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Abstract. Dynamic graphs have emerged as an appropriate model to capture the changing nature of many
modern networks, such as peer-to-peer overlays and mobile ad hoc networks. Most of the recent research on
dynamic networks has only addressed the undirected dynamic graph model. However, realistic networks such
as the ones identified above are directed. In this paper we present early work in addressing the properties of
directed dynamic graphs. In particular, we explore the problem of random walk in such graphs. We assume
the existence of an oblivious adversary that makes arbitrary changes in every communication round. We
explore the problem of covering the dynamic graph, that even in the static case can be exponential, and we
establish an upper bound O(dmaxn

3 log2 n) of the cover time for balanced dynamic graphs.

1 Introduction

Dynamic graphs have emerged as an appropriate model to capture the changing nature of many modern networks,
such as peer-to-peer overlays and mobile ad hoc networks. Therefore, the study of dynamic graph models is a topic
of practical relevance. Unfortunately, most of the recent research on dynamic networks has only addressed the
undirected dynamic graph model[AKL08,KLO10]. This limits the applicability of the results, as many realistic
networks are directed. For instance, due to variations in radio hardware, transmission power, interferences, a
substantial percentage of wireless links are asymmetric[SAZ07]. Moreover, many overlay peer-to-peer protocols
build asymmetric membership views, e.g. [VGvS05].

In this paper we consider the cover time, the expected time taken by a random walk to visit every node of the
graph at least once. We distinguish two types of random walks: i) A simple random walk is a stochastic process
that starts at one node of a graph and at each step moves to an adjacent node chosen uniformly at random among
all neighbors of a current node; ii) A lazy random walk starts at one node of a graph and at each step, either
stays in the same node with probability k, which may depend on the current node, or moves to an adjacent node
with probability 1−k

d , where d is the node out-degree.
The cover time of random walks has been extensively studied for static graphs and bounds for many different

classes of static graphs are known in the literature. For a comprehensive survey we refer the interested reader to
[Lov93]. However, recent results have shown that bounds for static graph models differ significantly from those
for dynamic graphs. It is well known that in undirected graphs the worst-case cover time of a simple random walk
is O(n3)[AKL+79]. On the other hand, [AKL08] has shown that a simple random walk on undirected dynamic
graphs can have exponential cover times. The authors of [AKL08] also showed that the cover time of maximum-
degree random walk on (non-bipartite) dynamic graph is O(d2maxn

3 log2 n) where dmax is a maximum node degree
of the graph.

The directed dynamic graphs are even more challenging. The cover time for random walks on static directed
graphs can be exponential. Aggravated by the presence of the oblivious adversary, we first address the question of
the explorability of a dynamic graph. Furthermore, we are interested in determining whether there exist subclasses
of directed graphs with polynomial cover time (other than the directed analogues to undirected graphs).

To the best of our knowledge, this is the first work on random walks on directed dynamic graphs with oblivious
adversary. Our main contributions are as follows. First we prove that the adversary can prevent the explorability
of any periodic dynamic graphs, with period greater than 2. Next we show that by applying a lazy strategy we
can circumvent this impossibility result and guarantee that all vertices are reachable by the random walk on the
dynamic graph. We then establish an upper bound O(dmaxn

3 log2 n) for cover time of a lazy random walk with
k = 1− d

dmax+1 on balanced dynamic graphs. A graph is called balanced, or Eulerian, when its in-degree is equal
to its out-degree.
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The resulting upper bound also tightens the previous bound for undirected dynamic graphs that are a subclass
of balanced graphs.

The rest of the paper is organized as follows. In Section 2 we describe the model we use for our results.
Section 3 discusses the problem of random walks on dynamic graphs and presents the main results. Finally,
Section 4 presents the conclusions and outlines the directions for future work.

