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Abstract. Hybrid systems are digital real-time systems that are embedded in analog

environments. Model-checking tools are available for the automatic analysis of linear

hybrid automata, whose environment variables are subject to piecewise-constant poly-

hedral di�erential inclusions. In most embedded systems, however, the environment

variables have di�erential inclusions that vary with the values of the variables, e.g.

_x = x. Such inclusions are prohibited in the linear hybrid automaton model. We

present two methods for translating nonlinear hybrid systems into linear hybrid au-

tomata. Properties of the nonlinear systems can then be inferred from the automatic

analysis of the translated linear hybrid automata.

The �rst method, called clock translation, replaces constraints on nonlinear variables

by constraints on clock variables. The clock translation is e�cient but has limited appli-

cability. The second method, called linear phase-portrait approximation, conservatively

overapproximates the phase portrait of a hybrid automaton using piecewise-constant

polyhedral di�erential inclusions. Both methods are sound for safety properties; that

is, if we establish a safety property of the translated linear system, we may conclude

that the original nonlinear system satis�es the property. When applicable, the clock

translation is also complete for safety properties; that is, the original system and the

translated system satisfy the same safety properties. The phase-portrait approxima-

tion method is not complete for safety properties, but it is asymptotically complete;

intuitively, for every safety property, and for every relaxed nonlinear system arbitrarily

close to the original, if the relaxed system satis�es the safety property, then there is a

linear phase-portrait approximation that also satis�es the property.

We illustrate both methods by using HyTech|a symbolic model checker for lin-

ear hybrid automata|to automatically check properties of a nonlinear temperature

controller and of a predator-prey ecology.
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1 Introduction

Hybrid systems combine discrete and continuous dynamics. The analysis of hybrid systems, there-

fore, requires techniques from both computer science and control theory. From computer science,

we have the model of hybrid automata, which combines discrete control graphs with continuously

evolving variables [ACH+95]. A hybrid automaton exhibits two kinds of state changes: discrete

jump transitions occur instantaneously, and continuous 
ow transitions occur while time elapses.

We have algorithmic techniques for checking certain properties, such as safety, for linear hybrid

automata, whose transitions are subject to linearity restrictions: for each jump, the possible source

and target values of the variables are constrained by linear inequalities; for each 
ow, the possible

values of the variables during the 
ow are constrained by linear inequalities on the variables, and

the possible derivatives of the variables during the 
ow are constrained by linear inequalities on the

derivatives [AHH96]. It is important to realize that the de�nition of linearity used here is more re-

strictive than in systems theory. For instance, linear hybrid automata cannot represent constraints

of the form _x = x, which relate the derivative of x with the value of x. Model-checking methods

for linear hybrid automata have been implemented in HyTech [HHW95b], and used to verify dis-

tributed real-time protocols [HH95b, HW95, HHW95a]. This paper extends the model-checking

approach to the analysis of nonlinear hybrid systems, by reduction to the linear problem.

For automata, the veri�cation problem for safety properties reduces to the emptiness problem,

i.e. whether there exists a trajectory from an initial state to a �nal state. Every hybrid automaton

de�nes an in�nite-state transition system with jump transitions and 
ow transitions. Checking

the emptiness of a hybrid automaton, then, involves computing the successors (or predecessors)

of state sets in the underlying transition system. The widest class of hybrid automata for which

we know how to compute 
ow successors reasonably e�ciently is that of linear hybrid automata.

We therefore propose the following methodology for analyzing a nonlinear hybrid automaton A.

First, we attempt to translate the constraints on each nonlinear variable x of A into constraints on

a clock variable, which is a variable with the constant derivative 1. Intuitively, the translation is

possible if x is reinitialized with every jump that causes changes in the constraints that govern the


ow of x, and at all times during a 
ow the value of x is completely determined by the initial value

and the elapsed time. For nonlinear variables that do not satisfy these requirements, in a second

step, we overapproximate the set of possible 
ow vectors using linear constraints. The resulting

linear hybrid automaton B, whose emptiness can be checked by HyTech, has the same or strictly

more trajectories than A. So if B is empty, then A is also empty. If, however, B is nonempty, we

can draw no conclusion about the emptiness of A, and must re�ne our approximation.

Formally, the hybrid automaton that results from translating the constraints on a nonlinear

variable into clock constraints is timed bisimilar to the original automaton, i.e. the translation

preserves all properties of interest [Hen96]. The method, called clock translation, is detailed in Sec-

tion 3 and illustrated on a simple temperature controller. The hybrid automaton that results from

overapproximating the set of possible 
ow vectors time simulates the original automaton. While the

approximate automaton may satisfy strictly fewer safety properties than the original automaton,

we show that at the cost of increasing the discrete complexity of the approximation, every hybrid

automaton can be approximated arbitrarily closely. The method, called linear phase-portrait ap-

proximation, is detailed in Section 4 and demonstrated on a predator-prey ecology. Both methods

complement each other and both may be required for the successful algorithmic analysis of a non-

linear hybrid system: the clock translation, while e�cient, may not be applicable; and the linear

phase-portrait approximation, while always applicable, may produce an approximate automaton

that does not satisfy the desired property, and increasing the accuracy of the approximation may
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Figure 1: A thermostat

be too expensive.

Related work

Phase portraits have been studied extensively in the literature on dynamical systems [HS74].

Typically, researchers concentrate on nontrivial properties of continuous dynamics, such as sta-

bility and convergence. Our work di�ers in two respects. First, we consider products of non-

deterministic dynamical systems with discrete control graphs. Second, our goal is to analyze

and derive simple properties of such systems automatically. In computer science, the technique

of deriving system properties using conservative approximations is called abstract interpretation.

In [Hal93, HRP94, HH95c, OSY94, PV95], abstract interpretation techniques are used for improv-

ing the e�ciency of analyzing linear hybrid systems, whereas here we approximate nonlinear hybrid

systems. In [HH95a, PBV96], restricted cases of linear phase-portrait approximations for nonlinear

hybrid systems are considered.

2 Hybrid Automata

Hybrid automata are a mathematical model for systems with both discrete and continuous com-

ponents. Informally, a hybrid automaton consists of a �nite set X of real-valued variables and a

labeled multigraph (V;E). The edges E are used to model discrete jumps. They are labeled with

constraints on the values of X before and after jumps. The vertices V are used to model continu-

ous 
ows. They are labeled with constraints on the values and derivatives of X during 
ows. The

state of the automaton changes either instantaneously when a discrete jump occurs or, while time

elapses, through a continuous 
ow.

2.1 Syntax

Let Y = fy1; y2; : : : ; yng be a set of real-valued variables. Let RelOps be the set f<;�;=;�; >g of

binary relational operators. An atomic predicate over Y is a predicate of the form f(y1; y2; : : : ; yn) �
c, for a real-valued function f : Rn ! R, a relational operator � 2 RelOps, and a real constant

c 2 R. A predicate over Y is a positive boolean combination of atomic predicates over Y . A

valuation over Y is a point a = (a1; a2; : : : ; an) in the n-dimensional real space Rn, or equivalently,

a function that maps each variable yi 2 Y to a value ai 2 R
n. We write a(yi) to refer to the value ai

of the variable yi in the valuation a. For a predicate ' and a valuation a over Y , we write '[Y := a]

for the truth value obtained by evaluating ' with the constant ai replacing in ' all occurrences

of the variable yi, for each i 2 f1; : : : ; ng. Every predicate ' over Y de�nes a set [[']] � R
n of

valuations such that a 2 [[']] i� '[Y := a] is true. If [[']] is a convex set, then ' is called a convex

predicate.
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A hybrid automaton is a system A = (X; V;
ow; E; jump;�; event; init; �nal) consisting of the

following components:

Variables A �nite ordered set X = fx1; x2; : : : ; xng of real-valued variables. For example, the

thermostat automaton in Figure 1 has three variables, x, y, and z, where x models the

temperature, y models the amount of time spent in control mode on, and z models the total

elapsed time.

Control modes A �nite set V of control modes. For example, the thermostat automaton has two

control modes, on and o� , where on models the heater being turned on, and o� models the

heater being turned o�.

A state (v; a; _a) consists of a control mode v 2 V , a valuation a 2 Rn over the set X of

variables, and a valuation _a 2 Rn over the set _X of variables, where _X = f _x1; _x2; : : : ; _xng.
The dotted variable _x represents the �rst derivative of x with respect to time, i.e. _x = dx=dt.

Intuitively, a state describes a control mode, a point, and a 
ow tangent at the point.

Flow conditions A labeling function 
ow that assigns a 
ow condition to each control mode

v 2 V . The 
ow condition 
ow(v) is a predicate overX[ _X. While the automaton control is in

control mode v, the variables change along di�erentiable trajectories for which the values of the

variables and their �rst derivatives satisfy the 
ow condition. For example, the control mode

on of the thermostat automaton has the 
ow condition 1 � x � 3^ _x = �x+5^ _y = 1^ _z = 1.

Hence, while the heater is turned on, the temperature x follows the di�erential equation

_x = �x + 5. The variable y measures the accumulated amount of time that the heater

is active. The variable z measures the total elapsed time; such a variable, with constant

derivative 1, is called a clock.

The state (v; a; _a) is admissible if (a; _a) 2 [[
ow(v)]]. The invariant condition for the control

mode v is the predicate inv(v) = (9 _X:
ow(v)) over X . The automaton control may reside

in a control mode only while the invariant condition holds. Thus invariant conditions can

be used to force progress out of a control mode. For example, the control mode on of the

thermostat automaton has the invariant condition 1 � x � 3. Hence, the heater can be

turned on only while the temperature is in the range [1; 3], and it must be turned o� at the

latest when the rising temperature hits 3.

Control switches A �nite multiset E of control switches. Each control switch (v; v0) identi�es a

source control mode v 2 V and a target control mode v0 2 V . For example, the thermostat

automaton has two control switches, (on; o� ) and (o� ; on).

