
Intuitive Crowd Behaviour in Dense Urban Environments using Local Laws

Celine Loscos
University College London

C.Loscos@cs.ucl.ac.uk

David Marchal
Ecole Polytechnique Paris

Alexandre Meyer
University College London

A.Meyer@cs.ucl.ac.uk

Abstract

In games, entertainment, medical and architectural ap-
plications, the creation of populated virtual city environ-
ments has recently become widespread. In this paper we
want to provide a technique that allows the simulation of
up to 10,000 pedestrians walking in real-time. Simulation
for such environments is difficult as a trade off needs to be
found between realism and real-time simulation. This paper
presents a pedestrian crowd simulation method aiming at
improving the local and global reactions of the pedestrians.
The method uses a subdivision of space into a 2D grid for
pedestrian-to-pedestrian collision avoidance, while assign-
ing goals to pedestrians to make their trajectories smoother
and coherent. Goals are computed automatically and con-
nected into a graph that reflects the structure of the city and
triggers a spatial repartition of the density of pedestrians.
In order to create realistic reactions when areas become
crowded, local directions are stored and updated in real-
time, allowing the apparition of pedestrians streams. Com-
bining the different methods contributes to a more realistic
model, while keeping a real-time frame rate for up to 10,000
simulated pedestrians.

1 Introduction

Pedestrian traffic may be quite congested in large cities.
The design of most public facilities could often enable the
passage of hundreds of thousands pedestrians per day. Rail-
way stations, shopping centres or tourist places attract high
density crowds. In order to help in the design or to demon-
strate such places to a public, it is essential to be able to
simulate the movement of a pedestrian crowd in such envi-
ronments. Other applications such as games and entertain-
ment should also benefit from such techniques.

Our primary goal is to provide a simulation that runs
in real-time with no pre-computation. This simulation is
part of a system that renders a city, simulates the crowd be-
haviour and renders each of the individuals. Resources are
therefore shared, and the cost of the behaviour simulation

must be restricted. This paper presents a way of simulat-
ing an intelligent crowd without using more complex ap-
proaches such as artificial intelligence techniques. Whereas
most available models which describe the behaviour of a
crowd usually deal with macroscopic variables like average
and flow, we developed an individual-based model.

In the next section 2, we present related work dealing
with virtual cities, real crowd features and former work on
crowd modelling. In section 3 we describe how we define
accessible regions by the pedestrians, using a 2D-analysis
of the space. Then, in section 4, we explain the methods
used to perform our main contributions: making the agents
aware of the city environment, performing a realistic agent-
to-agent collision avoidance, managing the self-emergence
of flows and making the agents walk in small groups. In
section 5, we present some details of implementation and
the results.

2 Background

A good overview of human behaviour simulation in vir-
tual environments is presented in [2]. In this section we
will restrict the description of work to non-AI approaches.
Moreover our main purpose is to give agents realistic trajec-
tories at an individual level and to give the crowd movement
a realistic look at a macroscopic level. There has been a lot
of work intending to improve individual features of agents:
in [1], for example, they add subconscious actions (such as
walking stooped when sad) so that there may be a greater
diversity of behaviours.

It is often interesting to base a simulation on real obser-
vations. Feurtey [4] collected a great number of crowd fea-
tures, such as for example, the intimacy of the space needed,
the relation between the flow of pedestrians, the density of
the area and the speed, or the influence of the weather on the
behaviour. These data can help to find what is significant in
the way a crowd behaves so as to be able to incorporate this
into a model.

Space syntax techniques [5] have a long tradition in ur-
ban studies. In the context of cities, space syntax aims at
describing some areas in the sense of integration and segre-

gation. A location is more integrated if all the other places
can be reached from it after going through a small number
of intermediate places. With such parameters, the move-
ment pattern in a city can be understood and predicted: for
example, the more a region has extensive visibility from the
surrounding area (with the longest lines of site), the busier
it will be. Some space syntax analysis results even show
correlations between predicted segregated areas and areas
of high incidence of burglary.

