DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Linear and Non-Linear Systems: A Survey

J. Diaz, M. Serna, and P. Spirakis

ABSTRACT. In this paper we present the research that has been done with
Linear Dynamical Systems to generate almost uniformly elements from a given
set, and thus approximate some hard counting problems. We also indicate how
non-linear systems can help to parallelize the computation. Finally we outline
possible applications of linear systems to formalize heuristics.

1. Introduction

Many problems involving counting solutions of combinatorial structures are
well known to be difficult. Valiant defined the class # P of computationally equiva-
lent counting problems ([Val79b]). For many problems in this class, their decision
counterpart is in P. It is known that, unless the polynomial hierarchy collapses,
P # #P. This fact implies that for any # P-complete problem, exact counting is
apparently intractable ([Pap94]). The most notorious of these problems is to com-
pute the permanent of a dense matrix. That problem turns out to be equivalent to
counting the number of perfect matchings in a dense bipartite graph ([Val79al).
The hardness of these counting problems motivated research on approximate count-
ing. Pioneering work in this line was the paper [KLMB89] where a Randomized
Fully Approximation Scheme is constructed, for some difficult counting problems.
Later, it was discovered that for the problems which are self-reducible, approxi-
mate counting is equivalent to almost uniform generation ([JVV86]). The almost
uniform generation problem consist in picking at random an element of a finite set
according to a distribution. Such distribution must be guarantee to be within a
relative error € of the uniform distribution.

Karmarkar, Karp, Lipton, Lovasz and Luby give a Monte-Carlo algorithm for
approximating the permanent of dense positive matrices based in computing an un-
biased estimator ([KKL*93]). Their estimator can be easily computed in polylog
parallel time with a polynomial number of processors ussing a Randomized PRAM,
thus we get a parallel RNC algorithm to approximate the permanent of the adja-
cency matrix of a bipartite graph with minimum degree (1/2 4+ @) n where a > 0.
Therefore there exists a RNC approximation to the number of perfect matchings
for “quite dense” bipartite graphs.
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A technique that has proved to be very useful for solving the almost uniform
generation problem, is the Markov Chain technique. Given a problem, define a
Markov chain where the states are all possible solutions, plus possibly a small frac-
tion of “non-solutions”, and the transitions are certain probabilistic rules that allow
us to remain in the same state or move to a new state. Under certain properties
of the underlying graph, it can be proved that a polynomial (in the input size)
random walk on the chain gives a random element, almost distributed according to
the stationary distribution of the chain. The difficulty of this method is to prove
convergence in a polynomial number of steps to the stationary distribution, usually
refereed to as the “rapid mixing” property. Broder used the Markov chain technique
to approximate the value of the permanent of a dense matrix ([Bro86]). The rapid
mixing property of his chains was shown by Jerrum and Sinclair ([JS89]). Over
the past years, a large body of literature has been devoted to the subject of almost
uniform generation through Markov chains and methods of proving rapid mixing.
Excellent surveys can be found in [Sin93, Vaz91, Kan94, MR95, JS95].

A question of interest is the possibility of parallelizing the almost uniform gen-
eration and approximate counting problems. Consider the Markov Chain defined
by Broder for almost uniform generation of perfect matchings in dense bipartite
graphs ([Bro89]). Teng has proved that the problem of computing the final node
m’ of a sequential walk, starting at a node m is P-complete ([Ten95]). This result
does not exclude the possibility of generating in parallel an almost uniform perfect
matching. The Teng result excludes the possibility of the computation of a given
sequential random walk, in NC that is; given the walk and the initial state, compute
the final state using a PRAM in polylogarithmic steps using a polynomial number
of processors.

To obtain a parallel generator instead of using a Markov chain, we define a
“genetic system”. Such a system starts from a set S of objects with a given initial
distribution Ilp, this will be the initial generation at time ¢ = 0. From that initial
population, new generations are grown by mating two randomly selected parents.
Define a mating rule to crossover objects: our rule will be defined in such a way
that for any two objects sampled according to distribution II; at time ¢, form a
new object that will be an element of the next population. Formally, if u and v are
the objects sampled from TI; mate them with probability p(u, v, w) to outcome the
new element w. Then the probability distribution of the population at time ¢ + 1
follows the non-linear dynamic equation

Mg (z) = Ti(u) Y plu, v, 2)TT(v).

