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Motion Coordination with Distributed Information

The challenge of obtaining global behavior out of local interactions

Sonia Martinez  Jorge Cortés  Francesco Bullo

Think globally, act locally
René J. Dubos, 1972

Introduction

Motion coordination is a remarkable phenomenon in biological systems and an extremely
useful tool in man-made groups of vehicles, mobile sensors and embedded robotic systems.
Just like animals do, groups of mobile autonomous agents need the ability to deploy over
a given region, assume a specified pattern, rendezvous at a common point, or jointly move
in a synchronized manner. These coordination tasks are typically to be achieved with little
available communication between the agents, and therefore, with limited information about
the state of the entire system.

An important scientific motivation for the study of motion coordination is the analysis of
emergent and self-organized behaviors in biological groups with distributed agent-to-agent
interactions. Interesting dynamical systems arise in biological networks at multiple levels of
resolution, all the way from interactions between molecules and cells, see [1], to the behavioral
ecology of animal groups, see [2]. Flocks of birds and school of fish are able to travel in
formation and act as one unit (see [3] and Figures 1 and 2); these swarming behaviors allow
animals to defend themselves against predators and to protect areas that they claim as their
own. Wildebeest and other animals exhibit complex collective behaviors when migrating (see
[4, 5] and Figure 3). Certain foraging behaviors include individual animals partitioning their
environment in non-overlapping zones (see [6] and Figure 4). Honey bees [7], gorillas [8], and
whitefaced capuchins [9] exhibit synchronized group activities such as initiation of motion and
change of travel direction. These remarkable dynamic capabilities are achieved apparently
without following a group leader; see [2, 3, 5, 6, 7, 8, 9] for specific examples of animal
species and [10, 11] for general studies. In other words, these complex coordinated behaviors
emerge while each individual has no global knowledge of the network state and can only plan
its motion by observing its closest neighbors.

At the same time, an important engineering reason to study motion coordination stems
from the recent interest in man-made groups of embedded systems (such as multi-vehicles and
sensor networks). Indeed, the vision is that groups of autonomous agents with computing,
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Figure 1. School of fish. Groups of animals are able to act as one unit apparently
without following a group leader. Photograph taken by the authors at the 50th IEEE
Conference in Decision and Control at Paradise Island, Bahamas, in December 2004.

Figure 2. Flock of snow geese. Self-organized behaviors emerge in biological groups
even though each individual has no global knowledge of the group state. Snow geese
fly in formation during migration near the Eastern Shore of Virginia National Wildlife

Refuge. Photograph taken from [12].



Figure 3. Herd of wildebeest in the Serengeti National Park, Tanzania. Wildebeest
and other animals exhibit complex coordinated behaviors when migrating. Aerial pho-
tograph taken from [4].

Figure 4. Territories of male Tilapia mossambica. Some species of fish exhibit territorial
behavior by globally partitioning the environment into non-overlapping zones. In this
top-view photograph, each territory is a pit dug in the sand by its occupant. The rims
of the pits form a pattern of polygons. The breeding males are the black fish, which
range in size from about 15 cm to 20 cm. The gray fish are the females, juveniles, and
nonbreeding males. Top-view photograph taken from [6].



communication and mobility capabilities will soon become economically feasible and per-
form a variety of spatially-distributed sensing tasks such as search and rescue, surveillance,
environmental monitoring, and exploration.

As a consequence of this growing interest, the research activity on cooperative con-
trol has increased tremendously over the last few years. A necessarily incomplete list of
works on distributed, or leaderless, motion coordination includes [13, 14, 15] on pattern
formation, [16, 17, 18] on flocking, [19] on self-assembly, [20] on swarm aggregation, [21] on
gradient climbing, [22, 23, 24, 25] on deployment and task allocation, [26, 27, 28, 29] on
rendezvous, [30, 31] on cyclic pursuit, [32] on vehicle routing and [33, 34, 35] on consensus.
Heuristic approaches to the design of interaction rules and emergent behaviors are thoroughly
investigated within the literature on behavior-based robotics; see for example [36, 37, 38, 39].

The objective of this paper is to illustrate ways in which systems theory helps us analyze
emergent behaviors in animal groups and design autonomous and reliable robotic networks.
We present and survey some recently-developed theoretical tools for modeling, analysis and
design of motion coordination. We pay special attention to the distributed character of
coordination algorithms, the rigorous characterization of their performance, and the devel-
opment of design methodologies provide mobile networks with provably correct cooperative
strategies.

First, we are interested in how to characterize the distributed character of cooperative
strategies. To arrive at a satisfactory notion, we resort to the concept of proximity graph
from computational geometry [40]. Proximity graphs of different type model agent-to-agent
interactions that depend only on the agents’ location in space. This is the case for example
in wireless communication or in communication based on line-of-sight. Thus, the notion of
proximity graph allows us to model the information flow between mobile agents.

Second, we consider the problem of mathematically expressing motion coordination tasks.
This question is important if we are interested in providing analytical guarantees for the
performance of coordination algorithms. We discuss various aggregate objective functions
from geometric optimization for tasks such as deployment (by means of a class of multi-
center functions that encode area-coverage, detection likelihood, and visibility coverage),
rendezvous (by means of the diameter of convex hull function), cohesiveness, and agreement
(by means of the Laplacian potential from algebraic graph theory). We also discuss their
smoothness properties and identify their extreme points using nonsmooth analysis.

