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such that the stabilizing PID gain set for the plant
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is not empty. LetS; be the set of PID gains that stabilizes the plant Stability Analysis of Swarms

27'G(z). Then, it is clear that ) , ,
Veysel Gazi and Kevin M. Passino

Nk S stabilizes:'G(z) foralli = 0,1,..., L. (21)

Abstract—In this note, we specify an “individual-based” contin-
uous-time model for swarm aggregation inn-dimensional space and
study its stability properties. We show that the individuals (autonomous

VII. CONCLUDING REMARKS agents or biological creatures) will form a cohesive swarm in a finite time.
Moreover, we obtain an explicit bound on the swarm size, which depends
In this note, we have given a solution to the problem of stabilizatiashly on the parameters of the swarm model.

ofa d,'g'tal control system using P.ID controllers. The solution is com- Index Terms—Biological systems, multiagent systems, stability analysis,
plete in the sense that a constructive yes or no answer to whether staRkrms.

lization is possible, is given and in case it is possible the entire set is de-

termined by solving sets of linear inequalies in two variables obtained

by gridding over the third variable. This approach is akin to the geo- . INTRODUCTION

metric approach to synthesis and design advocated in [16]. These soly=or 4 |ong time, it has been observed that certain living beings tend
tion sets open up the possibility of improved and optimal design usigg perform swarming behavior. Examples of swarms include flocks of
PID controllers. The questions of loop shaping, time domain responsiggs, schools of fish, herds of animals, and colonies of bacteria. It is
shaping, and robust designs are important candidates for researchynown that such a cooperative behavior has certain advantages such
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as avoiding predators and increasing the chance of finding food Iimors consider asynchronous distributed control and geometric pattern
it requires communications and coordinated decision making. Opé&srmation of multipleanonymous (or identical) robots.
ational principles from such systems can be used in engineering fotmportant work on swarm stability is given by Begtial.in [21] and
developing distributed cooperative control, coordination, and learnif@2R]. In [21], they consider a synchronous distributed control method
strategies for autonomous agent systems such as autonomous moltidiscrete one and two dimensional swarm structures and prove sta-
robot applications, unmanned undersea, land, or air vehicles. Thbilgy in the presence of disturbances using Lyapunov methods. On the
are, however, several key steps to exploit biological principles to dether hand, [22] is, to best of our knowledge, one of the first stability
velop such highly automated systems. These include modeling, cesults for asynchronous methods (with no time delays). There, they
ordination strategy specification, and analysis to show that group dyensider dinear swarm model and prove sufficient conditions for the
namics achieve group goals. In this article we develop a simple modslynchronous convergence of the swarm to a synchronously achievable
describing swarm aggregation and analyze its stability properties. \@&nfiguration.
show that the individuals will form a cohesive swarm in a finite time. Swarm stability undetotal asynchronisnti.e., asynchronism with
Moreover, we obtain a bound on the swarm size, which depends ofilye delays) was first considered in [23] and [24]. In [23] a one di-
on the parameters of the swarm model. mensional discrete time totally asynchronous swam model is proposed
Biologists have been working on understanding and modeling @nd stability (swarm cohesion) is proved. The authors prove asymptotic
swarming behavior for a long time [1]-[4]. The general understandig@nvergence under total asynchronism conditions and finite time con-
now is that the swarming behavior is a result of an interplay betwegargence undepartial asynchronisnconditions (i.e., total asynchro-
a long range attraction and a short range repulsion between the ifigm with a bound on the maximum possible time delay). In [24], on
viduals. In [1], Breder suggested a simple model composed of a céhe other hand, the authors consider a mobile swarm model and prove
stant attraction term and a repulsion term which is inversely propdhat cohesion will be preserved during motion under certain conditions,
tional to the square of the distance between two members, whereagXpressed as bounds on the maximum possible time delay.
[2] Warburton and Lazarus studied the affect on cohesion of a family!n [25], we obtained similar results to those in [23] for a swarm with a
of attraction/repulsion functions. The articles in [3] and [4] providdifferent mathematical model for the intermember interactions and mo-
good background and review of the swarm modeling concepts and liens using some earlier results developed for parallel and distributed
erature such as spatial and nonspatial models, individual-based vegsugputation in computer networks in [26].
continuum models and so on. (See also [5] and references therein fohll of these stability investigations have been limited to either one
other related work). or two-dimensional space. Note that in one dimension, the problem of
Parallel to the mathematical biologists, there are a number of phy&varming is very similar to the problem pfatooningof vehicles in
cists who have done important work on swarming behavior [6]-[113utomated highway systenas area that has been studied extensively
The general approach the physicists take is to model each individ(@#€. for example, [27]-[29] and the references therein).
as a particle and study the collective behavior due to their interaction Récent work in [30] is focusing on extending the work in [23] and
Many of them assume that particles are moving with constant absoll#é] to the multidimensional case by imposing special constraints on
velocity and at each time step assume the average direction of motia topology of the “leader” movements and using specific communi-
of the particles in its neighborhood with some random perturbatioftion topology.