We shall show that the system evolves towards a unique stationary distribution. In
general quadratic dynamic systems are difficult and no too much is known about
their behavior. For instance, it is known that a quadratic dynamic system can solve
any problem in PSPACE, using a polynomial amount of time [Pud94, ARV 94].
Therefore unless P=NP there is no polynomial time simulation of a general qua-
dratic dynamic system. There are results for some particular non-liner dynamic
systems, for example in the work of Rabani et al. [RSW92, RRS95].

The next section in this survey presents some general results on Markov chain
theory and the Markov chain method. We survey the sequential approach to solve
a the monomer-dimer system. Section 3 presents the non-linear approach to par-
allelize the almost uniform sampling. We show the convergence of the system and
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how to implement in parallel the defined mating rule. Finally section 4 surveys
some of the work done trying to formalize hillclimbing heuristics, together with
some final remarks.

2. Linear Systems

Recall that a Markov chain p is an stochastic process, defined on a set of
states S, in terms of a transition matrix P = (p;;)i jes, where each p;; denotes the
probability of going from i to j. Therefore, Vi € S, Zjespij = 1. Moreover, at
t = k, we define 7 as

(1) (i) = Y i m-1(d)

j€s
Let X; be a stochastic variable such that, at time ¢, it denotes the state where
p is. Also let the initial distribution mo(¢) (at ¢ = 0) defined as follows: Vi €
S, mo(i) = Pr{Xo=1}.1f S ={1,2,3,...,m} and T = (mx(1), ..., mx(m)) is the
distribution at time ¢ = k, then

(2) Tp = Tp_1- P =7 P*.

So every Markov chain defines a linear system and reciprocally any linear system
can be viewed as a Markov chain.

Let pgj denote the probability of going from state ¢ to state j in ¢ steps. A
Markov chain is irreducible if Vi, j € S, 3¢ such that pgj > 0. A Markov chain is
aperiodic if Vi, j € S, ged {t|p§j > 0} = 1. A Markov chain is said to be ergodic
ifvVj € 8, tli}rgjpﬁj = Moo (j) > 0. If g1 is ergodic then Teo = (Moo (1), ..., Teo(n)) is
called the stationary distribution.

Let 1= (1,1,...,1)T. As P is stochastic, then P-1 = 1. Notice

To(l) ... 7Te(n)
pe=fim[Pil=1
Teo(l) oo Too(n)

The following results could be found in any basic book of Markov chains (see

for ex. [Nor97, Sin93])

THEOREM 1. A Markov chain p is ergodic if and only if it is irreducible and
aperiodic. Moreover, if a Markov chain p is ergodic then its stationary distribution
is the unique distribution that satisfies:

Too * P = Teo

S 7o (i) = 1.

i€S
To assure that the stationary distribution is the uniform distribution, we need

further conditions on p. A Markov chain is symmetric if Vi, j € S, p;; = pji. An
ergodic Markov chain is reversible if Vi, j € S satisfy the Balance Equation

Teo (2) Pij = Moo (J) Pji-
The next two results can be found in any textbook on Markov chains,

ProrosiTiON 1. Let p be an ergodic Markov chain. If A7, such that Vi,j €
St m()pij = me(f)pji and Y mi (i) =1, then p is reversible and Too = .
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THEOREM 2. If u is a symmetric, ergodic Markov chain with |S| = n then

Vie S, (i) = l

n
Let us consider the problem of given a large and finite set S, and a probability
distribution 7 on S, sample an element in S according to m. The Markov Chain
Technique gives an approximate solution of the previous problem, and consists
in the following steps: Construct a Markov chain p with states S and stationary
distribution 7. Starting from an arbitrary state s € S, perform a random walk in
the chain large enough to set a closed point to equilibrium distribution. In the light
of our previous comments p must be ergodic and if p is ergodic and symmetric,

then
_ <1 1)
Too = | —=y-vey—
1S 1S

in other words, T, is uniform.

Therefore, once we have a Markov chain p, to approximate sample from 7,
simulate the Markov chain for a finite number of steps and get close to mo,. The
question is, what is the rate of convergence? How long should the random walk be
to sample close enough to the limit distribution? Recall that for all k, 7 = 7o P".
We need to control powers of P, hence, we need to look at the eigenvalues of P. The
basic idea is to use spectral theory as it is done in Graph Theory (see for example

[Chu96)).