Third, we discuss some techniques that help assess the performance of coordination al-
gorithms. We consider a combination of system-theoretic and linear algebraic tools that are
helpful in establishing stability and convergence of motion coordination algorithms. This
treatment includes methods from circulant and Toeplitz tridiagonal matrices and a recently-
developed version of the invariance principle for non-deterministic discrete-time dynamical
systems.

Fourth, and finally, we focus our attention on designing distributed coordination al-
gorithms for specific tasks. We build on the tools introduced earlier and present various
approaches. A first approach is based on the design of gradient flows: here we are typically
given a coordination task to be performed by the network and a proximity graph as com-
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munication constraint. A second approach is based on the analysis of emergent behaviors:
in this case a notion of neighboring agents and an interaction law between them is usually
given. A third approach is based on the identification of meaningful local objective func-
tions whose optimization helps the network achieve the desired global task. The last and
fourth approach relies on the composition of basic behaviors. We apply these approaches to
numerous examples of coordination algorithms developed in the literature.

Making sense of distributed

Our first goal is to provide a clear notion of spatially distributed coordination algorithms.
Roughly speaking, we would characterize an algorithm as distributed, as opposed to cen-
tralized, if the algorithm relies on local information (instead of on global knowledge). The
literature on automata theory and parallel computing [41, 42] presents precise notions of
distributed algorithms for networks with fixed topology. Here, however, we are interested
in ad-hoc networks of mobile agents, where the topology changes dynamically, and these
definitions are not completely applicable. This feature motivates our current effort to arrive
at a satisfactory definition of spatially distributed algorithms. In doing so, we borrow the
notion of proximity graph from computational geometry. Before getting into it, let us recall
some basic geometric notions.

Basic geometric notions

A partition of a set S is a subdivision of S into components that are disjoint except for
their boundary. Two examples of partitions are useful in our problems. Given S C R? and a
set of n distinct points P = {p1,...,pn} in S, the Voronoi partition [43, 44] of S generated
lg — pj||, forall p; € P}. An example Voronoi partition is depicted in the left plot of
Figure 5.

For p € R? and r > 0, we denote by B(p, ) the closed ball in R? centered at p of radius .
For a set of n distinct points P = {p1,...,p,} in S, the r-limited Voronoi partition inside S
is the collection of sets {V;.(P) = Vi(P)NB(pi, ) }icq1,....ny- This name is justified by the fact
that these sets are the Voronoi partition of U;B(p;,r) NS. The right plot in Figure 5 shows
an example of this geometric construction. We refer to V;(P) and V;,.(P) as the Voronoi cell
and the r-limited Voronou cell of p;, respectively.

Proximity graphs and their properties

The notion of proximity graph allows us to capture the interconnection topology of a
network of robotic agents. Roughly speaking, a proximity graph is a graph whose vertex set
is a set of distinct points on the Euclidean space and whose edge set is a function of the
relative locations of the point set. Let us clarify this notion. A proximity graph G associates
to P = {p1,...,pn} C R? an undirected graph with vertex set P and whose edge set is

bt



Figure 5. Two types of Voronoi partitions. The decomposition of the environment
induced by Voronoi partitions has applications in diverse areas such as wireless com-
munications, signal compression, facility location, and mesh optimization. Here, we
explore the application of Voronoi partition to deployment problems of multi-agent net-
works. (a) and (b) show, respectively, the Voronoi and the r-limited Voronoi partition
of a sample convex polygon. In both cases the generators are 50 randomly-selected
points. The colored regions are Voronoi cells and r-limited Voronoi cells, respectively.

Eg(P) C{(p,q) € PxP|p#q}. Therefore, a point cannot be its own neighbor. From this
definition, we observe that the distinguishing feature of proximity graphs is that their edge
sets change with the location of their vertices. A related notion is that of state-dependent
graphs, see [45]. Let us provide some examples of proximity graphs (see [23, 40, 43] for
further reference):

(i) the r-disk graph Gais(r), for 7 > 0, where two agents are neighbors if they are located
within a distance 7, that is, (ps,p;) € Eguyur)(P) if [|pi — psl| < 7

(ii) the Delaunay graph Gp, where two agents are neighbors if their corresponding Voronoi
cells intersect, that is, (pi,p;) € &g, (P) if Vi(P) NV;(P) # 0;

(iii) the r-limited Delaunay graph Gip(r), for r > 0, where two agents are neighbors if
their corresponding r-limited Voronoi cells intersect, that is, (p;,p;) € Eg.p(P) if
Vir(P) NV (P) # 0;

(iv) given a simple polytope @ in RY, the wvisibility graph G.isq, where two agents are
neighbors if they can see each other, that is, (p;,p;) € &g, o(P) if the closed segment
from p; to p; is contained in Q.

Additionally, we introduce the complete graph Geompiete, Where all agents are neighbors of
each other. This notion allows us to model fully interconnected networks. Finally, it is also
worth mentioning the Fuclidean Minimum Spanning Tree, whose properties are studied in
combinatorial and geometric optimization. Figure 6 shows some examples of these proximity
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graphs. The connectivity properties of these graphs play an important role in coordination
problems and are the subject of current study, see [23].

Figure 6. Proximity graphs in R?. Proximity graphs provide a natural way to mathe-
matically model the interconnection topology among the agents resulting from their
sensing or communication capabilities. From left to right, 2r-disk, Delaunay, and -
limited Delaunay graphs for the point set in Figure 5.