2 Model

We model a network as a fixed set of nodes that operate in synchronous rounds. The directed edges represent
unidirectional communication links from one node to another. Let V = {v1, v2, · · · , vn} be a set of vertices.
G = G1, G2, · · · denote a sequence of directed graphs where Gt is a static directed graph on V in round t.
Further, we consider oblivious adversary that can make arbitrary changes in every round as long as the graph
remains strongly connected in every round (i.e. there exists a path between each pair of nodes in the graph).
We say G is strongly connected if each Gt is strongly connected. This model captures the dynamic nature of
connected wireless networks. It can be also used to model static networks where packet losses may occur. A
similar model for undirected graphs was introduced in [KLO10].

Note that without further constraints on the topology of the graph, it is easy for the adversary to prevent the
random walk from exploring the graph. This can be illustrated with the following example. Consider G a strongly
connected dynamic graph. A simple random walk starts at the node vi that initially has only one neighbor vj .
In the first round, the random walk moves from vi to vj . In the next round the adversary changes the network
so that now vj ’s only neighbor is vi. So the random walk moves from vj back to vi. This process can be repeated
indefinitely. Even if each graph Gt in G is strongly connected, the random walk can only reach vi and vj .

3 Results

3.1 Explorability with Simple Random Walk

We first address the problem of whether a given dynamic graph is explorable with a simple random walk (i.e.,
there exists a positive probability of a random walk starting in a vertex vi to reach all other vertices in the
graph). As illustrated by the example above, it is easy to show that without further constraints on the power of
the adversary, the dynamic graph can be unexplorable.

We begin by giving a negative result, showing that if the adversary is allowed, in each step, to generate graphs
with period c > 2, then the dynamic graph is unexplorable (in a strongly connected graph, a period of a graph
is the greatest common divisor of the lengths of all directed circuits).

To prove this result, we use the following proposition that has been demonstrated in [JS96].

Proposition 1. Let G be a strongly connected directed graph. If G has period c then it can be partitioned into c
sets C0, C1, · · · , Cc−1 such that

(a) for any k < c, vi ∈ Ck, there exists an edge from vi to vj, such that vj ∈ C(k+1) mod c ; and
(b) c is the largest integer with this property.

Property (a) states that starting with any node in set Ck, the next transition must be to a node in Ck+1,
then to a node in Ck+2, and so on until reaching C0. An Example is illustrated in Fig. 1. On the other hand, if
G is aperiodic (c = 1), then there is a single set C0 containing all nodes.

Theorem 1. If G1 is a strongly connected directed graph with period c > 2, then there exists a sequence of graphs
G2, G3, · · · such that a dynamic graph G = G1, G2, G3, · · · is unexplorable by a simple random walk.

Proof. We prove the theorem by construction. By Proposition 1, a graph Gt can be partitioned in c sets,
C0, C1, · · · , Cc−1. The adversary uses the deterministic strategy of changing the direction of all the edges in
each round. Let us assume that a random walk starts on some vertex vk ∈ Ci, in the next round the random
walk will necessarily be in the set Ci+1 mod c. As in the next round the direction of all the edges will change, the
random walk will move back to some vertex in set Ci and the process repeats. In this way, only the nodes in Ci

and Ci+1 mod c are reachable by the random walk that starts in Ci.
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Fig. 1: Periodic Graph

3.2 Explorability with Lazy Random Walk

We now address the problem of whether by changing slightly the random walk strategy we can guarantee the
explorability without constraining the strength of the adversary. We first observe that a lazy random walk on
a graph is equivalent to a simple random walk on the same graph augmented with a self-loop at each vertex.
Note that by adding self-loops in each vertex we guarantee the aperiodicity of the graph. Therefore, we avoid the
negative result above. This raises the question if the strategy of lazy random walk is sufficient to guarantee the
explorability of a dynamic graph. In the following, we answer this question positively.

Theorem 2. In a directed strongly connected dynamic graph G = G1, G2, · · · , there exists a positive probability
of a lazy random walk, starting at any vertex, to reach any other vertex, within a linear number of steps.

Proof. Let AGt
be the transition probability matrix of a lazy random walk on Gt and Pt = (p1, p2, · · · , pn) be a

probability distribution on vertices in round t .