Recall from linear algebra that any n X n matrix M over K could be considered

as a linear operator V. — V. Moreover, if M has Aj, Ag,..., A, real eigenvalues,
not necessarily all different, then M = > \;H? with
i=1
i ) FO0 ifi=y
-1 = { 0 ifi#j.
Moreover, if M diagonalizes, then H* - H* = H'.
Let P be the transition matrix of pu with eigenvalues Aq,..., A,, and assume

that P diagonalizes. Then as P is an stochastic matrix Ay = 1. We will assume
that eigenvalues are sorted by absolute value, so that 1 = |[Aq| > [Aa] > ... > |Aa]-
So,
P =N "AH' = ATH'+ > \'H'.
i>1 i>2
Let Too = 7 be the left eigenvector of A; = 1 and let

w(1) ... m(n)

then
lim P™=H'+ lim Y A'H'~ H'+ lim [X|H?.
m— 00

m—+0oQ m—r 00
i>2
Therefore if p is an ergodic Markov chain with stationary distribution 7., then we
must have || < 1.
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To avoid that negative eigenvalues can delay the ratio of convergence, we can
increase the value of the self-loop in P and make all eigenvalues positive. The
following theorem is proved in [Sin93],

THEOREM 3. If P is the transition matriz of an ergodic and reversible Markov
chain with eigenvalues Ay = 1 > Ay > A3 > ... > X, > —1, then the Markov
chain with matriz P’ = L(I + P) is also ergodic and reversible, and it has the
same limit distribution To,. The eigenvalues {\}}_, are similarly ordered and

A= 1(1+X) > 0.

We wish to approach the stationary distribution in a random walk of polynomial
length. Define the relative pointwise distance at time ¢ is
|pl; — oo (4)]
ij€S  Teol(f)
To see how fast A(t) — 0 and get some bounds on A(t), the following bound is
useful for an ergodic and reversible Markov chain, ([Sin93])
A5

1;%%1#00(])

Aa" < A(t) <

historically the way to bound the convergence of Markov chains was coupling
([Lin92]). The big breakthrough of Jerrum and Sinclair was to use structural prop-
erties of the graphs representing the Markov chains associated to certain counting
problems, to bound the convergence. Let us define the concept of rapidly mixing
Markov Chain.

The rate of convergence in a Markov chain g to its stationary distribution 7,
is given by its mixing time function defined by 7;(¢) = min{t | V¢’ >¢: A;(¢') <e }.

We say that a Markov chain is rapidly mixing if from any state i € S and
Ve:0 < e <1 we have

. 1
r(e) < poty (i, log 1)

Notice a Markov Chain p can be considered as a weighted directed graph G =
(V, E,w), where V is the set of states, p;; >0 = (i,j) € E, and the weight of an
edge w(7, j) is defined as the probability m(i)p;;. Notice that when the Markov
chain is reversible we have w(i, j) = w(j, 7).

Let us give some topological definitions on the underlying graph G of p. For
S’ be a nonempty subset of S. The capacity of S’ measures the probability of
being in a state of S’ when reaching 7., and it is defined Cs = > oo (4).
The ergodic flow of S’ measures the probability of leaving S’, and it is defined
Fgi = Z Too (1)pij. The probability of leaving S’ once inside S’ is given by

i€S!jgSs’

the formula ®g: = Fs:/Cs:. The conductance ® of a Markov chain u is defined
as ® = min{®s/ | ' ¢ S A Cs: < 1}. Notice the conductance of y measures the
worst bottle-neck. If the Markov chain p is reversible we have

VS G S:Fs=Fs = ®=min{max{®s, Pz} : & ¢S5 £0}.

It is possible to bound A;, and hence the convergence, in terms of a topological
characteristic of pu, its conductance ®. The following result is from [JS89],
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THEOREM 4 (Jerrum-Sinclair). Let u be an ergodic and reversible Markov chain.

Then
2

®
1-20< A <1 -

COROLLARY 1. If p is ergodic and reversible then
1—®2?/2)!
A(t) < M

~ min; Teo (%)
Moreover, if ® < 1/2 then A(t) > (1 — 2®)".

The following theorem gives us a characterization of rapid mixing in terms of

[OF

THEOREM 5. Let p be an ergodic and reversible Markov chain, that for alli € S
has pi; < 1/2, and such that if 7, = minjcs{mo0 (i)} then Inpiz, =" < poly(|i]).
Then p is rapidly mizing if and only if & > m Vie S.