Jump conditions A labeling function jump that assigns a jump condition to each control switch

e 2 E. The jump condition jump(e) is a predicate over X [ _X [ X 0 [ _X 0, where X 0 =

fx01; : : : ; x
0
n
g and _X 0 = f _x01; : : : ; _x

0
n
g. The variable xi refers to its value before the control

switch, and the primed variable x0
i
refers to the value of xi after the control switch. The

variable _xi refers to the �rst derivative of xi before the control switch, and _x0
i
refers to the

derivative of xi after the control switch. Thus the jump conditions relate the values of the

variables before a control switch with those after (allowing, for example, the assertion that

trajectories are continuous across control switches), and also relate the tangents before the

control switch with those after (allowing, for example, the assertion that trajectories are

di�erentiable across control switches). For convenience, we use the special predicate stable to

indicate that certain primed variables have the same values as their unprimed counterparts,
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e.g. stable(x; _y) denotes x = x
0 ^ _y = _y0. For example, in the thermostat automaton, the

control switch (on; o� ) has the jump condition x = 3 ^ stable(x; y; z). The conjunct x = 3

asserts that the heater can be turned o� only when the temperature is 3. The conjunct

stable(x; y; z) asserts that the target point of the jump is the same as the source point.

Events A �nite set � of events including the silent event � , and a labeling function event that

assigns an event in � to every control switch e 2 E. Control switches labeled by � are

called silent. For convenience, we require that jump(e) = stable(X; _X) for all silent control

switches e. Although not done here, the events can be used to de�ne the parallel composition

of hybrid automata [AHH96].

Initial conditions A labeling function init that assigns an initial condition to each control mode

v 2 V . The initial condition init(v) is a predicate over X [ _X. The automaton control may

start in the control mode v when init(v) holds. The state (v; a; _a) is initial if it is admissible

and (a; _a) 2 [[init(v)]]. In the graphical representation of automata, initial conditions appear

as labels on incoming arrows without a source control mode, and initial conditions of the

form false are not depicted. For example, all initial states of the thermostat automaton are

in the control mode on with x = 2 ^ y = 0 ^ z = 0. Hence, initially the heater is turned on

and the temperature is 2.

Final conditions A labeling function �nal that assigns a �nal condition to each control mode

v 2 V . The �nal condition �nal(v) is a predicate over X [ _X. The state (v; a; _a) is �nal if it

is admissible and (a; _a) 2 [[�nal(v)]]. We use �nal conditions to specify the unsafe, or error,

states of a system. Then, the system is safe if, when started in an initial state, no �nal state

can be reached. For example, for the thermostat automaton, consider the safety property

that the heater is active less than 50% of the �rst 60 time units. The corresponding unsafe

states are speci�ed by the �nal conditions �nal(on) = �nal(o� ) = (z = 60 ^ y � z=2).

Remark. The de�nition of hybrid automata used here di�ers from previous de�nitions in the

literature [ACH+95, Hen96]. In a minor change, we add �nal conditions so that system safety can

be conveniently expressed as automaton emptiness. In a major change, we augment the notion

of a state with a vector over _X, providing the 
ow tangent at the given point, we augment jump

conditions with constraints over _X , and we make invariant conditions implicit within 
ow condi-

tions. This enables us to model changes (or the absence of changes) in the �rst derivatives when

a control switch occurs. Information about higher-order derivatives can be encoded by explicitly

introducing additional variables, e.g. with the 
ow condition _x = u, we may use _u to refer to the

second derivative of x.

2.2 Timed transition-system semantics

We provide a formal semantics for hybrid automata in terms of timed transition systems. Let R�0
denote the set of nonnegative reals. A timed transition system T = (Q;QI

; Q
F
;�;!) consists of a

(possibly in�nite) set Q of states, a subset QI � Q of initial states, a subset QF � Q of �nal states,

a set � of transition labels (including the special silent transition label �), and a transition relation

!� Q � (� [ R�0) � Q. Each triple (s;m; s0) 2! is called a transition, and denoted s
m
! s

0.

There are two kinds of transitions: jump transitions are of the form s
�
! s

0, for a transition label

� 2 �, and 
ow transitions are of the form s
�
! s

0, for a nonnegative real � 2 R�0 which is called

the duration of the 
ow transition. Jump transitions of the form s
�
! s

0 are called silent.
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Every hybrid automaton A de�nes a timed transition system TA = (Q;QI
; Q

F
;�;!) with the

following components:

� Q is the set of admissible states of A.

� Q
I is the set of initial states of A.

� Q
F is the set of �nal states of A.

� � is the set of events of A.

� The transition relation ! =
S
�2�

�
! [

S
�2R�0

�
!, where the jump transitions and the 
ow

transitions are de�ned as follows.

In jump transitions, the control mode of the automaton and the values and derivatives of the

variables change instantaneously, in accordance with a control switch and its jump condition.

Formally, for each event � 2 �, the binary jump relation
�
! on the admissible states is de�ned by

(v; a; _a)
�
! (v0; a0; _a0) i� there exists a control switch e = (v; v0) of A such that event(e) = � and

jump(e)[X; _X;X 0
; _X 0 := a; _a; a0; _a0] is true. The control switch e is referred to as a witness for the

jump transition (v; a; _a)
�
! (v0; a0; _a0).

During 
ow transitions, the control mode of the automaton stays �xed and the values and

derivatives of the variables change over time in accordance with the 
ow condition of the active

control mode. Formally, for each nonnegative real � 2 R�0, the binary 
ow relation
�
! on the

admissible states is de�ned by (v; a; _a)
�
!(v0; a0; _a0) i� v = v

0, and either (1) � = 0 and a = a0 and

_a = _a0, or (2) � > 0 and there exists a continuously di�erentiable function � : [0; �]! R
n such that

the following two conditions hold:

1. The endpoints of the transition match those of �, i.e. �(0) = a, _�(0) = _a, �(�) = a0, and

_�(�) = _a0, where _� is the �rst derivative of �.

2. The 
ow condition is satis�ed along �, i.e. 
ow(v)[X; _X := �(t); _�(t)] is true for all t 2 [0; �].

The function � is referred to as a witness for the 
ow transition (v; a; _a)
�
!(v0; a0; _a0). This completes

the de�nition of TA.

A trajectory of A is a �nite path s0
m0! s1

m1! � � �
mk�1

! sk of transitions in TA, with k � 0, such

that s0 2 Q
I , and si

mi! si+1 for all i 2 f0; : : : ; k� 1g. The state sk is referred to as the end state of

the trajectory. The state s of A is reachable if there is a trajectory of A with the end state s. We

write reach(A) for the set of reachable states of A. The hybrid automaton A is empty if no �nal

state of A is reachable, i.e. QF \ reach(A) = ;. Otherwise A is nonempty.

2.3 Time simulation and timed bisimilarity

We de�ne the concepts of time simulation and timed bisimilarity for timed transition systems

[Hen96]. In the sense of Milner our simulations are weak [Mil89], with silent transitions being

invisible. In addition, a 
ow transition of duration � cannot be distinguished from two or more

consecutive 
ow transitions whose durations add up to �. This is captured by closing the timed

transition system T = (Q;QI
; Q

F
;�;!) under stuttering. For each non-silent transition label

� 2 � n f�g, we de�ne the stutter-closed jump relation
�

�� Q
2 by s

�

� s
0 i� there exists a �nite

sequence s0; : : : ; sk of states, with k � 0, such that s = s0 and s0
�
! s1

�
! � � �

�
! sk

�
! s

0. For each

nonnegative real � 2 R�0, we de�ne the stutter-closed 
ow relation
�

�� Q
2 by s

�

� s
0 i� there

6



exist a �nite sequence s0; : : : ; s2k of states and a �nite sequence �0; : : : ; �k 2 R�0 of constants, with

k � 0, such that s = s0 and s0
�0! s1

�
! s2

�1! � � �
�
! s2k

�k! s
0 and �k

i=0 �i = �.

Let T1 = (Q1; Q
I

1; Q
F

1 ;�;!1) and T2 = (Q2; Q
I

2; Q
F

2 ;�;!2) be two timed transition systems

with the same transition labels. The binary relation �� Q1 �Q2 is a time simulation of T2 by T1
if the following three conditions hold:

1. For all states s1 2 Q1 and s2 2 Q2, if s1 � s2, then for each transition label m 2 �nf�g[R�0,

if s2
m

�2 s
0
2, then there exists a state s01 such that s1

m

�1 s
0
1 and s

0
1 � s

0
2.

2. For every initial state s2 2 Q
I

2, there exists an initial state s1 2 Q
I

1 such that s1 � s2.

3. For every �nal state s2 2 Q
F

2 , and for every state s1 2 Q1, if s1 � s2, then s1 2 Q
F

1 .

The timed transition system T1 time simulates the timed transition system T2, denoted T1 �sim T2,

if there exists a time simulation � of T2 by T1. The hybrid automaton A time simulates the hybrid

automaton B if TA �sim TB.

For a binary relation �� Q1�Q2, de�ne the inverse �
�1 to be the binary relation over Q2�Q1

such that (s2; s1) 2�
�1 i� (s1; s2) 2�. The binary relation �� Q1 � Q2 is a time bisimulation

between T1 and T2 if � is a time simulation of T2 by T1 and �
�1 is a time simulation of T1 by T2.

The timed transition systems T1 and T2 are timed bisimilar, denoted T1 �bis T2, if there exists a

time bisimulation � between T1 and T2. The two hybrid automata A and B are timed bisimilar if

TA �bis TB.

By induction on the length of trajectories, it is easy to check that if A time simulates B, then

for every trajectory of B there exists a trajectory of A that follows the same sequence of non-silent

events. Therefore, if A is empty, then so is B.

Proposition 2.1 [Par81] Let A and B be hybrid automata.

� If A time simulates B and A is empty, then B is empty.

� If A and B are timed bisimilar, then A is empty i� B is empty.

Remark. The notions of time simulation and timed bisimilarity are unnecessarily strong con-

ditions for emptiness checking. They are, however, useful for checking also more general classes

of properties than safety, precisely because they provide such a tight coupling between systems

[Hen96].