In the case of graphs with a fixed topology, it is typical to alternatively describe the
edge set by means of the sets of neighbors of the individual graph vertices. Likewise, we can
associate to each proximity graph G, each p € R? and each P = {py,...,p,} C R% the set
of neighbors

Nop(P) ={q€P|(p,q) € E&(PU{p})}.

Finally, we consider the broad question of when does a given proximity graph provide
sufficient information to compute a second proximity graph. We say that a proximity graph
G is spatially distributed over a proximity graph Gs, if any agent equipped with the location of
its neighbors according to G, can compute its set of neighbors according to G;. For instance,
if an agent knows the position of its neighbors in the complete graph (that is, of every
other agent in the network), then it is clear that the agent can compute its neighbors with
respect to any proximity graph. More interestingly, the r/2-limited Delaunay graph Grp (%)
is spatially distributed over r-disk graph Ggis(r). Note that, if G; is spatially distributed
over Gy, then G (P) C Go(P) for all P, but the converse is in general not true. For instance,
Gp N Gaisk(r) is a subgraph of Gaigk, but Gp N Gaisk (1) is not spatially distributed over Ggisi(r)
(see [23] for further details).

Spatially distributed maps

We are now ready to introduce the notion of a spatially distributed map. To simplify the
exposition, we do not distinguish notationally between a tuple in (py,...,p,) € (R9)" and
its associated point set {p1,...,p,} C R% we denote both quantities by P. More details on
this concept are in [29].



Consider amap 7' : (RY)" — Y™ with Y a given set. We say that T is spatially distributed
over a prozimity graph G if the jth component T} evaluated at (p1,...,p,) can be computed
with only the knowledge of the vertex p; and the neighboring vertices in G({p1,...,pn}).

According to this definition, a proximity graph G, is spatially distributed over a proximity
graph G, if and only if the set of neighbors map N, is spatially distributed over G,. Later,
when discussing various coordination algorithms, we characterize them as being spatially
distributed with regards to appropriate proximity graphs.

Encoding coordination tasks

Our second goal is to develop mathematically sound methods to express motion coor-
dination tasks. In the following, we argue that aggregate behaviors of the entire mobile
network can be typically quantified by means of appropriately defined objective functions.
Using tools from geometric optimization, we show how to encode various network objectives
into locational optimization functions. We also pay special attention to the smoothness
properties of these functions and the spatially distributed character of their gradients.

Aggregate objective functions for deployment

Loosely speaking, the deployment problem consists of placing a network of mobile agents
inside an environment of interest to achieve maximum coverage of it. Of course, “coverage”
can be defined in many possible ways, as we illustrate in the following discussion.

Let Q@ C R? be a convex polytope. A density function ¢ : QQ — Rsg is a bounded mea-
surable function. We can regard ¢ as a function measuring the probability that some event
takes place over the environment. A performance function f :R>y; — R is a non-increasing
and piecewise differentiable function with finite jump discontinuities. This function describes
the utility of placing an agent at a certain distance from a location in the environment. To
illustrate this notion, consider a sensing scenario in which the agents are equipped with
acoustic sensors that take measurements of sounds originating in the environment. Because
of noise and loss of resolution, the ability to detect a sound originating at a point ¢ from the
ith sensor at the position p; degrades with the distance ||¢ — p;||. This ability is measured
by the performance function f.

Given a density function ¢ and a performance function f, we are interested in maximizing
the expected value of the coverage performance provided by the group of agents over any point
in ). To this end, let us define the function H : Q™ — R by

H(P)= | max f(llq—pill)¢(q)dq. (1)
Q ie{1,...,n}
Since ‘H depends on all the locations pq,...,p,, H is an aggregate objective function. We
seek to find local maximizers for H.
Different choices of performance function give rise to different aggregate objective func-
tions with particular features. We now examine some important cases (let us remind the
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reader that {V;(P)}icq1,...ny and {V; gr(P)}icq1,...ny denote the Voronoi partition and the R-
limited Voronoi partition of Q generated by P € (R?)", respectively):

Distortion problem: If f(x) = —2?, then H takes the form

Z/ lg - pill26(a ZJ

where J(W, p) denotes the polar moment of inertia of the set W C @ about the point p.
In signal compression —Hc is referred to as the distortion function and is relevant
in many disciplines including facility location, numerical integration, and clustering
analysis, see [46].

Area problem: For a set S, let 15 denote the indicator function, 15(q) = 1, if ¢ € S, and
1s(q) =0,if ¢ € S. If f = 1p g}, then H corresponds to the area, measured according
to ¢, covered by the union of the n balls B(pi, R), ..., B(pa, R); that is,

Harea,r(P) = areay (UL, B(pi, R))

where areay(S) = [, ¢(q)dg

Aggregate objective functions for visibility-based deployment

Given a nonconvex polytope @ in R? and p € Q, let S(p) = {q € Q | [¢,p] C Q} denote
the wvisible region in @ from the location p (here [q,p] is the closed segment from ¢ to p).
Define

V1§ /Q ze?llax 1S (Q)dq

Roughly speaking, the function H,i; measures the amount of area of the nonconvex polygon
() which is visible from any of the agents located at pi,...,p,. Therefore, we seek to find
local maximizers of H,i. Note that we can also extend the definition of H,;s using a density
function ¢ : ) — R>¢, so that more importance is given to some regions of the environment
being visible to the network (for instance, doors) than others.