Therefore to prove that an ergodic and reversible Markov chain g is rapidly
mixing, we have to find a polynomial p such that ® > 1/p(|i]).

Still it is necessary to compute or find bounds for the conductance. For that,
Jerrum and Sinclair considered a clever argument to estimate the bottleneck of the
Markov chain. Define a unique canonical path, between every pair of states. Given
a transition edge, count the number of canonical path going through it: Given
any S’ C Slet §(S') = {i € S 3j€ S : e=(ij)}. We define the edge
magnification of the graph of y as

19(5")]
o<|sr|<lsl ST

Notice that if d is the maximum degree of the graph of p then VS’ C S |6(5")| >
|S']-d. So 0 < d(p) <d.

Many Markov chains can be considered as a random walk in the graph of g, with
maximum degree d, where transitions from 7 to j are made with probability 3/d for
some constant 3 (0 < 8 < 1). In addition, Vi € S, i has a self loop with probability
1 — Bdeg(i)/d. In such a situation, the conductance of the corresponding graph

verifies & = Jdﬂ. Therefore, in this kinds of Markov chains, to prove rapid mixing,

it is enough to find a polynomial p such that ® = Mdﬂ > m. If d < poly(|i]),

we just have to find a polynomial lower bound on the edge magnification ~.

2.1. Monomer-Dimer Systems. Let us see an generic example taking from
[Sin93]. Given a graph G = (V,E) with |V| = n and |E| = p. For k €
{0,---,|n/2]}, let M(G) denote the set of matchings of size k in G, and M
be the set of all its matchings, that is M = Uy M. Let N = |[M|. From now on, G
will denote the input graph.

We start by defining a Markov chain D for a given weighted graph G, where
c(e) denotes the weight of edge e. The chain D contains as states the set M of all
matchings, and the transitions are defined as follows,

Definition of transitions in D :

Given a matching m € M,
(0) Sample uniformly a random edge e = (u, v).
(1) With probability 1/2 stay in m

otherwise
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FiGURE 1. Example with G = K3 5 and |E| =4

(1.1) (Deletion) If € is in m then with probability 1/(1+¢(e)) go to matching
m — {e}, otherwise stay in m.

(1.2) (Augmentation) If m U {e} is a matching then go to new matching
m U {e} with probability c(e)/(1 + c(e)).

(1.3) (Rotation) If u is unmatched in m and v is matched in m by edge
e’ = (v, w), then with probability ¢(e)/(c(e’) +¢(e)) the new matching
is m — {e’} U{e}, and with probability c(e’)/(c(e’) + ¢(e)) keep m.

(1.4) Otherwise stay in m.

Figure 2.1 shows an example of the Markov chain corresponding to a monomer-
dimer system in which all edge weights are equal to a constant ¢. The convergence
of the monomer-dimer system can be found in [Sin93]
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FiGURE 2. An example of canonical path.

THEOREM 6 (Sinclair). Given a weighted graph G, the Markov chain D is re-
versible and ergodic. So it converges, and the stationary distribution is

[Teem, c(€)
EjeM Heemj cle)’

In order to analyze its mixing time, using the conductance argument, we sup-

My (7) =

pose that there is and underlying order on all simple paths in G (including cycles)

For any path, fix a start vertex, it must be an endpoint if the path is not a
cycle. For any two given matchings m; and my their symmetric difference is a set
of disjoint cycles and paths. We begin by sorting this set of paths according to the
fixed order. The canonical path from mj to my involves the transformation of the
initial matching into the final one, by modifying in order all the paths and cycles,
starting from the corresponding start vertices.

To unwind a path that is not a cycle, we have two cases: first one, the path
starts with an edge of mg, in such a case we change edge by edge and finish by
adding the last if necessary. Second, the path starts with an edge of m; remove
that edge and continue as in the previous case. An example of such unwinding is
given in figure 2

To unwind a cycle, fix a direction to traverse its edges in such a way that the
first edge from the start vertex is in my. Remove this edge and then proceed as
in the corresponding path using as start vertex the endpoint that is not the start
vertex in the actual path.
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We also need to define an injective mapping from the set of canonical paths
that pass through a given transition ¢. Let ¢ be a transition from matching m to
matching m’, and let P(#) be the set of canonical paths that contain ¢. For any pair
of matchings such that the canonical path from m; to my goes through ¢ define
or(m1, mg) = my @ me @ (m Um’), and remove the edge e of m; adjacent to the
start vertex of the path currently treated in case the resulting set of edges is not a
matching. The difference my @ mgy can be recovered from o4(my, msy) using

or(mi,me) @ (mUm') @ e iftis an augmentation
the current path is a cycle
my @ my = .
and e is the removed edge

ar(my, mg) @ (mUm') otherwise

It is possible to tell whether the path is a cycle or is not, because we are unwinding
cycles in different direction than paths. Therefore we can recover the original
matchings using the path ordering. Hence o} is injective. Furthermore it can be
shown (see [Sin93])