2.4 Control-mode splitting

We often �nd it useful to split the control modes of a hybrid automaton in order to obtain simpler

or more constrained 
ow conditions. Let A = (XA; VA;
owA; EA; jumpA;�A; eventA; initA; �nalA)

be a hybrid automaton. A 
ow split for A is a function that maps each control mode v 2 VA to

a �nite set f
owv

1; : : : ;
ow
v

kg of predicates over X [ _X such that there exists a �nite open cover

Ov = fOv

1; : : : ; O
v

k
g 2 22

R
n

of [[
ow(v)]] with [[
owv

i ]] = [[
ow(v)]] \ Ov

i
for each i 2 f1; : : : ; kg. For

example, for any � > 0, the function P de�ned by P(on) = f1 � x < 2 + �; 2 � � < x � 3g and

P(o� ) = f1 � x � 3g is a 
ow split for the thermostat automaton in Figure 1. Since Ov is a cover

of [[
ow(v)]], i.e. [[
ow(v)]] �
S
Ov , the 
ow condition 
ow(v) is equivalent to the disjunctionW

k

i=1 
ow
v

i
. Since all sets in Ov are open, the splitting of the 
ow condition into disjuncts does not

prohibit 
ow transitions.
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Given a 
ow split, we derive a new hybrid automaton such that for every 
ow transition of the

original automaton, the split automaton has a matching sequence of alternating 
ow transitions

and silent jump transitions. Formally, the application of the 
ow split P to the hybrid automaton

A yields the hybrid automaton P(A) = (XP(A); VP(A);
owP(A); EP(A); jumpP(A);�P(A); eventP(A);

initP(A); �nalP(A)) with the following components:

� XP(A) = XA.

� VP(A) = f(v; ') j v 2 VA and ' 2 P(v)g.

� For every control mode (v; ') 2 VP(A), de�ne 
ow(v; ') = (
ow(v) ^ ').

� EP(A) = E1 [ E2, where E1 = f((v; '); (v0; '0)) j (v; v0) 2 EA and ' 2 P(v) and '0 2 P(v0)g
and E2 = f((v; '); (v; '0)) j '; '0 2 P(v)g. The control switches in E1 are inherited from

control switches of A, and the control switches in E2 are silent control switches that enable

the automaton control to pass freely across copies of the same control mode.

� For every control switch e = ((v; '); (v0; '0)) 2 E1, de�ne jumpP(A)((v; '); (v
0
; '

0)) = jumpA(v; v
0),

i.e. the jump condition is inherited from the corresponding control switch of A. For every

control switch e = ((v; '); (v;'0)) 2 E2, de�ne jumpP(A)((v; '); (v;'
0)) = stable(X; _X), i.e.

the jump condition requires the state to remain unchanged.

� �P(A) = �A.

� For every control switch e = ((v; '); (v0; '0)) 2 E1, de�ne eventP(A)((v; '); (v
0
; '

0)) = eventA(v; v
0).

For every control switch e 2 E2, de�ne eventP(A)(e) = � .

� For every control mode (v; ') 2 VP(A), de�ne initP(A)(v; ') = (initA(v) ^ ').

� For every control mode (v; ') 2 VP(A), de�ne �nalP(A)(v; ') = (�nalA(v) ^ ').

We de�ne the projection � : QP(A) ! QA on states by �((v; ');a; _a) = (v; a; _a).

The hybrid automaton A is splittable if for every 
ow split P for A, the two automata P(A) and

A are timed bisimilar. It may appear to be possible that for some hybrid automaton A and some


ow split P for A, the automaton P(A) does not time simulate A, because all witnesses for some


ow transition of TA correspond to in�nite sequences of 
ow transitions and silent jump transitions

of TP(A). We show that, due to our requirement that all 
ow splits are derived from �nite open

covers, this scenario cannot occur.

Theorem 2.2 Every hybrid automaton is splittable.

Proof. Let A be a hybrid automaton, and P a 
ow split for A. We show that the relation

�� QA � QP(A), de�ned by s1 � s2 i� �(s2) = s1, is a time bisimulation between TA and TP(A).

First, consider time simulation of P(A) by A. Suppose that s1
�1!P(A) s2

�
!P(A) s3

�2!P(A) s4

for nonnegative reals �1; �2 2 R�0, and states s1, s2, s3, and s4 of P(A). The jump conditions

for all silent control switches imply that the variables and their �rst derivatives do not change.

Hence, if s2 and s3 are derived from the same control mode of A, the witnesses for s1
�1!P(A) s2 and

s3
�2!P(A) s4 can be concatenated to a witness for �(s1)

�1+�2
���!A �(s4). If s2 and s3 are derived from

di�erent control modes of A, then s2
�
!A s3, and therefore s1

�1!A s2
�
!A s3

�2!A s4. By induction

it follows that stutter-closed 
ow transitions of the form s
�

�P(A) s
0, with � 2 R�0, can be time
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simulated in A. For stutter-closed jump transitions of the form s
�

�P(A) s
0, with � 2 � n f�g, there

exists a state s00 such that s
0
�P(A) s

00 �
!P(A) s

0. By the time simulation of 
ow transitions, we need

only show that each jump transition s00
�
!P(A) s

0 can be time simulated in A. This is immediate,

because all non-silent control switches in P(A) are directly inherited from A.

Second, consider the time simulation of A by P(A). Suppose that s
�
!A s

0 for a nonnegative

real � 2 R�0, and states s and s0 of A with the same control mode, say v. Let � : [0; �]! R
n be a

witness for s
�
!A s

0. Let Ov be the �nite open cover from which the set P(v) of 
ow conditions is

derived. Let � : (0; �)! R
2n be the function de�ned by �(t) = (�(t); _�(t)). Since � is continuously

di�erentiable, � is continuous. For each t 2 (0; �), let Bt be an open ball that contains �(t) and lies

entirely in some open set O 2 Ov . Such a ball exists, because Ov is an open cover of [[
ow(v)]] and

all points in the range of � satisfy 
ow(v). Since � is continuously di�erentiable, it follows that the

set ��1(Bt) is open, and hence includes an open interval It containing t. Thus the set of intervals

I = fIt j t 2 (0; �)g is an open cover for [0; �]. The Heine-Borel-Lebesgue theorem states that

every open cover of a closed and bounded subset of the space of real numbers has a �nite subcover.

Hence there is a �nite open cover of [0; �] consisting of intervals in I. Since the cover is open, we
can identify a point in the overlap between each pair of consecutive intervals, and construct a �nite

sequence of witnesses between the endpoints and the intermediate points, with each witness lying

entirely within some set from the cover Ov . It follows that ŝ
�

�P(A) ŝ
0 for some states ŝ and ŝ0 of

P(A) with �(ŝ) = s and �(ŝ0) = s
0. By induction we conclude that stutter-closed 
ow transitions

of the form s
�

�A s
0 can be time simulated in P(A). The time simulation of stutter-closed jump

transitions is again immediate.

This theorem enables the control modes of an automaton to be split in order to meet the condi-

tions for applying the clock translation (see Section 3), and to allow more accurate phase-portrait

approximation (see Section 4).

2.5 Linearity

The linear hybrid automata form a subclass of hybrid automata that can be analyzed e�ec-

tively [AHH96]. A linear term over a set Y of variables is a linear combination � =
P

k

i=1 �iyi

of variables yi 2 Y with real-valued coe�cients �i 2 R. The linear term � has rational coe�cients

if all coe�cients �i are rational. The atomic predicate ' over Y is (rationally) linear if ' has the

form � � c, for a linear term � over Y (with rational coe�cients), a relation symbol �2 RelOps,

and a real (rational) constant c. The predicate ' over Y is (rationally) linear if ' is a positive

boolean combination of (rationally) linear atomic predicates over Y . If ' is a (rationally) linear

predicate, then [[']] is called a (rationally) linear set.

Consider the hybrid automatonA = (X; V;
ow; E; jump;�; event; init; �nal). A variable x 2 X

is (rationally) linear if in all 
ow, jump, initial, and �nal conditions of A, all occurrences of x and x0

are contained within (rationally) linear atomic predicates over X[X 0, and all occurrences of _x and

_x0 are contained within (rationally) linear atomic predicates over _X[ _X 0. Otherwise x is a nonlinear

variable. The hybrid automaton A is (rationally) linear if all variables in X are (rationally) linear.

If A is a (rationally) linear hybrid automaton, then every 
ow, jump, initial, and �nal condition of

A is a (rationally) linear predicate. Furthermore, for every control mode v of A, the 
ow condition


ow(v) is equivalent to a conjunction of the form ' ^ _', where ' is a predicate over X and _' is

a predicate over _X. Thus, there may be linear dependencies between the derivatives of variables,

but the derivative of a variable cannot depend on the value of a variable: the set of 
ow tangents
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is constant for a given control mode. For example, the 
ow condition 2x � y ^ _x � 3 _y + 2 is legal

for linear hybrid automata, but the 
ow condition _x = x is not.

Let TA = (Q;QI
; Q

F
;�;!) be the timed transition system de�ned by the hybrid automaton A.

A region of A is a set of states of A. The region P is (rationally) linear if there exist (rationally)

linear predicates 'v over X [ _X, one for each control mode v 2 V , such that P =
S
v2V fvg� [['v]].

For example, if A is a (rationally) linear hybrid automaton, then the region Q of admissible states,

the region QI of initial states, and the region QF of �nal states are (rationally) linear. We de�ne

the successor function post : 2Q ! 2Q on regions by post(P ) = fs2 j 9s1 2 P: s1 ! s2g, and the

predecessor function pre : 2Q ! 2Q by pre(P ) = fs1 j 9s2 2 P: s1 ! s2g.

Theorem 2.3 Let A be a (rationally) linear hybrid automaton. If P is a (rationally) linear region

of A, then post(P ) and pre(P ) are also (rationally) linear regions of A. Moreover, for every

rationally linear predicate ', we can e�ectively construct rationally linear predicates 'post and

'pre such that [['post ]] = post([[']]) and [['pre ]] = pre([[']]).