They try to study the affect of the noise on the collective behavior and The results in this note were first published in [31]. In [32], we
to validate their models through extensive simulations. describe a class of attraction/repulsion functions that can be used for

yjarm aggregations. In [33], on the other hand, we analyzed the sta-

In recent years, engineering applications such as formation conth > ] : :
y of swarms moving in a profile of nutrients or toxic substances and

of multirobot teams and autonomous air vehicles have emerged i S
this has increased the interest of engineers in swarms. For exampleg,nﬂwed collective (_:onverggnce of all the individuals to more favorable
[12], the authors describe formation control strategies for autonomd&g1ons of the nutrient profile. , ,

air vehicles, whereas [13]-[17] describe different approaches for for-Finally, note that it is possible to establish a connection between
mation control of multiagent (multirobot) teams. In [13], a behaviozfmalIySIS of swarms and analysis of multibody systems such as groups
based formation control of multiple land robots integrated with thgf Planets.
other navigational goals of the robots is described, whereas the article

in [14] proposes a method that uses only local information. They use the
feedback linearization technique for controller design to exponentially Consider a swarm of/ individuals (members) in an-dimensional
stabilize the relative distances of the robots in the formation. SimiIErucndean space. We model the individuals as points and ignore their
results are obtained also in [15] and [16], where the authors use formggnensions. The position of membenf the swarm is described by
tion constrains and control Lyapunov functions to develop the formg: ¢ r" . \We assume synchronous motion and no time delays, i.e., all
tion control strategy and prove stability of the formation (i.e., formahe members move simultaneously and know the exact position of all
tion maintenance). The results in [17], on the other hand, are basedg other members. The motion dynamics evolve in continuous time.

using virtual leaders and artificial potentials for robot interactions inhe equation of motion that we consider for individia given by
group of agents for maintenance of the group geometry. They use the "

syste_m kinetic energy and the arti_fi_cial potential energy as a Lyapunov i= Z g(xi —a)i=1 M 1)
function to prove closed loop stability and employ a dissipative term to '

achieve asymptotic stability of the formation. Reference [18] describes

a systematic framework for studying feasibility of formations for botMhereg(-) represents the function of attraction and repulsion between
undirected and directed type formations. In [19], Reif and Wang colfle members. In other words, the direction and magnitude of motion of
sider distributed control approach of groups of robots, caiterial po- each member is determined as a sum of the attraction and repulsion of
tential fieldsmethod, which is based on artificial force laws betweefll the other members on this member. The attraction/repulsion func-
individual robots and robot groups. The force laws are inverse-powertt that we consider is

spring force laws incorporating both attraction and repulsion. Another lyl)?
work on distributed formation control of robots is [20], where the au- 9(y) =~y (”’ —bexp <_—)>

II. MODEL OF AN AGGREGATING SWARM

J=1,5#i

)
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Proof: Letg(z' —a7) = a—bexp(—(||a’ —27||*/¢)) and note

ab N L] that
: : 1 M M
3t R . 4 . ; j i
v » T:—ﬁz Z (2" —2gi(z" —27) = 0. [ |
o e v I » ] =1 =1,

Basically, this lemma says that, on average, the swarm described by

: : (1) with an attraction/repulsion function as given in (2) is not drifting.

oF : s ced b Note, however, that although it states that the center of the swarm is
‘ stationary, it does not say anything about the relative motions of the

members with respect to it. It may be the case that the members diverge

a(y)

ol : OUUUUR U O S . . from the center while it stays stationary. Intuitively, however, we would
: : : v expect the members to move toward the center for the given swarm
I SR : : : NG b model. In several of the results and discussions to follow we either

implicitly or explicitly will use the fact that is stationary.