Collision detection

In most simulations, attention is centered on collision de-
tection and reaction. Bouvier and Cohen [3] implemented
a simulation of a crowd involving 45,000 persons, based on
Newtonian mechanics. However the simulated behaviour
remains quite simple.

Reynolds [9] implemented, based on an exact mathemat-
ical computation, a large set of individual or group

behaviours such as pursuing a moving goal, obstacle
avoidance, path following, or flow field following. The
overall behaviour simulation combines these numerous
kinds of individual behaviours. Although the results are re-
ally impressive, they are not scalable to a crowd of several
thousands agents for real-time simulation.

Feurtey [4] proposed a new approach for collision de-
tection based on predicting and modifying trajectories in a
(x, y, t) space, using a cone to delimitate the available space
based on the analysis of others’ trajectories and speeds. Al-
though this method allows pedestrians to evaluate the cost
of moving away from their goal, changing direction, accel-
erating and decelerating, it is yet not scalable to a larger
population.

Musse et al. [7] proposed a multi-resolution collision de-
tection algorithm based on two different collision avoidance
laws: the slower of two agents stops just before the collision
occurs, or both agents go round each other. As the second
method is much more expensive in computational time, it
is used only when the observer position is really nearby the
collision place. However this techniques has not been tested
for a large number of pedestrians.

An original and efficient technique is proposed in [10],
for the simulation of around 10,000 virtual humans. In this
paper, the position of the pedestrians are managed with a
2D grid. They access, in the surrounding cells, local infor-
mation for collision with the environment and other pedes-
trians. The idea has then been extended [11] for creating
more complex behaviours using the same discretization ap-
proach, using different layers.

Group behaviour

In a city, less than a half of the pedestrians walk alone.
Indeed most people walk in pairs. To simulate a realistic
environment, it is necessary to implement group behaviour.

Using steering behaviours, Reynolds [9] invented the
well-known boids (for bird-oid). Boids abide by a flock-
ing rule that is simulated using the three Separation, Cohe-
sion and Alignment basic steering behaviours. The result of
the combination of these three laws was very good for the
modelling of flocks, herds or schools but not collections of
humans.

Musse et al. [6] defined a crowd as a set of groups formed
by human agents, each group having a list of goals. Agents
from a same group share the same list of goals but social ef-
fects can occur: agents may change group. To generate the
group behaviour, they used 3 main laws: the agents from
the same groups walk at the same speed, follow the same
predefined path and can wait for each other when one agent
is missing. In another paper, Musse et al. [7] used soci-
ological rules to enable more human-like reactions. Each
agent is specified by a level of dominance, a level of rela-
tionship and an emotional status, and is ruled by seeking
and flocking laws. Using the same list of goals as before,
the behaviour of the crowd is significantly improved: for
example, they have implemented the simulation of 4 groups
visiting a museum, each of the group aggregating gradu-
ally as time elapses. This is an example of global behaviour
generated by local laws.

2.1 Discussion

Our work was inspired by techniques previously de-
scribed, and have been adapted to local-control-based tech-
niques used by Tecchia et al. [11]. We use a 2D-grid to
localise the pedestrians, and for each of our contributions,
we compute the decisions made by the pedestrians using in-
formation stored in the local surrounding cells. Although
this seems to be very simplistic, it allows a high degree of
control in the realism of the simulation with the develop-
ment of complex rules, while keeping the computation cost
low. In particular, our space analysis build on 2D maps to
retrieve non-modelled information such as pavements and
pedestrian crossings. Moreover we use several call-back
layers proposed in [11] to manage flow streams, guidance
in the directions of movement (goals) and group behaviour.
We also used the crowd observations made by Feurtey [4]
to assess the realistic appearance of our simulation. Finally,
some collision detection algorithms developed by Musse et
al. [6, 7] and Reynolds [9] contribute to our methods. Our
collision detection algorithm is inspired by the previous ob-
servations [4, 6, 7] while implemented using simple local
rules on the 2D discreet representation of the environment
[11]. Architectural theories such as Space Syntax [5] link
the physical aspects and the pedestrian business associated
with a place. Although we do not use directly space syntax
techniques, these make it possible to extend our algorithm
using accurate laws, e.g. for taking into account of density.