Proof sketch. The proof of the theorem is similar to the proof of the analogous theorem for

previous de�nitions of hybrid automata, where states do not include 
ow tangents [AHH96]. Here

we consider only the post operator, and omit many details. It su�ces to show that the successor

region of a single (rational) state is (rationally) linear. We compute the successor states via jump

transitions and the successor states via 
ow transitions separately; the former can be computed as

in [AHH96], by treating the variables in _X like those in X .

So consider 
ow transitions with the source state s = (v; a; _a). We assume that the 
ow

condition of v has the form ' ^ _' for convex linear predicates ' over X and _' over _X; nonconvex


ow conditions can be treated as in [AHH96], by splitting into convex parts. We need to compute

the possible target points b, and the possible 
ow tangents _b for these points, such that s
�
! (v;b; _b)

for some � 2 R�0. If � = 0, then b = a and _b = _a. For the case � > 0, we compute the region

post>0(s) = fs0 j 9� 2 R>0: s
�
! s

0g, where R>0 is the set of positive reals. Since 
ow(v) is convex,

for 
ow transitions of positive duration, any target point b can be reached with 
ow tangent _b i�

there is a di�erent target point b0 such that the straight line from b0 to b has direction _b. De�negpost : Rn! 2R
n

by gpost(a) = fb j '(a) ^ '(b) ^ (b = a _ (9� 2 R>0: _'[ _X := (b�a)=�]))g. Then

post>0(v; a; _a) = f(v;b; _b) j (a; _a) 2 [[
ow(v)]] and

(b; _b) 2 [[
ow(v)]] and

b 2 gpost(a) and
9k1 2 R>0: (a+ k1 _a) 2 gpost(a) and
9k2 2 R>0: (b� k2

_b) 2 gpost(a)g:
This region is linear. If the 
ow condition of v is rationally linear, then for rational vectors a and _a,

the region post>0(v; a; _a) is rationally linear.

The function that results from composing the post operator i times is denoted post i. Then, the

region of reachable states of the hybrid automaton A is reach(A) =
S1
i=0 post

i(QI). Even if A is

rationally linear, there may not be a rationally linear representation for reach(A) because of the

in�nite union. If, however, a state s of A is reachable, then s 2 post i(QI) for some nonnegative

integer i. It follows that for rationally linear hybrid automata, there is an e�ective procedure

that terminates if a �nal state is reachable, but may not necessarily terminate if no �nal state is

reachable.

Corollary 2.4 The nonemptiness problem for rationally linear hybrid automata (\Given a ratio-

nally linear hybrid automaton A, is A nonempty?") is recursively enumerable.
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Algorithmic analysis techniques for rationally linear hybrid automata have been implemented in

tools such as HyTech [HHW95b] and Polka [HRP94]. In particular, when applied to an unsafe

system, the emptiness-checking procedures of these tools are guaranteed to detect a violation of the

safety property. Experiments to date show that for many real-world examples, there is a nonnegative

integer k such that all reachable states can be reached within k jump and 
ow transitions, i.e.

postk+1(QI) �
S
k

i=0 post
i(QI). In these cases, the safety checks terminate also when applied to a

safe system.

Remark. The safety of a rationally linear hybrid automaton can be checked, alternatively, by

iterating the pre operator, starting from the region Q
F of �nal states. The pre operator is also

useful for checking more general classes of properties than safety [AHH96].

3 Clock Translation

For certain nonlinear hybrid automata, we can construct timed bisimilar linear hybrid automata,

by replacing all nonlinear variables with clocks. For a hybrid automaton A, the variable t is a clock

if t is linear and all 
ow conditions of A imply _t = 1. We can replace a nonlinear variable x by a

clock tx if at all times the value of x can be determined uniquely from the value of tx. This is the

case if tx measures the time that has elapsed since the value of x was last changed by a control

switch, if the value of x after that change is recorded, and if x has followed a unique 
ow since that

change. The variables that can be replaced by clocks are called solvable.

3.1 Solvability

Before giving formal de�nitions, we intuitively describe the conditions we require for a variable x

to be solvable. First, we require that x be independent of the other variables in 
ow, jump, initial,

and �nal conditions. Thus we need not consider how to translate relationships between x and the

other variables into relationships between tx and the other variables. Second, we require x to follow

a unique 
ow from any starting point. This restriction enables us to determine the value of x if

we know its initial value and the elapsed time. Third, in order to determine the truth of atomic

predicates such as x � c, for any constant c 2 R, from the value of tx, we require the 
ows of x

to be strictly monotone. For example, if x has initial value b, strictly less than c, and is strictly

increasing, we know that x � c is true i� tx � a where a is the time it takes for the unique 
ow of x

to progress from b to c. Fourth, we require that at all times we know the initial value of the current


ow of x and the elapsed time. For example, suppose that x is 1 when the automaton control

enters the control mode v, and the 
ow condition of v implies _x = x. Suppose that the automaton

control switches to another control mode v0 when the variable y equals 2. If the 
ow condition

of v0 also implies _x = x, then the value of x can be determined from the time that has elapsed

since the control entered v, by x = e
tx , regardless of when the control switched to v0. However, if


ow(v0) di�ers from 
ow(v) and the value of x at the control switch is not known, then it is no

longer possible to determine the current value of x. Thus, we say that the variable x is de�nite

for the control switch e if the jump condition of e implies x0 = c for some constant c 2 R, and we

require control switches to be de�nite for x whenever the 
ow conditions for the source and target

modes di�er.

We now formalize these concepts. An atomic predicate is simple if it has the form x � c or

x
0 = c or x0 = x, where x is a variable, � 2 RelOps is a relational operator, and c 2 R is a constant.

The predicate ' is simple for x if all occurrences of x and x
0 in ' are contained within simple
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atomic predicates, and _x and _x0 do not occur in '. The variable x is independent in the hybrid

automaton A if the following conditions hold:

� Every jump, initial, and �nal condition of A is simple for x.

� For every control mode v of A, the 
ow condition 
ow(v) has the form ( _x = f
v

x(x)) ^ invx ^

ow

Y
for a function fvx : R! R, a simple predicate invx over fxg, and a predicate 
ow

Y

over Y [ _Y , where Y = X n fxg. The function f
v

x
is called the 
ow function for x in the

control mode v.

The independent variable x is monotonically determined in the control mode v of A if for all reals

c 2 R, the initial-value problem \ _y(t) = f
v

x
(y(t)); y(0) = c" has a unique continuous solution g(t),

and that solution is strictly monotone (this is the case, for instance, if fvx (y) 6= 0 for all y 2 R). The
variable x is initially de�nite for the control mode v if the initial condition init(v) is either false or

implies x = c, for some constant c 2 R. The constant c is called the initial value of x for v. The

variable x is de�nite for the control switch e of A if the jump condition jump(e) implies x0 = d, for

some constant d 2 R. The constant d is called the arrival value of x for e.

The nonlinear variable x of the hybrid automaton A is solvable if the following three conditions

hold:

1. The variable x is independent.

2. For all control modes v of A, the variable x is initially de�nite and monotonically determined

in v.

3. For all control switches e = (v; v0) of A, if the variable x is not de�nite for e, then v and v0

have the same 
ow functions for x, i.e. fvx = f
v0

x , and the jump condition jump(e) implies

x
0 = x.

The hybrid automaton A is solvable if all nonlinear variables of A are solvable. For example, the

thermostat automaton of Figure 1 is solvable, since x is the only nonlinear variable and x is solvable.

Remark. While our requirements for solvability are convenient and easily checkable, they are, of

course, unnecessarily strong and can be relaxed in various ways. For instance, the strict monotonic-

ity of solutions can be replaced by the requirement that the unique solution g(t) of the initial-value

problem is such that for each constant c 2 R that appears in an atomic predicate of the form x � c

or x0 � c in certain invariant and jump conditions, if there exists a time t � 0 with g(t) = c, then

t is unique.

3.2 The clock-translation algorithm

The clock-translation algorithm replaces a solvable variable x of a hybrid automaton A by a clock

tx such that the resulting hybrid automaton is timed bisimilar to A. In this way, if A is solvable,

then all nonlinear variables of A can be replaced one by one, and the �nal result is a linear hybrid

automaton that is timed bisimilar to A.

Consider a solvable variable x of the hybrid automaton A = (XA; VA;
owA; EA; jumpA;�A;

eventA; initA; �nalA). The constant c 2 R is a starting value for x 2 XA if there exists a control

mode v 2 VA such that c is the initial value of x for v, or there exists a control switch e 2 EA such

that c is the arrival value of x for v. Let StartA(x) = fc1; : : : ; ckg, with c1 < � � � < ck, be the set of

starting values for x in A. The clock-translation algorithm proceeds in two steps:
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(on ;1)

^ _z = 1
^ _y = 1

^ _tx = 1

tx � ln 2

^ _z = 1
^ _y = 1

^ tx = 0

x = 2
^ y = 0
^ z = 0 ^ _tx = 1

^ _x = �x+ 5

(on ; 2)
1 � x � 3

^ tx = 0

^ _z = 1
^ _y = 1

y = 0
^ z = 0

(on ;2)

^ _tx = 1

tx � ln(3=2)

turnon

turno�

x = 3 ^ t
0
x = 0

x = 1 ^ t
0
x = 0

^ _y = 0
^ _x = �x

^ _z = 1
^ _y = 1 turnon

turno�

^ _z = 1

(o� ; 3)

^ _y = 0

tx � ln 3
^ _tx = 1 ^ _tx = 1

^ _tx = 1
^ _x = �x+ 5

tx = ln2 ^ t
0
x = 0

tx = ln 3 ^ t
0
x = 0

(on; 1)
1 � x � 3

^ _z = 1

(o� ;3)
1 � x � 3

STEP 1

x = 3 ^ t
0
x = 0

STEP 2

tx = ln(3=2) ^ t
0
x = 0

turno� turno�

Figure 2: Clock translation of the thermostat automaton

1. Each control mode v of A is split into a collection (v; c1); : : : ; (v; ck) of control modes, one

for each starting value ci of x. We then add the clock tx such that the value of x in the

control mode (v; ci) is g(tx), where g(t) is the unique solution of the initial-value problem

\ _y(t) = f
v

x(y(t)); y(0) = ci."