Aggregate objective functions for consensus

In this section we consider a setup based on a fixed graph instead of a proximity graph.
Let G = ({1,...,n}, E) be an undirected graph with n vertices. The Laplacian matriz L
associated with the graph G (see, for instance, [47]) is the n x n matrix defined by:

—1, if (i,j) € E,
L;; = { degree(i), if i=j,

0, otherwise.



(a) (b)

Figure 7. Visibility-based deployment. A network of agents equipped with omnidirec-
tional cameras is able to see the blue-colored region of the nonconvex environment
in (@). The underlying visibility proximity graph is depicted in (b). The overall ob-
jective is to deploy the agents in such as way as to maximize the area visible to the
network.

where degree(i) is the number of neighbors of node i. The Laplacian matrix has some useful
properties: L is positive semi-definite, L is not full rank, and L has rank n — 1 if and only if
the graph G is connected. Following [33], we define the disagreement function or Laplacian
potential Og : R" — R associated with G by

Og(z) = 2" Lo = % Z (z; — 2:)* .
(i,j)eE

For i € {1,...,n}, the variable x; is associated with the agent p;. The variable x; might
represent physical quantities including heading, position, temperature, or voltage. Two
agents p; and p; are said to agree if and only if x; = z;. It is clear that ®¢(x) = 0 if and only
if all neighboring nodes in the graph G agree. If, in addition, the graph G is connected, then
all nodes in the graph agree and a consensus is reached. Therefore, ®5(x) is a meaningful
function that quantifies the group disagreement in a network.

Note that achieving consensus is a network coordination problem that does not necessarily
refer to physical variables such as spatial coordinates or velocities. In what follows we
consider two “spatial versions” of consensus, that we refer to as rendezvous and cohesiveness.

Aggregate objective function for rendezvous

Roughly speaking, rendezvous means agreement over the location of the agents in a
network. An objective function that is useful for the purpose of rendezvous is Vgiam : (RY)™ —
R defined by

Vatiam (P) = max{||p; — pyl| | 4,5 € {1,...,n}}.
10



It is clear that Viam(P) = 0 if and only if p; = p; for all 4,5 € {1,...,n}. Therefore,
the set of global minimizers of V., corresponds to the network configurations where the
agents rendezvous. The map Vgiam : (R?)™ — R is locally Lipschitz and invariant under
permutations of its arguments.

Aggregate objective functions for cohesiveness

Let us consider one final example of aggregate objective function that encodes a motion
coordination task. A repulsion/attraction function h : R>y — R is a continuously differen-
tiable function satisfying the following conditions: (i) limg o+ h(R) = +o0, (ii) there exists
Ry > 0 such that h is convex on (0, Ry) and concave on (R, +00), (iii) h achieves its mini-
mum at all the points in the interval [R., R.] C (0, Ry), and (iv) there exists Ry > Ry such
that h(R) = ¢ for all R > R;. Figure 8 gives a particular example of a repulsion/attraction
function.

Figure 8. Sample repulsion/attraction function. Repulsion/attraction functions serve
to encode desirable network configurations where all neighboring agents are located
within a distance contained in [R,, R,]. These functions play a key role in cohesiveness
problems for mobile networks.

Let G be a proximity graph. Define the aggregate objective function

Heoneg(P) = D hlllpi—p5]).

(pi,pj)E€EG(P)

The minimizers of Heohe,g correspond to “cohesive” network configurations. Specifically, for
n € {2,3}, configurations that achieve the minimum value of Hope g have all neighboring
agents’ locations within a distance contained in the interval [R., R.|. This objective function
and its variations are employed over different proximity graphs in a number of works in the
literature ([20] and [21] over the complete graph, [17] over the r-disk graph) to guarantee
collision avoidance and cohesiveness of the mobile network.
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Correctness and performance analysis of coordination
algorithms

In this section we discuss various techniques used in the literature to analyze cooperative
control problems. Let us first describe informally the notion of coordination algorithm.
Roughly speaking, such an algorithm consists of a control law for each agent of the network.
Mathematically, a coordination algorithm is either a vector field or a map depending on
whether the dynamical model is defined on continuous or discrete time.

Given a coordination algorithm, a first scientific concern is the investigation of its cor-
rectness. From a mathematical viewpoint, when a coordination algorithm for a networked
control system is designed, or a particular interaction law modeling a biological behavior is
described, a set of coupled dynamical systems arise. Of course, the couplings between the
various dynamical systems change as the topology of the mobile network changes, making
things intriguing and complicated at the same time. Conceptually, we can loosely under-
stand that an algorithm behaves correctly when certain sets (encoding the desired behaviors)
are invariant and attractive for the evolution of the closed-loop network. A second relevant
concern regards the properties of the algorithm execution. For instance, one often faces
issues such as discontinuity and non-smoothness of the vector fields modeling the evolution
of the network. Other times, non-determinism arises because of asynchronism (for exam-
ple, to simplify the analysis of an algorithm, the asynchronous, deterministic evolution of a
mobile network may be subsumed into a larger set of synchronous, non-deterministic evo-
lutions, see [27]), design choices when devising the coordination algorithm (at each time
instant throughout the evolution, each agent may choose among multiple possible control
actions, as opposed to a single one, see [23]) or communication, control and sensor errors
during the execution of the coordination algorithm (see [26, 29]). It is also of interest to
have estimates on how quickly a coordination algorithm completes the required task, as well
as on how costly the algorithm is in terms of computations, exchanged messages and energy
consumption.