Pt+1 = PtAGt =
(
p1, p2, · · · , pn

)

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


We denote by St a set of vertices that can be reached in round t that corresponds to positive entries in Pt.

Without loss of generality, let us assume the random walk starts at v1 so that P0 = (1, 0, · · · , 0) and S0 = {v1}.
Note that aj,j ≥ 0, for all 1 ≤ j ≤ n; so that all positive entries in Pt will remain positive in Pt+1. That means
that St ⊆ St+1 for all t ≥ 0. On the other hand, as in each round Gt is strongly connected, there exists an edge
from some vertex vi ∈ St to vj /∈ St that corresponds to a positive entry ai,j in AGt

. This means that pj in Pt+1

will become positive. Hence, in each round t at least one new vertex is added to St, while St ⊂ V . As a result,
after n steps all entries in Pt are positive and St = V .

�

3.3 Cover Times

We have shown that a directed dynamic graph is explorable with a lazy random walk. However, as we mentioned
earlier, the general bound for the cover time of a random walk on a static directed graph is exponential. In Theorem
2 we showed that with lazy random walk there exists a positive probability to reach any vertex. However, the
adversary still can keep it exponentially low.

We are now interested in identifying dynamic graphs with polynomial cover times. In the following, we give
the upper bound for the class of directed balanced graphs (that also include undirected graphs). We say the node
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vi of graph G is balanced if and only if its in-degree and out-degree are equal. A graph G is called balanced if
and only if all of its nodes are balanced. The network depicted in Fig. 1 is an example of a balanced graph.

In our result, we use the following random walk strategy: Let dmax be a maximum degree of graph G. We define
a maximum-degree lazy random walk as a lazy random walk where the weight of the self-loop is k = 1− d

dmax+1

and the transition probability of 1
dmax+1 is assigned to each outgoing edge. If dmax is not known, we can take

dmax = n− 1.
To simplify the notation, we now drop the subscript t, denoting the round. The important observation is

that due to maximum-degree lazy strategy, the transition probability matrices AG in each round are doubly
stochastic (every row sums to one and every column sums to one). Therefore, each AG will have a left eigenvector
I
n = ( 1

n ,
1
n , · · · ) corresponding to an eigenvalue λ = 1.

In the proof of our result, we will use the following lemmas. Lemma 1 bounds the absolute values of eigenvalues
of AG. Lemma 2 bounds the convergence rate of the probability distribution to the uniform distribution. Lemma
3 establishes the relation between the probability distribution on vertices of G and the cover time of a random
walk on G.

Lemma 1. Let AG be the transition probability matrix of the maximum-degree lazy random walk on a balanced
directed graph with n vertices. If |λ1| ≥ · · · ≥ |λn| are the left eigenvalues of AG, then

λ1 = 1 and |λi| ≤
(

1− 1
n2dmax

)
, for i ≥ 2

Proof. Let λ∗ denote the spectral gap (i.e. the difference between the largest and the second largest eigenvalues
in absolute value) of AG. As shown in [Mon09],

λ∗ ≥ 1
n2dmax

Let |λ1| > · · · > |λn| be left eigenvalues of AG. As AG is a doubly stochastic matrix, and I
n =

(
1
n , · · · ,

1
n

)
is a left

eigenvector of AG corresponding to the eigenvalue λ1 = 1. Moreover, as the random walk is lazy, AG is aperiodic.
Therefore, we have

λ1 > |λi|, for i ≥ 2

Thus,

λ∗ ≥ 1− |λi| ≥ 1
n2dmax

, for i ≥ 2

�

Lemma 2. Let G be a strongly connected directed balanced graph on V and P = (p1, · · · , pn) be a probability
distribution on its vertices. Let AG be a transition probability matrix of a maximum-degree lazy random walk on
G. Then:

∥∥∥PAG − I
n

∥∥∥2
2
≤
(

1− 1
n2dmax

)∥∥∥P − I
n

∥∥∥2
2

(1)