3 Space Analysis

As it has been done before [10, 11, 13] and for effi-
ciency reasons, we use a 2D array with a certain resolution
to represent the physical city. The input data is a binary
map representing only the position of the buildings and the
ground. An example of such a map is shown in Fig. 1, where
white regions represent the ground, and black regions the ar-
eas covered by the buildings. If pedestrians directly access
this map, they can be given access to regions tagged by a
GROUND value, and refused access to those tagged by a
BUILDING value. Giving access to GROUND would only
enforce the agents avoiding penetration of the buildings, but
it would result in a very unrealistic behaviour. Streets are
not only for pedestrians, and it would be more realistic to
provide pavements and pedestrian crossings.

Figure 1. Binary image representing the vir-
tual city. This can be automatically obtained
by rendering the scene from above, using or-
thographic projection and storing the image
in a z-buffer. A post-processing step might be
needed to level the elevations (white for the
ground and black for the buildings).

We used the 2D map given in input to redesign the area
accessible by the pedestrians, by defining pedestrian pave-
ments and crossings. Note that we did not model these com-
ponents in 3D. In the following, we present the algorithm
used, which is in three steps. First, we build the pavement
areas directly from the 2D map. Second, we detect the cor-
ners of the pavements, and finally define pedestrian cross-
ings. The method described in this section is the one we
implemented, but we are aware that other techniques could
be used. This one has the advantage of being simple and
2D-based.

3.1 Definition of the pavements

As our interest is to make the method work for any type
of city, the input binary map representing the location of
buildings is constructed by rendering the city from above
using an orthographic projection. We render only the build-
ings without the polygons representing the road. In the re-
sulting image, pixels with a depth value equal to infinity are

the road (white) and others are the buildings (black). To de-
fine the pavement areas, we enlarge the area covered by the
buildings using a convolution filter. The new pixels defined
by the convolution are tagged as PAVEMENT.

3.2 Goal positioning

The following algorithm is invoked after having built
pavements around buildings. To place the goals on
the corners, we use a new more flexible method that
needs to detect the succession of three different lev-
els: GROUND-PAVEMENT-GROUND or PAVEMENT-
BUILDING-PAVEMENT. This succession has to be found
several times for the same corner with different angles (see
Fig. 2) to validate the existence of a goal. This corner de-
tection is performed on the pavements once we have built
them with half of their final size. Afterwards, pavements
are widened to their full width and the detected corners thus
appeared to be in the centre of the pavements.

The inter-visible corners are formed into a graph. Al-
though the number of goals is large, the method is conser-
vative as there is no pavement area without a goal. This
ensures, as later on described in section 4.1.1, that every
pavement can be occupied by the pedestrians. The number
of goals is then decreased by merging neighbour goals to-
gether when they are close, while keeping connectivity in
the graph. If two goals A and B are to be merged, the re-
sulting goal position is the barycentre of A and B and the
new neighbours are those of A and B. This method is sum-
marised in Fig. 3. It can be noticed that the property of the
visibility between two connected goals in the graph might
not be conserved after the merge. But this does not have a
consequence for the rest of the algorithm.

Figure 2. We identify a corner by detecting the
sequence GROUND-PAVEMENT-GROUND or
PAVEMENT-BUILDING-PAVEMENT. We show
in this figure two of the tests on angle varia-
tion used to validate the existence of a corner.

3.3 Pedestrian crossings

Using the graph of goals, it is possible to automatically
design the pedestrian crossings. For every pair of goals in
the graph, it is possible to know if they are on opposite
sides of a street. If it is the case, these two goals will be

Figure 3. To decrease the number of goals,
our algorithm merges goals. Two goals (left)
are replaced by their barycentre (right).

Figure 4. This is an example of the automatic
designing of pavements (in gray) and pedes-
trian crossings (in light gray).

set connected in the graph, and the corresponding 2D area
covered tagged with a CROSSING value. Although it does
not reflect exactly the way real pedestrian crossings lay, the
pedestrian crossings created with this method correspond to
a true necessity in terms of traffic (see Fig. 4).