2. For all invariant, jump, and �nal conditions of A, each atomic subformula over fxg is replaced
by an atomic predicate over ftxg. Then the variable x can be discarded.

Remark. For simplicity, we consider a global set of starting values for each variable. If the

starting values are parametrized by control modes, in Step 1 the control modes can be split more

selectively.

Step 1: adding the clock tx

The result of this step is the hybrid automaton B = (XB; VB;
owB; EB; jumpB;�B; eventB; initB;

�nalB) with the following components:

� The variables of B are XB = XA [ ftxg, and the events of B are �B = �A.

� The control modes of B are VB = VA � StartA(x). Each control mode vi = (v; ci) of B has

the 
ow condition 
owB(vi) = (
owA(v) ^ ( _tx = 1)), re
ecting the fact that the new variable

tx is a clock. The control mode vi has the initial condition initB(vi) = (initA(v) ^ (tx = 0))

if initA(v) implies x = ci, and initB(vi) = false otherwise. The control mode vi has the �nal

condition �nalB(vi) = �nalA(v).

� For each control switch e = (v; v0) of A for which x is not de�nite, the automaton B has, for

each ci 2 StartA(x), a control switch of the form ei = ((v; ci); (v
0
; ci)) with the jump condition

jumpB(ei) = (jumpA(e) ^ (tx = t
0
x
)) and the event label eventB(ei) = eventA(e). For each

control switch e = (v; v0) of A for which x is de�nite with arrival value cj , the automaton B

has, for each ci 2 StartA(x), a control switch of the form ei;j = ((v; ci); (v
0
; cj)) with the jump

condition jumpB(eij) = (jumpA(e) ^ (t0x = 0)) and the event label eventB(eij) = eventA(e).
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Example 3.1 We apply Step 1 to the variable x of the thermostat automaton from Figure 1. All

control switches are de�nite for x. The starting values of x are 1, 2, and 3, so we split both control

modes on and o� into three control modes each. Since the control modes (on; 3), (o� ; 1), and

(o� ; 2) are not reachable by a sequence of control switches from the initial control mode (on; 2),

we omit these three control modes from the clock-translated automaton. The result of Step 1 is

shown on the left in Figure 2.

Step 2: replacing the conditions on x by conditions on tx

Let gc(t) be the unique solution of the initial-value problem \ _y(t) = f
v

x
(y(t)); y(0) = c," for c 2 R.

Since gc(t) is strictly monotone, for each d 2 R there is at most one t 2 R�0 such that gc(t) = d.

Let g�1c
(d) = t if gc(t) = d, and g

�1
c
(d) = ? if gc(t) 6= d for all t 2 R�0. The transformation

function �c from simple atomic predicates over fxg to simple atomic predicates over ftxg is de�ned
as follows:

�c(x � d) =

8>>><
>>>:

true if g�1c (d) = ? and c � d;

false if g�1c (d) = ? and c 6� d;

tx lt(�) g�1c (d) if g�1c (d) 6= ? and c � d;

tx gt(�) g�1
c
(d) if g�1

c
(d) 6= ? and c 6� d;

where � 2 RelOps is a relational operator, and lt : RelOps ! RelOps and gt : RelOps ! RelOps

are de�ned by the following table:

op lt(op) gt(op)

< < >

� � �

= = =

� � �

> < >

Predicates using the lt(�) operators correspond to constraints on how long the x � d predicate will

remain true. We conduct the following four steps for each control mode vi = (v; ci) of the hybrid

automaton B:

1. In the 
ow condition of vi, replace by true each atomic predicate that contains the variable _x.

Then replace each atomic predicate of the form x � d, for � 2 RelOps, by �ci(x � d) if

ci � d, and by false otherwise (in the latter case, the control mode vi may be removed).

2. For each control switch e of B with the source vi, in the jump condition of e, replace by true

each atomic predicate that contains the variable x0, and replace each atomic predicate of the

form x � d, for � 2 RelOps, by �ci(x � d).

3. In the initial condition of vi, replace by true each atomic predicate that contains the variable x.

4. In the �nal condition of vi, replace each atomic predicate of the form x � d, for � 2 RelOps,

by �ci(x � d).

The resulting hybrid automaton C is called the clock translation of A with respect to x.

Example 3.2 In the thermostat example, we have the solutions g1(t) = �4e�t + 5 and g2(t) =

�3e�t + 5 for x in the control mode on, and the solution g3(t) = 3e�t for x in the control mode

o� . Consider the atomic predicate x = 3 of the jump condition of the control switch from (on; 2)
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to (o� ; 3). Since �3e�t + 5 = 3 implies t = ln(3=2), it follows that x = 3 i� tx = ln(3=2). Hence

the atomic predicate x = 3 is replaced by tx = ln(3=2). The �nal result of Step 2 is shown on the

right in Figure 2.

3.3 Correctness

Let x be a solvable variable of the hybrid automaton A, and let C be the clock translation of A

with respect to x. We show that A and C are timed bisimilar. Let QA be the set of admissible

states of A, and let QC be the set of admissible states of C. De�ne � : QC ! QA such that

�((v; c); a1; _a1) = (v; a2; _a2), where the valuations a1 and a2 agree on all variables except x and

tx, the valuations _a1 and _a2 agree on all variables except _x and _tx, and a2(x) = gc(a1(tx)) and

_a2( _x) = f
v

x
(gc(a1(tx))) for the solution gc(t) of the initial-value problem \ _y(t) = f

v

x
(y(t)); y(0) = c."

De�ne �� � QC �QA by s1 �� s2 i� s2 = �(s1). We prove that �� is a time bisimulation between

the hybrid automata C and A.

Lemma 3.1 If ((v1; c); a1; _a1) �� (v2; a2; _a2), then a1 2 [[�c(x � d)]] i� a2 2 [[x � d]].

Proof. Let s1 = ((v; c); a1; _a1) be an admissible state of C, and let s2 = (v; a2; _a2) be an

admissible state of A such that s1 �� s2. Let gc(t) be the solution of the initial-value problem

\ _y(t) = f
v

x (y(t)); y(0) = c." Recall that gc(t) is continuous and strictly monotone. Let d 2 R be

any real. We consider the four cases that arise from the de�nition of �c:

� Assume that g�1c (d) = ? and c � d. Since gc(t) 6� d for all t � 0, and gc(0) = c, in this case

� cannot be the equality relation. By the continuity of gc(t), we have gc(t) � d for all t � 0.

Hence a2(x) = gc(a1(tx)) � d.

� Assume that g�1
c
(d) = ? and c 6� d. If � is the equality relation, g�1

c
(d) = ? implies

a2(x) = gc(a1(tx)) 6= d. If � is an inequality, then by continuity, gc(t) 6� d for all t � 0, which

implies a2(x) = gc(a1(tx)) 6� d.

� Assume that g�1c (d) 6= ? and c � d. If � is the equality relation, then gc(0) = c = d, and

gc(t) 6= d for all t > 0. Therefore a2(x) = d i� gc(a1(tx)) = d i� a1(tx) = 0 i� a1(tx) = g
�1
c
(d).

For inequalities ' of the form x < d or x > d, by the strict monotonicity of gc(t), we have

a2 2 [[']] i� a1 2 [[tx < g
�1
c
(d)]], because x reaches the cuto� value d precisely when tx reaches

the cuto� value g�1c (d). Similarly, for inequalities ' of the form x � d or x � d, we have

a2 2 [[']] i� a1 2 [[tx � g
�1
c
(d)]].

� Assume that g�1c (d) 6= ? and c 6� d. The proof is analogous to the previous case.

Lemma 3.2 �� is a time simulation of TA by TC.

Proof. Let s2 = (v; a2; _a2) and s
0
2 = (v0; a02; _a

0
2) be two admissible states of A such that s2

m
!A s

0
2.

Let s1 = ((v; c); a1; _a1) be an admissible state of C such that s1 �� s2. We show that there exists

an admissible state s01 of C such that s1
m
!C s

0
1 and s

0
1 �� s

0
2.

First, consider 
ow transitions. Suppose that s2
�
!A s

0
2 has the duration � � 0 and the witness

�2 : [0; �]! R
n. We construct a witness �1 : [0; �]! R

n for a 
ow transition of C originating from s1

and having duration �. Let t0 = a1(tx). For all t 2 [0; �], de�ne �1(t) such that �1(t)(y) = �2(t)(y)

for y 6= tx, and �1(t)(tx) = t0 + t. We show that ((v; c); �1(t); _�1(t)) �� (v; �2(t); _�2(t)) for all

t 2 [0; �]. Let gc(t) be the solution of the initial-value problem \ _y(t) = f
v

x (y(t)); y(0) = c." Since

((v; c); �1(0); _�1(0)) �� (v; �2(0); _�2(0)), we have �2(0)(x) = gc(�1(0)(tx)) = gc(t0). Therefore
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for all t 2 [0; �], we have �2(t)(x) = gc(t0 + t) = gc(�1(t)(tx)) and _�2(t)( _x) = f
v

c
(gc(t0 + t)) =

f
v
c
(gc(�1(t)(tx))). It remains to be shown that �1 witnesses a 
ow transition of C, i.e. the 
ow

condition of (v; c) is satis�ed along �1. This follows from the construction of invC(v; c), which

ensures, by Lemma 3.1, that for all t 2 [0; �], if ((v; c); �1(t); _�1(t)) �� (v; �2(t); _�2(t)) and �2(t) 2
[[invA(v)]], then �1(t) 2 [[invC(v; c)]].