Among the analysis methods used, we roughly distinguish between linear techniques
(ergodic, stochastic [16] and circulant matrices [31] from matrix analysis, graph Laplacians
and algebraic connectivity [16, 33| from algebraic graph theory) and nonlinear techniques
(symmetries of differential equations [15], invariance principles for differential inclusions and
for non-deterministic dynamical systems [24], graph grammars [19] from automata theory).
For reasons of brevity, it is not possible to include here a comprehensive account of all these
methods. Instead, we include here two sidebars about two insightful techniques: a class of
Toeplitz matrices and the invariance principle for non-deterministic dynamical systems. The
interested reader is invited to explore the references in the bibliography for more in-depth
discussions of these and other methods.
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Tridiagonal Toeplitz and circulant matrices

Toeplitz and circulant matrices are classic research subjects and we refer to [48, 49]
for extensive treatments. For n > 2 and a,b,c € R, we define the n x n matrices
Trid,(a, b, ¢) and Circ,(a, b, c) by

b ¢ 0] [0 0 a

b c ... 0 0 0 O

Trid,(a,b,¢) = |+ .. .. .. |, Circy(a,b,c) =Tridy(a,b,c)+ |+ .. P
0 ... a b ¢ 0O 0 ... 0 O
0o ... 0 a b] lc 0 ... 0 0]

We refer to Trid,, and Circ, as tridiagonal Toeplitz and circulant, respectively. These
matrices appear when the communication network has the chain or the ring topology
as, for instance, in rendezvous [50] and in cyclic pursuit [30, 31] problems. In Figure 9,
we illustrate two algorithms in which the control action of each agent depends on the
location of the agent’s clockwise and counterclockwise neighbors.

An important feature of these matrices is that their eigenvalues and their dependency
on n can be explicitly computed; see [50]. First, consider the discrete-time trajectory
x : Z>o — R" satisfying

z({+ 1) = Trid,(a, b, c) x(¥), z(0) = .

For the relevant case where a = ¢ # 0 and |b| 4+ 2|a] = 1, we can show not only
that limy_ . z({) = 0, but more importantly that the maximum time required for
|z(0)]|2 < €l|lzol|2 is of order n?loge™!, for small e. Second, consider the discrete-time
trajectory y : Z>o — R" satistying

y(£ + 1) = Circ,(a, b, c) y(£), y(0) = yo.

For the relevant case where a > 0, ¢ > 0, b > 0, and a + b+ ¢ = 1, we can show that
limy_ 100 Y(€) = Yavel, Where yawe = %1Ty0, and that the maximum time required for
19(€) = Yavelll2 < €Yo — Yavel|l2 is again of order n?loge™!. Here 1 = (1,...,1)T.
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Figure 9. Clockwise and counterclockwise neighbors of an agent in a network evolving
in S'. Control laws such as “go toward the midpoint um,q of the locations of the
clockwise and counterclockwise neighbors”, or “go toward the midpoint w4 of the
Voronoi segment of the agent” give rise to linear dynamical systems described by
circulant matrices. In the closed-loop system determined by 4, the agents achieve a
uniform distribution along S'. Oscillations instead persist when the law 1,4 is adopted.
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Invariance principle for non-deterministic dynamical systems

Here we briefly survey a recently-developed invariance principle for non-deterministic
discrete-time dynamical systems. Let T be a set-valued map on R"™, that is, a map
that associated to a point in R™ a non-empty set in R™. A trajectory of T is a curve
p 1 Z>o — R"™ with the property that

p(l+1) € T(p(0)).

In other words, given any initial py € R", a trajectory of T' is computed by recursively
setting p(¢ + 1) equal to an arbitrary element in 7'(p(¢)). Therefore, T" induces a non-
deterministic discrete-time dynamical system [23, 51]. To study the stability of this
type of discrete-time dynamical systems, we need to introduce a couple of new notions.
According to [51], T'is closed at p € R™ if for all pairs of convergent sequences pr — p and
P, — p’ such that p) € T'(px), we have p’ € T'(p). In particular, every map 7' : R — R”
continuous at p € R™ is closed at p. A set C'is weakly positively invariant with respect to
T if, for any initial condition pg € C, there exists at least a trajectory of T' starting at
po that remains in C, or equivalently, if there exists p € T'(py) such that p € C. Finally,
a function V : R" — R is non-increasing along T on W C R if V(p') < V(p) for all
p € W and p’ € T(p). We are ready to state the following result from [23], see also [52].

Theorem 1 (Invariance principle for closed set-valued maps) Let T be a set-valued map
closed at p, for allp € W C R™, and let V : R® — R be a continuous function non-
increasing along T on W. Assume that the trajectory p : Z>o — R"™ of the set-valued
map T takes values in W and is bounded. Then there exists ¢ € R such that

p(l) — MNV~e) as {— 4oo,

where M s the largest weakly positively invariant set in {p € W | I €
T(p) with V(p') = V(p)}.

Designing emergent behaviors

In this section, we elaborate on the role played by the tools introduced in the previous
sections for the design and analysis of motion coordination algorithms. We do not enter
into technical details throughout the discussion, and rather refer to various works for further
reference. Our intention is to provide a first step toward the establishment of a rigorous
systems-theoretic approach to motion coordination algorithms for a variety of spatially-
distributed tasks.