4 Behaviour

In the previous section, we explained how we en-
coded the necessary information in a 2D grid to indi-
cate to the pedestrians the accessible areas (CROSSING,
PAVEMENT) and the non-accessible ones (BUILDING,
GROUND). In section 4.1, we explain how this information
is used to significantly improve the individual behaviour
while keeping an interactive frame rate. We exploit the
precomputed information to define trajectories and perform
collision detection with the environment. We then explain
how we enhanced the pedestrian behaviour to make it more
realistic using simple local rules. In section 4.2, we describe
a first attempt on simulating groups of people, still using 2D
information.

4.1 Individual Behaviour

4.1.1 Trajectories

With our existing system, we were concerned with how
to provide relatively straight trajectories to the pedestrians

without adding too much complexity. The natural way is
by giving virtual agents a direction. However, this results
easily in a pedestrian moving toward an obstacle and then
reacting to it. This easily makes the simulation similar to
the behaviour of ”ants” . A more sophisticated way is to
give each agent a goals to attain, to retrieve a path to go
from one point to another. This could be precomputed to
avoid expensive computations at run time.

However we wanted a system that could be run without
any precomputation, to encourage behavioural diversity and
to reduce the memory storage need, while resulting in an
interactive update of the behaviours. For this, we make use
of the goals previously placed and used in the system (see
section 3). At the begining of the simulation, every pedes-
trian has been placed next to a goal and has been assigned a
new goal to reach, adjacent in the graph of goals, and thus
visible from the current position. The direction from one
goal to another corresponds roughly to the trajectory of a
pedestrian on a pavement or a crossing. It is interesting to
note that, therefore, frontal collision with static obstacles
are unlikely to happen. When a pedestrian reaches a goal,
a new goal is assigned from the list of the adjacent goals in
the graph. To avoid virtual agents to do some u-turns, we
stored into memory the last three goals assigned to prevent
them to be assigned again.

4.1.2 Collision Detection

The pedestrians perform collision detection with the envi-
ronment (buildings) and between themselves. As was pre-
viously proposed [10], we perform collision detection with
the buildings using a collision map. In our simulation, we
check up to five tiles ahead to avoid unpredicted collision,
and therefore to contribute for the smoothness of the trajec-
tory.

Detecting collision with people is also performed using
the information stored in a grid. We consider three main
cases of collision between two agents, front, following and
perpendicular, as illustrated in Fig. 5. We compare the di-
rection of trajectory of each agent, the velocity factor, and
the distance between the agents. According to these param-
eters, a decision is taken, to deviate from an appropriate an-
gle, to slow down, or to completely stop; the deviation being
the preferred option. Depending on the distance to the other
agent, the chosen variation can vary from ±Π/8 when the
distance is large to ±Π/2 when the distance is short. The
list of possible decisions is summarized in Fig. 7.

4.1.3 Flows

We observed that in everyday life, when a congestion oc-
curs, people tend to follow the person in front of them. This
is because we trust that the person in front of us probably
made the right decision. We implemented this idea, using

Figure 5. The three types of collision we con-
sider. Type a: front collision. Type b: follow-
ing collision. Type c: perpendicular collision.

local information rather than space understanding or dy-
namic fluid simulation. We represent flows as a direction
field, stored into the 2D grid. Every time an agent reaches
a cell, its direction is stored. This direction field then fades
over time to completely disappear. When an agent reaches
a cell, it checks which direction was chosen by a previous
agent and when. It then uses this information to make its
own decision. The direction field is updated depending on
this new direction, but taking into account for the previous
direction stored. The equation used is

−−→
D(t) =

(
t0 − t

τ
+ 1

)
.
−→
D0 (1)

−−−→
newD =

1
2

((
t0 − t

τ
+ 1

)
.
−→
D0 + −→

D1

)
(2)

where D(t) is the way the stored direction fades over
time, the maximum time interval being τ , and t0 being the
time when an agent updated D. Using equation (2), a new
direction newD is computed, where D0 is the previously
stored direction and D1 the original direction of the new
agent. An example of a direction field is shown in Fig. 6. It
is interesting to notice that agents in this context cooperate.
A decision taken by an agent in a cell influences the next
occupier.