Second, consider jump transitions. Suppose that s2
�
!A s

0
2 has as witness the control switch

e2 = (v; v0) of A. We consider two cases:

1. Assume that jump
A
(e2) implies x0 = d for some real d 2 R. In this case, there exists a

control switch e1 = ((v; c); (v0; d)) of C derived from e2 such that jump
C
(e1) implies t

0
x
= 0

and eventC(e1) = �. De�ne a01 such that a01(y) = a02(y) for y 6= tx, and a01(tx) = 0. De�ne _a01
such that _a01( _y) = _a02( _y) for _y 6= _tx, and _a01( _tx) = 1. De�ne s01 = ((v0; d); a01; _a

0
1). We show that

s
0
1 �� s

0
2. Let gd(t) be the solution of the initial-value problem \ _y(t) = f

v
0

x
(y(t)); y(0) = d."

Since (a2; _a2; a
0
2; _a

0
2) 2 [[jumpA(e2)]], we have a02(x) = d = gd(0) = gd(a

0
1(tx)) and then

since (a02; _a
0
2) 2 [[
owA(v

0)]], we have _a02( _x) = f
v
0

x (a02(x)) = f
v
0

x (gd(a
0
1(tx))). Admissibility

of s01 follows from s
0
1 �� s

0
2 and Lemma 3.1. It remains to be shown that e1 witnesses

the jump transition s1
�
!C s

0
1 of C. This follows from the construction of jumpC(e1), which

ensures, by Lemma 3.1, that s1 �� s2 and s
0
1 �� s

0
2 and (a2; _a2; a

0
2; _a

0
2) 2 [[jumpA(e2)]] imply

(a1; _a1; a
0
1; _a

0
1) 2 [[jumpC(e1)]].

2. Assume that jumpA(e2) implies x0 = x. In this case, there exists a control switch e1 =

((v; c); (v0; c)) of C derived from e2 such that jumpC(e1) implies t
0
x = tx and eventC(e1) = �.

De�ne a01 such that a01(y) = a02(y) for all y 6= tx , and a01(tx) = a1(tx). De�ne _a01 such that

_a01( _y) = _a02( _y) for all _y 6= _tx, and _a01( _tx) = 1. De�ne s01 = ((v0; c); a01; _a
0
1). We show that

s
0
1 �� s

0
2. Let gc(t) be the solution of the initial-value problem \ _y(t) = f

v
x (y(t)); y(0) = c."

Since (a2; _a2; a
0
2; _a

0
2) 2 [[jumpA(e2)]], we have a

0
2(x) = a2(x). Thus, since s1 �� s2, we have

a02(x) = a2(x) = gc(a1(tx)) = gc(a
0
1(tx)) and then since (a02; _a

0
2) 2 [[
owA(v

0)]], we have

_a02( _x) = f
v
0

x (a
0
2(x)) = f

v
0

x (gc(a
0
1(tx))). Similar to the previous case, it can be shown that s01 is

admissible and that e1 witnesses the jump transition s1
�
!C s

0
1 of C.

Finally, we need to consider the initial and �nal states. Let s2 = (v; a2; _a2) be an initial state

of A. Since x is initially de�nite for v, the initial condition initA(v) implies x = d for some d 2 R.
Analogously to Case 1 for jump transitions, we can �nd an initial state s1 of C such that s1 �� s2.

If s2 is a �nal state of A and s1 �� s2, then the construction of �nalC ensures, by Lemma 3.1, that

s1 is a �nal state of C.

Lemma 3.3 ��1
�

is a time simulation of TC by TA.

Proof. Let s1 = ((v; c);a1; _a1) and s
0
1 = ((v0; c0); a01; _a

0
1) be two admissible states of C. Let

�(s1) = s2 = (v; a2; _a2) and �(s
0
1) = s

0
2 = (v0; a02; _a

0
2). We show that s1

m
!C s

0
1 implies s2

m
!A s

0
2.

First, consider 
ow transitions. Suppose that s1
�
!C s

0
1 for some duration � � 0 and witness

�1 : [0; �]! R
n. In this case v0 = v and c0 = c. Let gc(t) be the solution of the initial-value problem

\ _y(t) = f
v

x
(y(t)); y(0) = c." Let t0 = a1(tx). Then a01(tx) = t0 + �. De�ne �2 : [0; �] ! R

n such

that for all t 2 [0; �], we have �2(t)(y) = �1(t)(y) for all y 6= x, and �2(t)(x) = gc(t0 + t). By the

de�nition of �, it follows that �((v; c); �1(t); _�1(t)) = (v; �2(t); _�2(t)) for all t 2 [0; �]. We claim that

�2 is a witness for s2
�
!A s

0
2. This follows from the construction of invC(v; c), which ensures, by

Lemma 3.1, that for all t 2 [0; �], since �1(t) 2 [[invA(v)]] also �2(t) 2 [[invC(v; c)]].

Second, consider jump transitions. Suppose that s1
�
!C s

0
1 has as witness the control switch

e1 = ((v; c); (v0; c0)) of C. Then there is a control switch e2 = (v; v0) of A from which e1 is derived
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such that eventA(e2) = �. We claim that e2 is a witness for s2
�
!A s

0
2. Since jump

A
(e2) is simple

for x, we need to consider only the atomic subformulas of jump
A
(e2) that contain x or x0. The

atomic subformulas of the form x � d are covered by Lemma 3.1. There are two types of atomic

subformulas that contain x0:

1. If jump
A
(e2) implies x

0 = d, for some d 2 R, then jump
C
(e1) implies t

0
x
= 0. Since a01(tx) = 0,

we have a02(x) = d as required.

2. If jump
A
(e2) implies x

0 = x, then c0 = c and jump
C
(e1) implies t

0
x
= tx. Since a

0
1(tx) = a1(tx),

we have a02(x) = a2(x) as required.

The conditions on the initial and �nal states follow from similar considerations.

Theorem 3.4 If x is a solvable variable of the hybrid automaton A, and C is the clock translation

of A with respect to x, then A and C are timed bisimilar.

Let A be a solvable hybrid automaton with the nonlinear variables x1; : : : ; xk. Let A0 = A and

for i 2 f1; : : : ; kg, let Ai be the clock translation of Ai�1 with respect to xi. The linear hybrid

automaton CA = Ak is called the clock linearization of A. If CA is rationally linear, then the

hybrid automaton A is called rationally solvable. By Theorem 3.4 and the transitivity of timed

bisimilarity, it follows that A and CA are timed bisimilar. By Proposition 2.1, it follows that A is

nonempty i� CA is nonempty.

Corollary 3.5 The nonemptiness problem for rationally solvable hybrid automata is recursively

enumerable.

Remark. The nonemptiness problem is known to be recursive for certain classes of rationally linear

hybrid automata, such as timed automata and initialized rectangular automata [AD94, HKPV95].

For each such class, we can formulate a corresponding decidability result for the nonemptiness

problem of nonlinear hybrid automata whose clock linearizations fall into the class.

4 Linear Phase-Portrait Approximation

Since the clock translation applies only to solvable hybrid automata, it is desirable to have a theory

of conservative approximations for linearizing a wider class of systems. Moreover, often the clock

linearization of a nonlinear hybrid automaton is not rationally linear, and needs to be approximated

using rational coe�cients before analysis with HyTech is possible. This, for example, is the case

for the thermostat automaton of Figure 1, whose clock linearization is linear but not rationally

linear (see Figure 2).

We advocate the use of linear phase-portrait approximations. Essentially, for each control mode

of a hybrid automaton, the state space is partitioned into linear regions, and within each region,

the 
ow �eld is overapproximated using linear sets of 
ow vectors. The approximations may be

obtained manually, leveraging techniques from dynamics theory, or in some cases automatically,

when lower and upper bounds on derivatives can be obtained from bounds on the values of the

variables [HW96a]. The approximations can be made arbitrarily accurate by approximating over

suitably small regions of the state space. Furthermore, initial approximations may be successively

re�ned with the help of automated analysis, as demonstrated in Subsection 4.2.
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4.1 Phase-portrait approximations

A hybrid automaton is time simulated (and therefore approximated) by any hybrid automaton that

results from relaxing 
ow, jump, initial, and/or �nal conditions. Formally, the hybrid automaton

A = (XA; VA;
owA
; EA; jumpA;�A; eventA; initA; �nalA) is a basic phase-portrait approximation

of the hybrid automaton B = (XB; VB;
owB
; EB; jumpB ;�B; eventB; initB; �nalB) if the following

conditions hold:

� XB = XA and VB = VA and EB = EA and �B = �A and eventB = eventA.

� For all control modes v, the predicate 
ow
B
(v) implies the predicate 
ow

A
(v), the predicate

initB(v) implies the predicate initA(v), and the predicate �nal
B
(v) implies the predicate

�nalA(v).

� For all control switches e, the predicate jump
B
(e) implies the predicate jump

A
(e).

The hybrid automaton A is a phase-portrait approximation of the hybrid automaton B if there

exists a 
ow split P for B such that A is a basic phase-portrait approximation of P(B).

Proposition 4.1 Let A and B be hybrid automata. If A is a phase-portrait approximation of B,

then A time simulates B.

Proof. Suppose that A is a basic phase-portrait approximation of P(B), for some 
ow split P of

B. Then the identity relation on the admissible states of P(B) is a time simulation of P(B) by A.

The proposition follows by Theorem 2.2 and the transitivity of time simulation.

If A is a phase-portrait approximation of B, by Proposition 2.1 it follows that, if A is empty, then

B is empty. Hence phase-portrait approximations provide necessary criteria for nonemptiness. The

tool HyTech can be applied only to phase-portrait approximations that are rationally linear. The

hybrid automaton A is a (rationally) linear phase-portrait approximation of the hybrid automaton

B if A is both (rationally) linear and a phase-portrait approximation of B. Rationally linear phase-

portrait approximations are typically obtained by �rst splitting the control modes using a 
ow

split, and then overapproximating, for each control mode v, the 
ow condition 
ow(v) by a convex

rationally linear predicate ' so that [[']] contains the convex hull of [[
ow(v)]].