-5 L : : : . : . . L Il. ANALYSIS OF SWARM COHESION

Our first result is about a swarm member which does not have any
neighbors in its repulsion range. We call such a membereaagent

Fig. 1. Attraction/repulsion function(-). Definition 1: A swarm membet is called afree ageniat timet if
Z(t) — .rj(t)” > 6N €S, j£i
whereS = {1,..., M} is the set of members of the swarm.
wherea, b, andc are positive constants such that> « and||y|| = Note that since the distance from all the other members to a free

VyTy. Forthey € R case witha = 1, = 20, ande = 0.2 this agent is greater thaf there will not be any repulsion force and the
function is shown in Fig. 1. In higher dimensions (ig.c R"), the total force on this member will be a combined effect of all the attrac-
function is exactly the same as in one-dimensional case, except thaioip imposed by all the other members. We will show that this force is

acts on the line connecting the positions of the two members (i.e., #@inting toward the center of the swarm and, therefore, the member
line on which the vectoy lies). is moving toward it. Before stating this result more rigorously, we de-

Note that the functiory(-) constitutes armrtificial social potential fine e’ = o* D z, for each mdnwdua? =L...,M. .
. - . - .. Lemma 2: Assume that a membeérmnf the swarm described by the
function, similar to the ones in [19] and [2], that governs the interindi- . ) . . L ) i .
- . : . model in (1) with an attraction/repulsion functig(t) as given in (2) is
vidual interactions. The parameterepresents the attraction, whereas . L
2 . . a free agent at timeand that its distance to the centeof the swarm
the termb exp(—||y||*/¢) represents the repulsion. Note that this func- .
L ) . . . .Is greater then, i.e.,
tion is attractive (i.e.¢ dominates) for large distances and repulsive o )
(i.e.,bexp(—(||y||*/c)) dominates) for small distances, which is con- el(f)H = Hﬂfl(f) -z
sistent with interindividual attraction/repulsion in biological SWarMSrpan at time'. its motion is in a direction of decreasel|pf (1)]] (i.e
Therefore, it constitutes a crude approximation of biological interags, - ‘' ce,ntef) o
tions and also allows us to perform stability analysis. The main draw- Proof: From the definition of the centarof the swarm. we have
back Wlthg(-)_ is that it is not unboundeql for mfn_nﬂesmally smgll ar- ﬁl # = M. Subtracting from both side¥/+' we obtain
guments (which may be needed to avoid collisions) and that it has an
infinite range (which is inconsistent with biology since no creature has
infinite sensing range). However, note that this article is the first step
toward stability analysis of swarms and these issues are topic of furt%re

research. In fact, we consider those issues in [32], where we describe a

> 6.

M

Y@ —al) =M@ - 1) = Me'. (3)
j=1

n, the motion of membércan be represented as

class of attraction/repulsion functions that lead to aggregation. M= EM: (z' — 2) {a + bexp <_M>]
By equatingy(a — b exp(—(||y|*/c))) = 0, one can easily find that Pyt ¢
g(y) switches sign at the set of points definedas: {y = 0 or ||y|| = M i ina
§ = \/cIn(b/a)}. The distancé is the distance at which the attraction = —aMe' +b > exp <_ M) (2" — )
and repulsion balance. It is known that there exists such a distance in j=1,j%#i ¢
biological swarms [2], [4]. where on the first line we used the definition of functign) in (2) and