4.1.4 Adaptation to density

In our everyday life, depending on the density of a crowd,
we usually adopt different behaviours. We wanted to take
this into account in our simulation by encouraging pedestri-
ans to queue in busy areas and to adapt their speed instead of
overtaking. Instead of analysing the density at each step of
the simulation, we use a density prediction map. In our case
we noticed that the density is highest in the region where we
placed more goals. This is coherent since it is more likely
that a pedestrian is assigned a goal from a high-density goal
area. However, this has nothing to do with a space analysis
and it would be more interesting to use a density predic-
tion map as produced by space syntax techniques. If we

Figure 6. An example of the direction field
used to simulate stream of people. Agents
are represented by the squares, and the direc-
tion field is represented by the blue arrows.
Notice that the size of the arrows varies as
the validity of the field fades over time.

were to use these maps, we could then either simply assign
more goals in the area where higher intensity is predicted,
or weight the choice of the goals by the space syntax density
encoded information.

In our simulation, the density factor influences decisions
when pedestrians are to collide with one another. In a con-
gested area, the far range is ignored (we do not check ahead
as cells are often closely occupied). In Fig. 7, we sum-
marize the decision taken by an agent when a collision is
predicted. When the distance is close, it means that the tar-
get cell is occupied. When the distance is near, it means
that an agent occupies a cell either 2 or 3 cells away. If the
distance is far, it means that an agent occupies a cell either
4 or 5 cells away.

4.2 Group Behaviour

The issue of making people walk in small groups has two
main goals: the first one is obviously to improve the reality
of the simulation. From observations in the street, one can
conclude that around half of the pedestrians walk in pairs
or more. Moreover, using groups could be a mean to reduce
the computing time for the same number of agents. The def-
inition of a group [7] is often given by a set of people who
have the same goals or list of goals and the same emotional
parameters, that means, in our case, the same average speed
and way of accelerating. We define a group by a leader and
members. The leader takes the decision relative to the direc-
tion to take, and the members follow. Members still perform
collision detection before moving using the laws described
in section 4.1, but their choice is influenced by the leader.
Providing the number of operations necessary to compute
the members’ behaviour is smaller than the leader’s , the
average frame rate of the simulation is likely to increase.

Distance Behaviour
of the other

Type of colli-
sion

Reaction in normal conditions Reaction in traffic congestion

Close Waiting front If possible, overtake with angle
±Π/2, else slow down or wait

If possible, overtake with angle
±Π/2, else slow down or wait

Close Waiting following or
perpendicular

If possible, overtake with angle
±Π/2, else slow down or wait

Wait

Close Walking front If possible, overtake with angle
±Π/2, else slow down or wait

If possible, overtake with angle
±Π/2, else slow down or wait

Close Walking following Take the same linear speed as
the other

Take the same linear speed as
the other

Close Walking perpendicular Wait Wait

Near Waiting front If possible, overtake with angle
±Π/4, else slow down or wait

If possible, overtake with angle
±Π/4, else slow down or wait

Near Waiting following Slow down Slow down
Near Waiting perpendicular If possible, overtake with angle

±Π/4, else slow down or wait
Slow down

Near Walking front If possible, overtake with angle
±Π/4, else slow down or wait

If possible, overtake with angle
±Π/4, else slow down or wait

Near Walking following Take the means of both linear
speeds

Take the same linear speed as
the other

Near Walking perpendicular Slow down or wait Slow down or wait

Far Waiting following Slow down
Far Waiting front or per-

pendicular
If possible, overtake with angle
±Π/8, else slow down or wait

Far Walking front If possible, overtake with angle
±Π/8, else slow down or wait

Far Walking following No special reaction
Far Walking perpendicular Slow down

Figure 7. Decision taken by a pedestrian to prevent collision with another pedestrian, depending on
the density, the distance, the directions, and the current behaviour of the other one.