Proof. Let A = {α1, · · · , αn} be an orthonormal set of left eigenvectors of AG with corresponding eigenvalues
λ1, · · · , λn ∈ C ordered by their absolute values so that |λ1| ≥ · · · ≥ |λn|. As AG is a doubly stochastic matrix,

∥∥∥PAG − I
n

∥∥∥2
2

=
∥∥∥PAG − I

nAG

∥∥∥2
2

=
∥∥∥ (P − I

n

)
AG

∥∥∥2
2
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(2)

Since A = {α1, · · · , αn} is an orthonormal system in Cn and
(
P − I

n

)
is orthogonal to α1 = I√

n
, there exists

some B = {β1, · · · , βn} ∈ Cn such that

P − I
n =

∑n
i=2 βiαi

(3)

By standard calculation we have,

∥∥∥P − I
n

∥∥∥2
2

= 〈P − I
n , P −

I
n 〉

= 〈
∑n

i=2 βiαi,
∑n

i=2 βiαi〉

=
∑n

i=2 |βi|2

(4)

On the other hand,

∥∥∥ (P − I
n

)
AG

∥∥∥2
2

=
∥∥∥∑n

i=2 βiαiAG

∥∥∥2
2

=
∥∥∥∑n

i=2 λiβiαi

∥∥∥2
2

≤
∑n

i=2 |λi|2|βi|2

(5)

The last inequality follows from Cauchy-Schwartz bound.
By Lemma 1,

|λi|2 ≤ |λi| ≤
(

1− 1
n2dmax

)
, for i ≥ 2

Thus,

∥∥∥ (P − I
n

)
AG

∥∥∥2
2
≤
(

1− 1
n2dmax

)∑n
i=2 |βi|2

(6)

From (4) and (6) we have,

∥∥∥ (P − I
n

)
AG

∥∥∥2
2
≤
(

1− 1
n2dmax

)∥∥∥P − I
n

∥∥∥2
2

(7)

�

Lemma 3. (From [AKL08]) Let Y0, Y1, Y2, · · · be a sequence of random variables with range V = {v1, · · · , vn}
satisfying for all vi, vj ∈ V and t > 0, Pr[Yt = vj |Yt−1 = vi] ≥ 1

2n . If tmin = min{t : {Y0, Y1, · · · , Yt} = V } then
the expectation E[tmin] ≤ 3n ln2 n+O(

√
n ln2 n).

Now we are ready to state our main result.
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Theorem 3. Let G = G1, G2, · · · be a strongly connected balanced directed dynamic graph with maximum degree
dmax. The cover time of a maximum-degree lazy random walk on G is O

(
dmaxn

3 ln2 n
)
.

Proof. To prove this theorem we use the same technique as in [AKL08]. Let X0, X1, · · · be a random walk on
G. For an integer t ≥ 0, define Yt = Xtdmaxn2dlnne. Fix some vi, vj ∈ V . Let P be a probability distribution of
Yt|{Yt−1 = vi}. By Lemma 2,

∥∥∥P − I
n

∥∥∥2
2
≤
(

1− 1
n2dmax

)4n2dmax lnn

< 1
n4

(8)

Hence, the coordinates of P − I
n are in absolute value smaller than 1

n2 . Thus,

Pr[Yt = vj |Yt−1 = vi] ≥ 1
n −

1
n2 ≥ 1

2n , for n ≥ 2

Applying Lemma 3,

E[min{t : {Y0, Y1, · · · , Yt} = V }] = O(dmaxn
3 ln2 n)

�

4 Conclusions

In this paper we addressed the problem of random walk on directed dynamic graphs. We proved that directed
dynamic graphs are explorable by a lazy random walk. We also established an O

(
dmaxn

3 log2 n
)

upper bound for
the cover time of the maximum-degree lazy random walk on balanced directed dynamic graphs. This result also
tightens the previous bound for undirected dynamic graphs, that are a special case of balanced directed graphs.
We are currently working on the question of bounding the negative impact of an oblivious adversary for the entire
range of directed dynamic graphs. We would also like to find out if there exists a strategy with polynomial cover
time on all directed dynamic graphs.
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