In this note cohesivenessf the swarm is the maistability property addeda(z* — z*) = 0, and substituted the value 3F 2 (+* — 27)
that we are concerned with. We define tsize of the swarnas the from (3) on the second.
radius of the hyperball within which the individuals converge. Choosing the Lyapunov function candidate for membasV; =
Define thecenterof the swarm members &= (1/M) Zf\il +. (1/2)e’Te' and taking its derivative, we can show thatis bounded
Note that because of the symmetryyof) the center is stationary for by

all ¢. In other words, sincg(-) is symmetric with respect to the origin, . . M
: » Vi<—aM|e' P+ >
member moves toward every other membezxactly the same amount V¢ =
asj moves toward. We express this more formally in the following =taFe
lemma. at =2 i T
| i | | pesp (=1 0N ot ey, @
Lemma 1: The centeft of the swarm described by the model in (1) c

with an attraction/repulsion functiog(-) as given in (2) is stationary Since member is a free agent at time (note that we dropped the
for all ¢. time indext throughout the proof for convenience), we hdue —



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 4, APRIL 2003 695

;vf|| > 6,V # i and note that for that range the functierp(—(||=' —  Since membei was an arbitrary member, the result holds for all

2’| /e))|l=* — 2’| is a decreasing function of the distance with théhe members. To prove the finite-time convergence, note that for

maximum occurring afz® — =’ || = §. Using these facts, we have  ||¢'|| > =, we have
62

e N2 o1
Vi < —alle |2 = (M 1) |:(1,||ez||—b§exp <——>] €'l ®) Vi < —allell” = —2aV..

¢ Therefore, the solution df; satisfies

For the second term to be negative semidefinite, we ngéfj > Vi(t) < Vi(0)e™2"
(b8/a) exp(—(87/c)). Note, however, thah/a) exp(—(6%/c)) = 1, = T ‘
which implies that we neefi’|| > §, which, on the other hand, holds for which it can be shown that crosses tf#|| = = boundary in a time

by our hypothesis. Therefore, we have bounded by
Vi < —alle’||* = —2aV; Lo 1 < =2 )
i S —5—In YT
which proves the assertion. n 2a 2V3(0)
Remark: From the attraction/repulsion functigit-) in (2) one can 44 this proves the theorem. -

see that one term in(-) always gives attraction and the other repul- g reqyit is important not only because it proves the cohesiveness
sion and the resultant force is their sum. This leads to similar termsdhia swarm. but also it provides an explicit bound on the size of the
the derivative of the Lyapunov function in (4). If an individual is away arm_Note that the boundnakes intuitive sense. To see this note that
from all the other individuals, the second term in the Lyapunov fungs e asing parameter(i.e., increasing attraction) decreases the size of
tion is negllglply small compared to _the_ fl_rst term anql it moves towgrﬂge bounck. In contrast, increasing parametefi.e., increasing repul-

the center. If it is close to the other individuals (i.e., in their repulsiog,, magnitude) or parametefincreasing repulsion range) increases

range), then the second term becomes significant. ¥ andthese are intuitively expected results. Forihgfunction given in
Note that Lemma 2 does not imply thédtwill converge toz for all 7. Fig. 1 with parameters = 1, b = 20, ande = 0.2, we haves ~ 3.8

Intuitively, once a member gets to the vicinity of another member, the”Remark: Note that the bound on the swarm sizé(M —
the repulsive force will be in effect and the conditions of Lemma 2 wil| (aM)) \/C/_Qexp(—(l/Q)) depends o/ . Therefore for swarms
not be satisfied anymore. However, it is important because it gives\;j h a small number of members the bound will differ significantly

an idea of the tendency of the individuals to move toward the Cenigt itrerent values ofif. However, in biological swarms the number
of the swarm. Therefore, it is normal to expect that the members w(y]l the members) can be very large and af — oo we have

(potentially) aggregate and form a cluster aro@ndo prove this, we (M — 1)/(aM))\/c/_20xp(—(1/2)) — &. In other words is

need to analyze the motion of the members which are not necessafily maximum possible bound on the swarm size independent of the
free agents and that is done in the next result. number of the individuals in the swarm m

Theorem 1: Consider the swarm described by the modelin (1) With pemark- 1n view of the aforementioned remark, for large values
an attraction/repulsion functigji-) as givenin (2). Astime progresses,q 31 the size of the cohesive swarm is relatively independent of the
all the members of the swarm will converge to a hyperball number of the members (individuals). In other words, it is almost con-
Bo(z)={a:||lz— 7| <=} stant independent of the number of the members. This implies that as

the number of the members increases the density of the swarm will also

where b 1 increase. This is inconsistent with some biological examples and is due
s = _Y\/E exp <_ _> . to the particular attraction/repulsion functigft) that we chose. m
ay?2 2 Remark: Note that even the bound (b(M - 1)/