(a) (b) (c)

Figure 8. Group behaviour method: the
square is the leader and the two triangles are
members (triangles). (a) The leader advised 3
tiles (light blue) and so did the first member
(light red). (b) The leader has moved to a new
cell and advised new tiles. (c) The two mem-
bers have moved to keep the connectivity of
the group.

In real situations, the size of pedestrian groups is rarely
bigger than 3. However, tourist groups can be composed
of around 20 people. These differences though are often
levelled due to the density of the traffic. It is quite rare to
see ten people aligned; the group is more likely to split into
smaller sub-groups of 2 or 3 pedestrians, each sub-group
following the other. In our simulation, we decided to ini-
tialise the number of groups randomly using the probability
law: 95% of the groups have a size of 1 or 2; 5% have a size
between 3 and 10.

The group moves in a sequential way: the leader of a
group always moves first. Once it has moved, it tags 3 tiles
behind its position with an advised tile flag. Then, the mem-
bers of the group move one by one in the same frame: they
have to move to an advised tile. In order to have enough ad-
vised tiles for the whole group, every member, after moving,
advises the 3 tiles behind it with the tag. When every mem-
ber has moved, all the advised tile tags are deleted. Fig. 8
illustrates this method.

We noticed that this method, as we currently imple-
mented it, suffers from some limitations. First, the leader,
taken as a pedestrian, is always ahead of the others. We
thus decided not to display it while continuing using it for
the lead. Second, disconnections between members of the
group occur when advised tiles are not well connected, or
when members could not reach an advised tile. We are still
working on this method to improve it.

5 Implementation and Results

We implemented the algorithms described in the previ-
ous sections. The architecture of the program is described
in Fig. 9. Before starting the simulation, each agent is as-
signed a goal, a position, a direction, a speed vector, and
a group. During the simulation, they access the cells cor-
responding of their current position. However, they have
a discreet number of positions within each cell to make
the motion smoother. This can however produces some vi-
sual inaccuracy in the collision detection algorithm, when
two pedestrians occupy two different cells, but have a very
nearby position.

Figure 9. The architecture of the behaviour
platform.

We tested the behaviour of the agents by tracking them
in the environment. When pedestrians are not in the field of
view of the camera, their behaviour is updated, but they do
not perform collision detection. In Fig. 10, we tracked one
agent in different conditions. The trajectory chosen by the
agent is satisfactory since it is coherent and smooth.

We imported the behaviour platform into our rendering
system [12, 13, 8] and the results are shown in Fig. 11.
Our simulation runs on a 2Ghz Intel Pentium PC with a
GeForce4 Ti4600 graphics card. We measured the aver-
age frame rate when simulating with a different number of

(a) (b) (c)

Figure 10. On (a) and (b), we can see the tra-
jectory followed by an agent without being
seen by the camera (that is without agent-to-
agent collision detection performed) during
simulation involving respectively 1,000 and
10,000 agents. On (c), an agent has been
tracked (with the agent-to agent collision de-
tection activated) in a busy street; the sim-
ulation runs with 5,000 agents. We can see
that the trajectory is less smooth than in (a)
and (b) due to collision avoidance with other
agents.

pedestrians, as shown in the graph in Fig. 12.
In its current implementation, our algorithm is not suf-

ficient for real-time (more than 25 frame per seconds)
when we simulate more than 6,000 people. However,
the frame rate is reasonable even for 10,000 as the frame
rate stays above 10. Additional results can be seen in
http://www.cs.ucl.ac.uk/research/vr/Projects/Crowds/EGUK03/.

Figure 11. Example of simulation of our work
integrated in the rendering system. The sim-
ulation runs with 7,000 pedestrians.

6 Conclusion and future work

We presented a new technique to improve local be-
haviour of virtual pedestrians moving in a city while man-
aging the complexity and keeping a real-time frame rate.

Figure 12. The number of frame per second
decreases less and less with the number of
pedestrians. For up to 6,000 agents, the ani-
mation remains fluid.