Example 4.1 Suppose that we want to prove that within �rst 60 time units of operation of the

thermostat automaton from Figure 1, the heater is active less than 50% of the time. For this

purpose, we replace the constraint tx = ln 2 in the clock linearization of the thermostat automaton

(Figure 2) by the rationally linear predicate 69=100 � tx � 70=100, because ln 2 is approximately

equal to 0:693. Similarly, we overapproximate tx = ln 3 by 109=100 � tx � 110=100. Then HyTech

automatically veri�es the safety property. Indeed, HyTech determines that after 60 time units, the

thermostat has been in control mode on between (2317=60)% � 38:6% and (2351=60)% = 39:2%

of the time. These bounds are tight for the approximate automaton, but they can be tightened

further for the original automaton by re�ning the approximation.

Example 4.2 Suppose that we directly approximate the thermostat automaton of Figure 1 without

�rst performing a clock translation. As before, the goal is to prove that the heater is acive for less

than 50% of the �rst 60 time units. We use the 
ow split P1 with the predicates 1 � x � 2

and 2 � x � 3 for the control mode on , and the predicates 1 � x � 2 and 2 � x � 3 for the

control mode o� . Figure 3 depicts the resulting rationally linear phase-portrait approximation of
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^ _z = 1
^ _y = 0

o�
2

2 � x � 3
^ � 3 � _x � �2

^ _y = 1
^ _z = 1

on2

2 � x � 3
^ 2 � _x � 3

turno�

^ _y = 1
^ _z = 1

on1

1 � x � 2
^3 � _x � 4

^ _z = 1
^ _y = 0

o�
1

1 � x � 2
^ � 2 � _x � �1

turnon

x = 1 ^ stable(x; y; z)

x = 2^
y = 0 ^ z = 0

x = 3 ^ stable(x; y; z)

�

stable(x; y; z; _x; _y; _z)

�

stable(x; y; z; _x; _y; _z)

�

stable(x; y; z; _x; _y; _z)

�

stable(x; y; z; _x; _y; _z)

Figure 3: Linear phase-portrait approximation of the thermostat automaton

the thermostat automaton. While the proof of Theorem 2.2 requires that all 
ow splits are derived

from open covers, it is easy to see that overlapping closed covers su�ce for this example. All 
ow

transitions that pass through the dividing point x = 2 in the original automaton are mimicked in the

approximate automaton by a 
ow transition up to the point x = 2, followed by a silent transition

between control modes, followed by a 
ow transition originating at x = 2. This approximation is

too coarse: HyTech reveals that for this approximation, the active time of the heater ranges from

� 27:8% to � 50:0%.

The approximation can be tightened by using a �ner 
ow split. For instance, consider the 
ow

split P2 that splits the control mode o� 1 of Figure 3, and is derived from the predicates 1 � x � 2

and 2 � x � 3 for the control mode on, and the predicates 1 � x � 1:5, 1:5 � x � 2, and 2 � x � 3

for the control mode o� . Figure 4 depicts the increased accuracy of the resulting approximation

for computing time successors of the state (o� ; x = 3). Automatic analysis with HyTech now

shows that the heater is active between � 30:7% and � 48:1% of the time, which implies the safety

property of interest. The �ner the 
ow split, the tighter the approximation, but the greater the

computational cost. Using 
ow split P2, the computation time ofHyTech is longer than for P1 (6.4
seconds versus 5.3 seconds of CPU time on a Sun Sparcstation 5). By contrast, HyTech requires

only 2.3 seconds to generate the much better bounds for the approximated clock linearization

of Example 4.1. This demonstrates the bene�ts of using the clock-translation algorithm where

possible.

4.2 Example: predator-prey systems

We illustrate the use of linear phase-portrait approximations on nonlinear systems modeling the

population growth of two interacting species. We show that several interesting properties of the sys-

tem can be discovered automatically through a combination of deductive reasoning and algorithmic

analysis.
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1 1time t time t

(a) using 
ow split P1 (b) using 
ow split P2

_x 2 [�3;�2] _x 2 [�3;�2]

_x 2 [�1:5;�1]

_x 2 [�2;�1:5]

_x 2 [�2;�1]

1

2

3

1

1.5

2

x x

_x = �x _x = �x

3

Figure 4: Tighter approximation via �ner 
ow splits

A predator-prey ecology with limited growth

Much of our exposition de�ning predator-prey systems is derived from Chapter 12 of [HS74]. One

species is the predator, whose population is modeled by the variable y, and the other its prey,

modeled using the variable x. The prey forms the entire food supply for the predator, and we

assume that the per-capita food supply for the predator at any instant of time is proportional to the

number of prey. The growth of the predator population is proportional to the di�erence between

its actual per-capita food supply and a basic per-capita food supply required to maintain the

predator population. The population of the prey is subject to two competing forces. First, the prey

population may grow because there is a constant food supply available, and may increase without

bound in the absence of predators. Furthermore, we assume the rate of increase is proportional to

the number of prey. Second, the predators consume the prey at a rate that is proportional to the

number of predators and to the number of prey. This gives us the following equations:

_x = (A� By)x

_y = (Cx�D)y

for positive real-valued constants A, B, C, and D. No population really has the potential to

increase without bound. There are social phenomena, such as overcrowding, spread of disease, and

pollution, that imply that most populations will experience negative growth once they exceed a

threshold limiting population. We assume that these negative growth factors are proportional to

the species population and its di�erence from the threshold population. This leads to the Volterra-

Lotka predator-prey equations [Lot20]:

_x = (A�By � �x)x

_y = (Cx�D � �y)y

where A, B, C, D, �, and � are all positive real-valued constants. Assuming that the initial prey
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x = x0 ^ y = y0

x � 0 ^ y � 0

^ _y = (Cx �D � �y)y

^ _x = (A �By � �x)x

Figure 5: Predator-prey hybrid automaton

_x = 0

L

M

_y = 0

_x � 0

_y � 0

_x � 0

_y � 0

y

_x � 0

_y � 0

x

R
A=B

D=CA=�

Figure 6: Phase portrait for predator-prey populations (L, M nonintersecting)

population is x0 and the initial predator population is y0, the resulting hybrid automaton is shown

in Figure 5. Both x and y are unsolvable nonlinear variables.

Linear phase-portrait approximation

We consider the case that the two lines L = (A � By � �x = 0) and M = (Cx � D � �y = 0)

do not intersect in the quadrant R2
>0. In this case, the phase portrait of the predator-prey system

looks as shown in Figure 6. Using the coordinate axes and the two lines L and M , we split the

state space into linear regions. Within each region, we can infer the signs of _x and _y as shown in

Figure 6. For the region R, to the right of the line M , we can infer also a linear constraint that

relates the derivatives of x and y. Since _x is nonpositive and _y nonnegative in R, the directions of

the 
ow vectors in R are determined by the function �(x; y) = _y= _x. The absolute value of �(x; y)

is bounded above by any ratio max=min, where max is an upper bound on the value of _y in R

and min is a lower bound on the absolute value of _x. We can take Cxy for max , because D + �y

is always positive. Since the lines L and M do not intersect in R2
>0, we know that A=� < D=C,

and hence A� �D=C < 0. Since x is no less than D=C in R, we infer that A� �x < 0, and hence

A � �x � By < �By. We may therefore take Byx for min . We conclude that �(x; y) is bounded

below by �Cxy=(Bxy) = �C=B. It follows that all 
ow vectors in R have a direction between

(�B;C) and (�1; 0), i.e. they satisfy the 
ow condition _y � 0 ^ _y � �C _x=B.

The hybrid automaton that represents the resulting linear phase-portrait approximation is

shown in Figure 7. The layout of the control modes matches the partitioning of the state space as

shown in Figure 6. The predicate stable is shorthand for stable(x; y; _x; _y). The implicit invariant

constraint x � 0 ^ y � 0 has been omitted from all 
ow conditions. The constraint M refers to all

valuations on the line M , i.e. all valuations with Cx �D � �y = 0. The constraint M� refers to

all valuations at, or to the right of, the line M , i.e. M� stands for Cx � D+�y. Similarly, let M�
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L
�

M
�

ML

x = A=� x = D=C

^ _y � 0

^ _x � 0

^ _y � 0 ^ _y � 0

^ _x � 0

y = 0

x = 0

x = 0 ^ stable

^ stable ^ stable

^ stable^ stable

^ stable

^ stable

y = 0 ^ stable y = 0 ^ stable

y = A=B

^ stable

^ _y � 0

^ _y � 0

x = 0

^ y � A=B

^ _x = 0

x = 0

^ y � A=B

^ _x = 0

^ _x � 0

y = 0

^ x � A=�

^ _y = 0

^ _x � 0

L
�
^M

�

^ _y � �C _x=B

^ x � D=C

^ _y = 0

y = 0

^ _x � 0

^ x � A=�

^ x � D=C

^ _y = 0

y = 0

Figure 7: Linear phase-portrait approximation of the predator-prey automaton

_x = 0

L
M

_y = 0

_x � 0

_y � 0

y

D=CA=�

_x � 0

_y � 0

.

x

(x0; y0)

_y � 0

_y � �C _x=B

R

S3

S2

S1

A=B

Figure 8: Reachability computation for the linear phase-portrait approximation

stand for Cx � D+�y, let L stand for A�By��x = 0, let L� stand for �x � A�By, and let L�

stand for �x � A�By. If A, B, C, D, �, and � are all rational constants, then the phase-portrait

approximation is rationally linear.

Computing bounds on the population growth

The linear phase-portrait approximation can be used to compute, for given starting populations,

bounds on the populations of both species. In particular, this shows that the populations are

indeed bounded. For example, suppose that the initial populations x0 and y0 lie in the rightmost

region R of the state space. The time successors of the state (x0; y0) are obtained by following all


ow vectors in the cone indicated in Figure 8. First, the states in region S1 are reached. Control

may then pass to the control mode corresponding to the central region in the partition, where

both _x and _y are nonpositive. After adding the states in region S2, and then the states in S3,

the computation of reachable states terminates. The maximum value of y among the reachable

states is (By0 + Cx0 � D)=(B + �). For example, given the equations _x = (2000� y � 5x)x and

_y = (4x� 2600� 4y)y, and the initial population vector (900; 150),HyTech computes a bound of

230 on the predator population y.