Given a network of identical agents equipped with motion control and communication
capabilities, the following subsections contain various approaches to the study of distributed
and coordinated motions. Loosely speaking, a first approach is based on the design of
gradient flows: here a coordination task and a proximity graph are typically specified together
with a proximity graph imposing a communication constraint. A second approach is based
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on the analysis of emergent behaviors: in this case a notion of neighboring agents and an
interaction law between them is usually given. A third approach is based on the identification
of meaningful local objective functions whose optimization helps the network achieve the
desired global task. Finally, the last and fourth approach relies on the composition of
basic behaviors. Next, we discuss each of these approaches in detail, and illustrate their
applicability in specific coordination tasks.

Designing the coordination algorithm from the aggregate objective
function

The first step of this approach consists of identifying a global and aggregate objective
function which is relevant to the desired coordination task. Once this objective function is
determined, the next step is to analyze its differentiable properties and compute its (general-
ized) gradient. With this information, it is possible to characterize its critical points, that is,
the desired network configurations. The next step is to identify those proximity graphs that
allow the computation of the gradient of the objective function in a spatially distributed
manner. If any of these proximity graphs can be determined with the capabilities of the
mobile network, then a control law for each agent simply consists of following the gradient of
the aggregate objective function. By the invariance principle, such a coordination algorithm
automatically guarantees convergence of the closed-loop network trajectories to the set of
critical points.

Distortion and area problems

The coordination algorithms for the distortion problem and for the area problem devel-
oped in [23] are examples of this approach. Given ) a convex polygon and R > 0, we can
prove that the functions H¢ and Harea,r are differentiable almost everywhere and

oH

3y, (F) = 2MOA(P) (CMK(P) = i) (20)
a”—(enrea,R _
a—pZ(P) B /arc(@ViyR(P)) "B ) ¢ ’ (2b)

where np(, r)(q) denotes the unit outward normal to B(p, R) at ¢ € 0B(p, R) and, for each
ie{l,...,n}, arc(0V; r(P)) denotes the union of the arcs in dV; g(P). The symbols M(W)
and CM(W) denote, respectively, the mass and the center of mass with respect to ¢ of
W C Q. The critical points P € Q" of H¢ satisfy p, = CM(V;(P)) for all i € {1,...,n}.
Such configurations are usually referred to as centroidal Voronoi configurations, see [46].
The critical points P € Q" of Hawea,r have the property that each p; is a local optimum
for the area covered by V; p = Vi N B(p;, R) at fixed V;. We refer to such configurations as
area-centered Voronoi configurations.

From equation (2a) it is clear that the gradient of H¢ is spatially distributed over Gp,
whereas from equation (2b) we deduce that the gradient of H,yea i is spatially distributed over
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Gup(R). The gradient flows of He and of Haypea g correspond to the coordination algorithms
“move-toward-the-centroid of own Voronoi cell” and “move in the direction of the (weighted)
normal to the boundary of own cell,” respectively. Figures 10 and 12 show an example of
the execution of these algorithms. Figures 11 and 13 illustrate the adaptive properties of
these algorithms with respect to agent arrivals and departures.

Figure 10. Distortion problem. Each one of the 20 mobile agents moves toward
the centroid of its Voronoi cell. This strategy exactly corresponds to the network
following the gradient (2a) of the distortion function Hc. Areas of the convex polygon
with greater importance are colored in darker blue. This coloring corresponds to the
contour plot of the density function ¢ in the definition (1) of Hc. (a) and (c) show,
respectively, the initial and final locations, with the corresponding Voronoi partitions.
(b) illustrates the gradient descent flow.

Figure 11. Adaptive network behavior under agent failures in the distortion problem.
After the final configuration in Figure 10 is reached, four network agents (colored in
yellow) fail and cease to provide coverage in their respective Voronoi cells (colored
in orange). The rest of the network adapts to the new situation satisfactorily. (a)
illustrates the location of the agents when the failures occur, and (c) shows the final
location of the remaining agents. (b) illustrates the gradient descent flow since the
failure occurred.
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Figure 12. Area problem. Each one of the 20 mobile agents follows the gradient (2b)
of the area function Harea,z- The density function ¢, which specifies areas of greater
importance, and the environment are the same as in Figure 10. (a) and (c) illustrate,
respectively, the initial and final locations, with the corresponding Voronoi partitions.
(b) illustrates the gradient descent flow. Each agent operates with a finite communi-
cation radius. For each agent i, the j-limited Voronoi cell V;:(P) is plotted in light

2
gray.

Figure 13. Adaptive network behavior under agent arrivals in the area problem. After
the final configuration in Figure 12 is reached, five new agents (colored in yellow) enter
the environment. The rest of the network adapts to the new situation satisfactorily.
(a) illustrates the location of the agents when the arrival of the new agents occurs,
and (c) shows the final location of the network. (b) illustrates the gradient descent
flow from this event on.
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Consensus

The asymptotic agreement algorithm developed in [33] to solve the consensus problem
is another example of this approach. For a fixed undirected graph G = ({1,...,n}, F), the
function @ is smooth, and its partial derivative takes the form

0Pq
ox

Clearly, this gradient is distributed with respect to the graph G itself. The implementation
of the gradient control law leads to the algorithm @; = 3 o p(z; — ), for i € {1,...,n},
which asymptotically achieves average- consensus that is, the final value upon which all
agents agree can be proved to be equal to = ZZ ) x,( ).