Our method uses a 2D discretization of the space to per-
form local decisions. We presented automatic techniques to
detect areas accessible by pedestrians. Pedestrians are able
to control their trajectory by storing the aimed direction and
performing collision detection with the environment. Inter-
collision detection is also performed and decision are made
depending on parameters such as speed, direction, and den-
sity. We simulate two kinds of behaviour, one in normal
traffic conditions, the other one when congestion occurs. In
high-density regions, we adapt the inter-collision detection
algorithm and we provide cooperation between agents for
making decision. Finally, we implemented an algorithm to
simulate group behaviour.

Obviously, even if the behaviour has been greatly im-
proved while keeping a low frame rate, further complex be-
haviours need to be simulated. Agents should be able to en-
ter buildings, stop at bus stops, slow down to do some win-
dow shopping, or walk in pairs as parent and child. More
complex animation should be explored, allowing pedestri-
ans to seat on benches, wait, or interact together. Better
integration with space syntax techniques could allow more
accurate occupation of the space. Finally we believe that we
could exploit ideas from this paper to provide a simulation
for vehicles in a city.

Acknowledgement

The research described in this paper has been funded
with an EPSRC project, Equator, and with an IST EU
project, CREATE (IST-2001-34231).

References

[1] Koji Ashida, Seung-Joo Lee, Jan M. Allbeck, Harold
Sun, Norman I. Balder, Dimitris Metaxas, Pedestrians:

creating agent behaviors through statistical analysis of
observation data, Computer Animation, 2001.

[2] Ruth Aylett, Marc Cavazza: Intelligent Virtual
Environments- A state-of-the-art report, Eurographics
2001 - STARs, 2001.

[3] Bouvier, Cohen, simulation of human flow with par-
ticles systems, Proceedings of the 1995 Simulation
MultiConference, 1994.

[4] Franck Feurtey, Takashi Chikayama, Simulating the
collision avoidance of pedestrians, Masters thesis,
University of Tokyo, February 2000.

[5] Bin Jiang, Christophe Claramunt, Björn Klarqvist, An
integration of space syntax into GIS for modelling ur-
ban spaces, JAG, Volume 2, Issue 3/4, 2000.

[6] Soraia R. Musse, Christian Babski, Tolga Capin and
Daniel Thalmann, Crowd Modelling in Collaborative
Virtual Environments, ACM VRST’98, Taiwan,1998.

[7] S.R. Musse, D. Thalmann, a model of human crowd
behavior: group inter-relationship and collision detec-
tion analysis, Proc Workshop of Computer Animation
and Simulation of Eurographics’97, Sept 1997, Bu-
dapest, Hungary.

[8] Céline Loscos, Franco Tecchia, Yiorgos Chrysanthou:
Real Time Shadows for Animated Crowds in Virtual
Cities, ACM Symposium on Virtual Reality Software &
Technology 2001 (VRST01), Banff, Alberta, Canada,
November 2001.

[9] C.W. Reynolds, Steering behaviours for autonomous
characters, Game Developers Conference, Miller
Freeman Game Group,1999.

[10] Franco Tecchia, Yiorgos Chrysanthou: Real-time vi-
sualisation of densily populated urban Environments:
a simple and fast algorithm for collision detection, Eu-
rographics UK, April 2000.

[11] Franco Tecchia, Céline Loscos, Ruth Conroy, Yior-
gos Chrysanthou: Agent behavior simulator (ABS): a
platform for urban behavior development, Proc. Game
Technology (GTEC 2001),CD-ROM, 2001.

[12] Franco Tecchia, Céline Loscos, Yiorgos Chrysanthou:
Image-based crowd rendering, IEEE computer graph-
ics and applications, March/April 2002, p. 36-43.

[13] F. Tecchia and Y. Chrysanthou: Real-Time Ren-
dering of Densely Populated Urban Environments,
Eurographics Rendering Workshop 2000, p. 83-88,
Springer Computer Science, 2000, Rendering Tech-
niques 2000.