Moreover, the convergence will occur in finite time bounded by~ (¢M))\/¢/2exp((—1/2)) is very conservative, because in the
aforementioned proof, we uséd’ — /) Te! < ||2° — 27]|||¢'|| and

22 . . i |
f = max {_i In <°—) } . also assumed that the functions (— (|| — 27 ||*)/c)||=" — 27| are
e 2a 2Vi(0) at their peak values for alland; and these both angeverthe case.
Proof: Choose any swarm membeérLet V; = (1/2)e'Te' be  Therefore, the actual size of the swarm is, in general, much smaller
the corresponding Lyapunov function for which we have (see the prd@ﬁ”f- u

Note also that even though the results here were developed for the
attraction repulsion fungtion(-) in (2), they can be extended and gen-
eralized to alassof attraction repulsion functions as was done in [32].

of Lemma 2)

M
Vi< —aM|le'|P+ >
= iz IV. ANALYSIS OF SWARM MEMBER BEHAVIOR IN A COHESIVE SWARM
pesp (<L) ot e, ©) - -
c Theorem 1 shows only the region where the swarm members will
. ; i ; converge and provides a bound on the size of the swarm. It does not,
].NC_’W' note that each of the functionsp(—(|«" — «’|| ./"))”j‘" ~  however, say anything about whether the swarm members will stop
+’| is a bounded function whose maximum occurglalt — || = yheir motion or will start an oscillatory motion within the region and
V/¢/2 and IS given by\/.c/_Qeecp(—(l/Q)). Substituting this in the ¢ icsie needs to be investigated further. To this end, we first define
above equation we obtain thet < 0 as long as the stater of the system as the vector of the positions of the swarm

L b(M=-1) [c 1 members: = [2'T,..., 2™ T]T. Let the invariant set of equilibrium
[le*]| > TaM §QXP 3/ points be
Define = = (b/a)\/c/2exp(—(1/2)) and note that Q. ={x:2=0}.

e > (WM - 1)/aM)\/c/2exp(—(1/2)). This implies

that ast — oo, ¢ converges within the ball around: We will prove that as¢ — oc the statex(t) converges td., i.e.,
defined by  (b(M —1)/aM)\/c/2exp(—(1/2)). Since the configuration of the swarm members converges to a constant
e > (B(M—1)/aM)\/c/2exp(—(1/2)) we havee’ — DB.. arrangement.
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Theorem 2: Consider the swarm described by the model in (1) with [4] D. Grinbaum and A. Okubo, “Modeling social animal aggregations,” in

an attraction/repulsion functiog(-) as given in (2). A& — oo we
havez(t) — Q..
Proof: We choose the Lyapunov function

| Moy M C et — 2|2
7(¢)=§ Z Z allz" =2 ||” 4+ beexp B —
i=1 j=it+1 ’

which is an artificial potential function. Then, one can show that the

gradient of/ () with respect to each’ is given byV _..J (¢) = —i'.

Now, taking the time derivative of the Lyapunov function along the

motion of the system we obtain

J(x) = [V (@) &= Z V,iJ(x)]" &

M o7 } M )

-2 3 -7

zz[_;p] :_EHI
=1 =1

2
<0

for all £. Then, using the LaSalle’s Invariance Principle we conclude[lz]
that ast — oo the stater converges to the largest invariant subset of

the set defined as

Q:{J’:.j(w):()}:{szzi':()}:Qe.

Since each point ife. is an equilibrium{2. is an invariant set and this

proves the result. [ ]

Remark: The proof of the aforementioned theorem shows the
distributed aspect of the swarming behavior. In fact, it shows that th§L6]

swarm members are performirdjstributed optimization(function

minimization) of a common function (the Lyapunov or cost function) 17]
using adistributed gradient methodn other words, each member
computes its part of the gradient of the global function at its position
(i.e., computes the gradient with respect to its motion variables) antt
moves along the negative direction of that gradient. The global func-
tion in this case is a function of the distances between the menmbers.[19]
Remark: Another view on the distributed nature of the approach can

be as follows. Define

1 M
Ji(r) =5 > |:(1,

J=1,57
Then, note that

x—a’

it = =V, Ji(x) = =V, J(x).