= Lz. (3)

Cohesiveness

Another example of this approach are the various coordination algorithms developed in
the literature to achieve cohesiveness [17, 20, 21]. For the complete graph Geompiete, the
function Heohe,Goomprere 15 SO0t almost everywhere and

chohe ;Gcomp ete 0
Tl 6 h(llpi —pill) = > a—pi(h(Hpi -pil),

JF pj eNgdisk(Rn,pz‘

where we used the fact that dh/dR vanishes for R > R;. According to the notions we
introduced earlier, this gradient is spatially distributed over Gg;s(R1). The gradient descent
algorithm guarantees that the network of agents asymptotically approaches the set of critical
points of Heone Geompiete-

Not always does the aggregate objective function enjoy the desirable property that its
gradient is spatially distributed with respect to the required proximity graph. In other
words, given an available information flow, the corresponding gradient algorithm can not
always be computed. If this is the case, a possible approach is the following: (i) consider
constant-factor approximations of the objective function, (ii) identify those approximations
whose gradient is spatially distributed with respect to an appropriate proximity graph, and
(iii) implement as coordination algorithm the one that makes each agent follow the gradient
of the approximation.

Analyzing the coordinated behavior emerging from basic interac-
tion laws

This approach consists of devising a simple control law, typically inspired by some sort
of heuristic, that implemented over each agent of the network would reasonably perform the
desired task. Once we have done this, we should (i) check that the resulting coordination
algorithm is spatially distributed with regards to some appropriate proximity graph, and (ii)
characterize its asymptotic convergence properties. One way of doing the latter is by finding
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an aggregate objective function that encodes the desired coordination task and by showing
that this function is optimized along the execution of the coordination algorithm.

Move-away-from-closest-neighbor

Consider the coordination algorithm studied in [24] where each agent moves away from
its closest neighbor (see Figure 14). This simple interaction law is spatially distributed over
Gp. We can prove that along the evolution of the network, the aggregate cost function

Hsp(P) = min  {5pi — pyll. dist(p:;,0Q) } , (4)
i#je{l,...,n}

is monotonically non-decreasing. This function corresponds to the non-interference problem,
where the network tries to maximize the coverage of the domain in such a way that the various
communication radius of the agents do not overlap or leave the environment (because of
interference). Under appropriate technical conditions, we can show that the critical points
of Hgp are configurations where each agent is at the incenter of its own Voronoi region
(recall that the incenter set of a polygon is the set of centers of the maximum-radius spheres
contained in the polygon).

Figure 14. Non-interference problem. Each one of the 16 mobile agents moves away
from its closest neighbor. The resulting network behavior maximizes the coverage of
the environment in such a way that the various communication radius of the agents do
not overlap or leave the domain. (a) and (c) illustrate, respectively, the initial and final
locations, with corresponding Voronoi partitions. (b) illustrates the network evolution.
For each agent i, the ball of maximum radius contained in the Voronoi cell V;(P) and
centered at p; is plotted in light gray.

Flocking

Consider the coordination algorithm analyzed in [16] for the flocking problem. Roughly
speaking, flocking consists of agreeing over the direction of motion by the agents in the
network. Let G be a proximity graph. Now, consider the coordination algorithm where each
agent performs the following steps: (i) detects its neighbors’ (according to G) heading; (ii)
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computes the average of its neighbors’ heading and its own heading, and (iii) updates its
heading to the computed average. Clearly, this algorithm is spatially distributed over G.
Moreover, assuming that G remains connected throughout the evolution, we can show that
the agents asymptotically acquire the same heading.

Designing the coordination algorithm from local objective functions

This approach has common elements with the two approaches presented previously. Now,
to derive a control law for each specific agent, we assume that the neighboring agents of that
agent, or some spatial structure attributed to it, remain fixed. We then define a local objec-
tive function, which is somehow related with the global aggregate objective function encoding
the desired coordination task, and devises a control law to optimize it. The specific control
strategy might be heuristically derived or arise naturally from the gradient information of
the local objective function. Once the coordination algorithm is set up, it should be checked
that the algorithm is spatially distributed and its asymptotic convergence properties should
be characterized.

Non-interference problem

Consider the aggregate objective function Hgp defined in equation (4). Consider the
alternative expression,

Hsp(P) = e sy (p) (pi)

where smy,(p) is the distance from p to the boundary of the convex polygon W, that is,
smyy (p) = dist(p, 0W). Now, fori € {1,...,n}, consider smy,p) as a local objective function.
Assuming that the Voronoi cell V;(P) remains fixed, then we can implement the (generalized)
gradient ascent of smy;(py as the control law for the agent p;. We can show [24] that this
interaction law precisely corresponds to the strategy “move-away-from-closest-neighbor” dis-
cussed earlier (see section entitled “Move-away-from-closest-neighbor”). A related strategy
consists of each agent moving toward the incenter of its own Voronoi cell. The latter strat-
egy can also be shown to make Hgp monotonically non-decreasing and to enjoy analogous
asymptotic convergence properties.