Bounds on the region of reachable states can often be used to construct better phase-portrait
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approximations. Let ' be a predicate such that [[']] contains all reachable states of the hybrid

automaton A. The restriction of A to ' is the hybrid automaton A j' that di�ers from A only in

its 
ow conditions: for all control modes v, let 
owAj'
(v) = (
owA(v) ^ '). The two automata

A j' and A are timed bisimilar (via the identity relation). Restriction is useful, because it may be

possible to �nd tighter linear phase-portrait approximations for A j' than for A, because the phase

portrait of A j' may contain fewer 
ow vectors than the phase portrait of A.

In the predator-prey example, it can be shown that in the rightmost region R, the absolute

value of �(x; y) is bounded above by Cy=(�x+ By � A). Let R0 be a bounded subset of R. Let

ymax be an upper bound for y over all valuations in R0, and let xmin (resp. ymin) be a lower bound

for x (resp. y) over R0. It follows that j�(x; y)j � Cymax=(�xmin + Bymin � A), provided that

(�xmin +Bymin � A) � 0.

Previously, we showed how reachability computation for the automaton of Figure 7 leads to the

region S1 in R, from which we can infer the bounds ymax = 230, ymin = 150, and xmin = 800. We

therefore replace the 
ow condition _y � �C _x=B of the region S1 by _y � �92 _x=215. Recomputation
now shows that only a proper subset of the region S1 is reachable. In particular, we obtain the

tighter bound of ymax = 55250=307� 180. If we iterate this procedure, we gain successively lower

values of ymax, more restrictive 
ow conditions, and more accurate approximations of the set of

reachable states.

Controlling the ecology

Standard analysis techniques can be used to show that the predator population always tends to-

ward 0, while the prey population tends to A=�. Suppose, however, that we wish to keep the

predator population above a nontrivial minimal value, or more generally, that the populations need

to be controlled so that they remain within given lower and upper bounds. Assume that the prey

population can be accurately measured, but that the predator population is unobservable. Our

control strategy consists of monitoring the prey population, and releasing a �xed number k of ad-

ditional prey into the system whenever it reaches its minimal allowable value. In general, it may

be unwise to increase the prey population to its maximal allowable value, because the abundance

of prey may cause the predator population to grow too large. For the ecology above, we require the

predator population to lie within the range [100; 350], and the prey population within [800; 1100].

Using HyTech, we can verify that the bounds are successfully maintained whenever k � 200. For

larger values of k, the phase-portrait approximation admits trajectories where the predator popu-

lation exceeds the upper bound of 350. Note, however, that this does not imply that all values of

k greater than 200 may lead to excessively large predator populations, because the approximation

has more reachable states than the true system.

4.3 Error analysis

Given a hybrid automaton A, some linear phase-portrait approximations of A are closer to A than

others. The closer the approximation of A, the more safety properties of A can be veri�ed by

analyzing the approximation. We show that using linear phase-portrait approximation, A can be

approximated arbitrarily closely by choosing a su�ciently �ne 
ow split.

Proximity can be de�ned via the in�nity metric dist : Rn � Rn ! R�0, where dist(a;b) =

max 1�i�njai � bij, i.e. the distance dist(a;b) between two points a and b is the maximal compo-

nentwise separation. The predicate  is an "-relaxation of the predicate ', for a nonnegative real

" 2 R�0, if [[']] � [[ ]] and for all valuations a 2 [[ ]], there exists a valuation b 2 [[']] such that

dist(a;b) � ". The hybrid automaton B is an "-relaxation of the hybrid automaton A, for " 2 R�0,
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if B results from A by replacing all 
ow, initial, �nal, and jump conditions with "-relaxations. If

A models a system with sensors and actuators, then the "-relaxations of A model the same sys-

tem under the assumption that the sensors and actuators may have measurement errors, and the


ow transitions are subject to modeling errors, with all errors being bounded by ". Clearly, every

"-relaxation of A, for " � 0, is a phase-portrait approximation of A.

An approximation operator 
 for hybrid automata is a function that maps each hybrid automa-

ton A to a set 
(A) of hybrid automata|the 
-approximations of A|such that for all B 2 
(A),

the automaton B time simulates A. For example, the (rationally linear) phase-portrait approxi-

mation operator maps every hybrid automaton A to the set of (rationally linear) phase-portrait

approximations of A. For an approximation operator 
, if B 2 
(A) is empty, then A is also empty,

i.e. every safety property of B is also satis�ed by A. The converse, however, is not necessarily true;

hence approximation is a sound but not complete proof technique for verifying safety properties.

Given an approximation operator 
 for hybrid automata, and a hybrid automaton A, the 
-

approximation B 2 
(A) is "-close to A, for a nonnegative real " 2 R�0, if some "-relaxation of A

time simulates B. We write 
"(A) for the set of "-close 
-approximations of A. Then, if B 2 
"(A)
is nonempty, some "-relaxation of A is also nonempty, i.e. every safety violation of B corresponds to

a safety violation of an automaton that lies within distance " from A. The approximation operator


 is asymptotically complete if for all hybrid automata A and all positive reals " > 0, the set


"(A) of "-close 
-approximations is nonempty. Asymptotic completeness ensures that for every

hybrid automaton A, if some automaton arbitrarily close to, but di�erent from, A satis�es a safety

property, then there is an approximation of A that also satis�es the property.

We show that already a restricted form of linear phase-portrait approximations are asymptoti-

cally complete, namely, when all automaton constraints are overapproximated using independent,

rational lower and upper bounds on the values and derivatives of each variable [HH95a]. The pred-

icate ' is rectangular if [[']] has the form
Q

n

i=1 Ii, where each Ii is a (possibly unbounded) interval

over R. The predicate ' is rationally rectangular if the endpoints of the interval Ii are rational,

for each i 2 f1; : : : ; ng. The hybrid automaton A is (rationally) rectangular if all 
ow, jump, ini-

tial, and �nal conditions of A are (rationally) rectangular. Clearly, every (rationally) rectangular

hybrid automaton is (rationally) linear. The (rationally) rectangular phase-portrait approximation

operator maps every hybrid automaton A to the set of phase-portrait approximations of A that

are (rationally) rectangular. For example, the automaton of Figure 3 is a rationally rectangular

phase-portrait approximation of the thermostat automaton.

Theorem 4.2 The rationally rectangular phase-portrait approximation operator for hybrid au-

tomata is asymptotically complete.

Proof. Let A be a hybrid automaton, and let " > 0 be a positive real. We construct a rationally

rectangular phase-portrait approximation that is "-close to A in two steps: �rst we construct a

(possibly irrational) rectangular phase-portrait approximation B that is "=2-close to A, and then

we approximate all predicates of B by rationally rectangular predicates.

Given a predicate ' over the set X = fx1; : : : ; xng of variables, let I';xi , for i 2 f1; : : : ; ng, be
the in�mal (possibly unbounded) interval of the reals that contains the projection of [[']] onto the xi
axis. The rectangularization of ' is the rectangular predicate  over X such that [[ ]] =

Q
n

i=1 I';xi .

The predicate ' has diameter � 2 R�0 if dist(a;b) � � for all valuations a;b 2 [[']]. Let P be a


ow split for A that maps every control mode to a set of predicates, each with diameter "=2. De�ne

B to be the hybrid automaton that results from replacing all 
ow, initial, �nal, and jump condition

of P(A) by their rectangularizations. Then the 
ow, jump, initial, and �nal conditions of B all

have diameter "=2. Hence, for all control modes v of B, for every valuation (a; _a) 2 
owB(v), there
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exists a valuation (b; _b) 2 [[
owP(A)(v)]] with dist((a; _a); (b; _b)) � "=2. Similarly, every valuation

satisfying the jump, initial, and �nal conditions of B is within "=2 of some valuation satisfying

the corresponding condition of P(A), (and therefore of A). It follows that the rectangular hybrid

automaton B is time simulated by an �=2-relaxation of A.

We derive the rationally rectangular hybrid automaton C from B by replacing every rectangular

predicate ' in B with a rationally rectangular predicate that is an �=2-relaxation of '. In particular,

if [[']] =
Q

n

i=1 Ii, then ' is replaced by the rationally rectangular predicate  with [[ ]] =
Q

n

i=1 I
0
i
,

where for each i 2 f1; : : : ; ng, we have Ii � I
0
i
and the endpoints of the interval I 0

i
result from

shifting up, or down, by at most "=2 the endpoints of the interval Ii to some rationals. Then, every

valuation satisfying the 
ow, jump, initial, and �nal conditions of C is within "=2 of some valuation

satisfying the corresponding condition of B, and therefore within " of some valuation satisfying the

corresponding condition of A. It follows that some "-relaxation of A time simulates C.

In practice, rectangular phase-portrait approximations are often easier to compute than nonrectan-

gular phase-portrait approximations (because we need only compute projections for all variables).

Nonrectangular linear phase-portrait approximations, however, are sometimes more accurate, as

seen in the predator-prey example.

5 Conclusion

We presented a methodology that enables the algorithmic analysis of nonlinear hybrid systems via

translation to linear hybrid automata. Two transformation steps may be utilized. The �rst step, the

clock translation, should be applied whenever possible. It is e�cient, both sound and complete for

proving safety properties, but applies only to a restricted class of variables. Linear phase-portrait

approximation can be used to remove any remaining nonlinearities. It is sound, but not complete,

for proving safety properties, and it may cause a substantial blow-up of the state space. Linear

phase-portrait approximation, however, is applicable to all hybrid systems, supports the successive

re�nement of approximations, and in many cases can be automated. The combined methodology

has been successfully applied to the benchmark industrial steam-boiler speci�cation [HW96b], and

to an electronic automotive suspension-control system developed by BMW [SMF97].
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