SCC’s, and by Theorem 6.4 the
per-step convergence factors of their agents converge to 0.6667 and 0.8381, respectively. The right
plot verifies that the per-step convergence factors of all open-minded agents converge to those two
values.
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Fig. 6.2. An SBC trajectory x(t) is plotted on the top left, the open-minded agents per-step con-
vergence factors on the top right, the open-minded agents distances to their final values at constant
topology xi(t)− x∗i (x(t)) on the bottom left, and the open-minded subgraph of Gr(x(t)) is illustrated

on the bottom right. This system is simulated with the initial vector x(0) = [0 1.5 3.5 5 1 1 4 2.1]T

and confidence bounds r = [0.01 0.01 0.01 0.01 1 1 1 3]T . For all t ≥ 0, the SBC digraph Gr(x(t))
remains unchanged and contains three open-minded SCC’s: {x5, x6}, {x7}, and {x8}. The spectral
radii of the adjacency matrices of these SCC’s are 0.5, 0.333, and 0.125, respectively. The two SCC’s
{x5, x6} and {x7} are successors of {x8}, and based on their spectral radii, {x5, x6} is {x8}’s leader
SCC. We can see that the per-step convergence factor of x8 converges to 0.5. Furthermore, the sing
of its direction of convergence toward the final value, i.e, the sign of x8(t)− x∗8, is the same as the
leader’s after t = 1. These facts support Theorem 6.4.

7. Conclusion and Future Work. This paper introduced a synchronized bounded
influence (SBI) model of opinion dynamics, which is similar to the heterogeneous
bounded confidence model introduced by Hegselmann and Krause, which we called
synchronized bounded confidence (SBC) model. First, we conjectured that in both
SBC and SBI systems, for each trajectory there exists a finite time, after which the
topology of the interconnection network remains unchanged, hence, the trajectory
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converges to a limiting opinion vector. Second, we conjectured that if a trajectory
does not reach a fixed profile in finite time, then it eventually shows a pseudo-stable
behavior. We partly proved our first conjecture, and the second conjecture is proved
assuming that the first one is true. We designed a classification of agents that is
employed in computing the equilibria of the system. We introduced the equi-topology
neighborhood and the invariant equi-topology neighborhood of the equilibria of the
system. Based on these neighborhoods, we derived sufficient condition for both SBC
and SBI systems to guarantee that the interconnection topology remains unchanged
for infinite time in a trajectory, and therefore, the trajectory converges to a steady
state. In our simulation results, it is observed that for uniformly randomly generated
initial opinion vector and bounds vector, the trajectories of both systems eventually
satisfy the mentioned sufficient condition with probability one. However, the eventual
convergence of every trajectory of the SBC and SBI systems to a steady state is still an
open problem. Third, we conjectured that, for uniformly randomly generated initial
opinion vector and bounds vector, the simulations of SBI systems converge in fewer
time steps and more often in finite time than SBC systems. We derived sufficient
conditions for convergence in finite time for SBC and SBI systems separately that
intuitively explains our third conjecture. Finally, we studied the trajectory of both
SBC and SBI systems when they update their opinions under fixed interconnection
topology for infinite time. We showed the existence of a leader group for each group
of agents that determines the follower’s rate and direction of convergence.

The main future challenge is to prove that all SBC and SBI systems converge
to steady states. One approach is to prove that in each system, any trajectory is
eventually confined to the invariant equi-topology neighborhood of an equilibrium
opinion vector of the system. Moreover, the fact that the SBI systems converge in
finite time more often than the SBC systems might be explained by a probability
analysis on the topology of proximity digraphs.
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