Worst-case problem

Consider the aggregate objective function

Hpc(P) =max{ min [¢—pfl} = max

lgy, i)
q€Q " ie{l,..,n} ie{l,...,n} gVZ(P)(p)

where lgy,(p) is the maximum distance from p to the boundary of the convex polygon W, that
is, lgy (p) = maxgew [l¢ — pil|. Now, for i € {1,...,n}, consider lgy, py as a local objective
function. Assuming that the Voronoi cell V;(P) remains fixed, then we can implement
the (generalized) gradient descent of lgy. (py as the control law for the agent p;. We can

21



show [24] that this interaction law precisely corresponds to the strategy “move-toward-the-
furthest-away-vertex-in-own-cell.” A related strategy consists of each agent moving toward
the circumcenter of its own Voronoi cell (recall that the circumcenter of a polygon is the center
of the minimum-radius sphere that contains it). Both strategies can be shown to make Hpc
monotonically non-increasing and enjoy similar asymptotic convergence properties. These
ideas can be combined in other settings with different capabilities of the mobile agents, for
instance, in higher dimensional spaces (see Figure 15).

(a) (b)

Figure 15. Worst-case scenario. The network tries to maximize the coverage (illumi-
nation) of a convex polygon. Each one of the 12 mobile agents illuminates a vertical
cone with a fixed and common aspect ratio. Each agent determines its Voronoi region
within the planar polygon (the same as in Figure 14). Then, each agent moves its
horizontal position toward the circumcenter of its Voronoi cell and its vertical position
to the minimal height spanning its own Voronoi cell. (a) and (b) illustrate, respectively,
the initial and final locations.

Rendezvous

Let G be a proximity graph. Consider the Circumcenter Algorithm over G, where each
agent performs the following steps: (i) detects its neighbors according to G; (ii) computes
the circumcenter of the point set comprised of its neighbors and of itself, and (iii) moves
toward this circumcenter while maintaining connectivity with its neighbors. To maintain
connectivity, the allowable motion of each agent is conveniently restricted (see [26, 27, 29]
for further details).

Note that with step (ii), assuming that all other agents remain fixed, each agent mini-
mizes the local objective function given by the maximum distance from the agent to all its
neighbors in the proximity graph G. By construction, this coordination algorithm is spatially
distributed over the proximity graph G. Moreover, we can prove that the evolution of the
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aggregate objective function V., is monotonically non-increasing along the execution of the
Circumcenter Algorithm. Using the invariance principle for closed algorithms, we can indeed
characterize the asymptotic correctness properties of the Circumcenter Algorithm over G.
See Figure 16 for an illustration of its execution.

T

Figure 16. Circumcenter Algorithm in Euclidean space. Each one of the 25 mobile
agents move toward the circumcenter of the point set comprised of its neighbors
and of itself. The resulting network behavior asymptotically achieves rendezvous at a
point. Indeed, the invariance principle allows us to establish the algorithm’s correctness
under fairly general conditions. For instance, in this figure at each time step each agent
randomly selects Gy (7) or Gip(5) to compute its set of neighbors.

Designing the coordination algorithm by composing different be-
haviors

This final approach builds on the methods presented above. An idea for the composition
of behaviors is to implement one coordination algorithm on most of the network agents and a
second coordination algorithm on the other agents. Coupling two algorithms in this parallel
fashion results in interesting overall network behaviors. For example, we may prescribe
an open-loop motion on some of the network agents (for instance, specifying that some
particular agents must stay fixed or follow a desired path) and implement a feedback law for
the others. Examples of this approach include (1) the formation control strategy in [27] to
make the network form a straight line, and (2) the leader-following algorithm given in [16]
to make the network flock in a pre-specified direction. Along these lines, it is interesting
to explore more general parallel, serial and hierarchical approaches to the composition of
behaviors.
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Conclusions

We believe that the set of recent tools (proximity graphs, spatially distributed maps,
aggregate objective functions, circulant matrices, and invariance principles) surveyed in this
paper are important in distributed motion coordination. These technical tools play an key
role in the various design approaches to coordination algorithms reported here, see Table 1.
We believe that the coming years will witness an intense development of the field of dis-
tributed coordination and of its practical use in applications for multiple vehicles and sensor
networks.

Agent motion Formal description Distributed | Lyapunov | Asymptotic Ref.

direction information | function | convergence

centroid of | p; = CM(V;(P)) — p; Voronoi Hc centroidal Voronoi | [22]

Voronoi cell neighbors configurations

weighted aver- | p; = fm(av - (P) MB(i3) ¢ | r-disk Harea,z area-centered [23]

age normal of "2 neighbors Voronoi  configu-

5-limited Voronoi rations

cell

average of neigh- | p; = Zje/\/c(i)(pj — i) neighbors dq Consensus [33]

hors in fixed GG

away from closest | p; = Ln(0smy,p))(P) Voronoi Hsp Incenter Voronoi | [24]

neighbor neighbors configurations

furthest-away ver- | p; = — Ln(01gy,p))(P) Voronoi Hpe Circumcenter [24]

tex in Voronoi cell neighbors Voronoi  configu-
rations

circumcenter  of | p;(t+1) = p;(t)+ A} r-disk Viam rendezvous [26]

neighbors’ and | (CC(M;) — p;) neighbors

own position

Table 1. Summary of motion coordination algorithms. The tools presented throughout
the paper play a key role in the design and the analysis of the network behavior
resulting from these coordination algorithms. In the interest of brevity, we refer to the
corresponding references for the notation employed.
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