This can be interpreted as each membpgerforming an optimization
of its local cost functior/; (=), which results in minimizing of the com-

bined cost function
1 M
J(x) = 3 ;Ji(x)

to obtain the overall behavior of the swarm. |

Remark: Note that in any of the above analysis we did not use theg)
dimension of the state spageTherefore, the results obtained hold for

any dimensiom.. [ ]

Remark: The results here are global. This is a consequence of thgﬂ
definition of the attraction/repulsion functigr-) in (2) over the entire

domain. |
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Systems With Multiple Time-Varying Delays Notation: R = (—o0,00); Ry = [0,00); R" denotes the real
vector space of dimension, 2™ *" denotes the real matrix space of
Bugong Xu and Yun-Hui Liu dimensiom x n; C',, denotes the Banach space of continuous functions

mapping[—7, 0] into R, wherer > 0; A* denotes the transpose of
Abstract—Delay-dependent/delay-independent uniform asymptotic sta- A ? > 40<((g <0) de?r?;zs aBpgs[;t!ve—deflnlte (orlge?a.ttlv.ef;eflnlte)
bility and uniform stability criteria for linear systems with multiple time- mg x4 = b means . —B < Disnegative semidefinite; (¢) €
varying delays are established respectively in this note. The results are de- R" denoteg/(t 4+ 6) € R" fort € R andd € R so thaty(t) = y.(0);
rived based on a new-type stability theorem for retarded dynamical systems || - || denotes the Euclidean norm Ri*; ||4]|- = sup_, <o« [|0(8)]|

and a new analysis technique for estimating the derivative of a Lyapunov ith ¢(9) € R™ for givens € C,,; and|z| denotes the absolute value
function along the solution of a system at certain specific instants. Four . ) . o . .

remarks together with an illustrative example are given to compare the ob- of = € I, and finally, .. is then x n identity matrix.
tained results with and to show their superiority to those in the literature.

Index Terms—Linear systems, Lyapunov methods, stability, time delay. Il PRELIMINARIES

The following preliminaries are needed in the next section.
Lemmal:LetP > 0 € R™*" andD € R"*" be constant ma-
trices,z, y € R™ andp > 0. Then
Recently, new-type stability theorems for retarded dynamical sys- 1 .

tems have been established by Xu [1]. A new analysis technique has 20" PDy < =2 PDP'D' Px+ py' Py 2

also been proposed in [1] for estimating the derivative of a Lyapunov r

function along the solution of a system at certain specific instants. &md the equality holds if and only #7 Pz = pPy.

this note, the delay-dependent/delay-independent stability for the fol- Proof: Note that(DTPx—pPy)vTPq (DT Px—pPy) > 0for

|. INTRODUCTION

lowing linear system with multiple time-varying delays: anyp > 0 and anyz, y € R™ and(D* Pz — pPy)" P~ (D Pz —
. pPy) = 0 if and only if DT P2z — pPy. We obtain the result
B(t) = Aox(t) + > A (t— 7i(1)) immediately. QE.D.
ren ’ Lemma2:LetP > 0 € R**" andD € R"*" be constant ma-
+ Z Apa (t — (1)) trices, and lefX (K) = {x € R"|+T P2 = K} witha K > 0. Then,
kEJ2 for any givenz € X (K) satisfyingz’ PDP~' D" PZ > 0, there ex-
t >ty € R: 1) ists a positivepss > 0 such that
2(8) =2(to +6) = 0(0) to+6=Ey max {237 PDy} < L = ppp' DT PF
m yT Py=K T pM
B, = J{t— )|t =7(t) < to, + pu' PT ®3)
=t 7 and
t> topU{to}

is studied based on the new-type stability theorem for retarded dynam- 1 # PDP DY Pi + pui' Pi

ical systems presented in the Appendix [1], where C,,, > € R", P
A, € R"*" fork = 0,1,..., m are constant matrices (t) <

< L3 PDP' DT PF + p3' PT  (4)
p
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