LEMMA 1. For any transition t and any {m1, m2) € P(t) we have

Too (ml)ﬂ-oo (mz) S 4|EjlC.rznaxl‘ufﬂ-oo (o-t(mla m2))7

where cmax = max{l, max.cp c(e)} and wy and wy is w7 (m) multiplied by proba-
bility of the transition t.

3. Genetic System

In order to give a parallel implementation of the methods described in section 2
we introduce the non-linear systems.

To simplify the presentation, we consider only the monomer-dimer Markov
chain M in the case that all weights are equal to a given fixed parameter ¢ > 0.
Such chain M contains as states the set M of all matchings, and the transitions
are defined as follows,

Definition of transitions in M :
Given a matching m € M,
(0) Sample uniformly a random edge e = (u, v).
(1) With probability 1/2 stay in m
otherwise
(1.1) If € is in m then with probability 1/(1 + ¢) go to matching m — {e},
otherwise stay in m.
(1.2) If m U {e} is a matching then with probability ¢/(1 + ¢) go to new
matching m U {e}.
(1.3) If u is unmatched in m and v is matched in m by edge ¢ = (v, w),
then with probability 1/2 the new matching is m — {e’} U {e}, and
with probability 1/2 keep m.
(1.4) Otherwise stay in m.

As M is a restricted version of the monomer-dimer system we have

THEOREM 7 (Sinclair). Given a fized ¢, the Markov chain M is reversible and
ergodic. Moreover the stationary probability T, (i) = /™l / EjeM clmil
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In [Sin93] it is also shown that for graphs verifying

. | M, (G
(3) Mo 1(@)] < q(n)

with ¢ a polynomial function, then taking ¢ = 2¢(n), the chain M converges to an
uniform stationary distribution on the subset of perfect matchings. Furthermore in
the limit distribution, the probability of getting a perfect matching is bigger than
1/2. As every dense graph satisfies equation (3), then the class of bipartite dense
graphs is a subset of the class of graphs satisfying (3). Notice that the stationary
distribution is non-uniform on the set M.

We define a genetic system G over the population of all matchings M that will
produce the next generation according to a mating rule grounded in the transitions

of M.

DerFINITION 1 (Mating Rule). From parents m; and m,, sort randomly the
edges of m,. The offspring my is the matching resulting of applying the follow-
ing procedure:

(1) With probability 1/2, my = my.

Otherwise,

(2.1) For every edge in m, N my with probability 1/(1 4 ¢) choose that the
edge that does not belong to my.

(2.2) For every edge e = (u,v) € m, such that u and v are unmatched in
my, with probability ¢/ (1 4 ¢) choose e to be in my.

(2.3) For every mazimal increasing path in m, N my, starting in a node
unmatched in my, and having even length, see Figure 3, For each
edge in the path coming from m,., with probability 1/2 choose label 1,
otherwise choose label 0. Beginning with the first edge in the path,
compute the longest prefiz formed with edges labeled 1 (if any). Then
my, consists of the edges from m, in the prefiz, and the edges from my

after the first edge labeled 0.

Given three matchings m;, m; and my, let P(4, j, k) denote the probability of
getting my, as an offspring of m; and m;.

To define a system evolving in time ¢, start from a given initial generation Iy
over M at ¢t = 0. The generation at time ¢ + 1 is obtained from the generation Il
at time ¢, by sampling two matchings m; and m, according to II;, and applying the
mating rule to m; and m,. The system evolves according to the following dynamical
equation,

(4) Moy (k)= > (). Y P(l,rk)-T(r)

mieM mr.EM

Given a probability distribution IT on the set M of all matchings in G, let us
define a Markov chain M(IT) on the set of states M, using the mating operation as
rule for the transitions. Formally the transitions are defined,

Given a matching m; € M,
(1) Sample a matching m, according to distribution TI,
(2) move to the matching my defined by the mating of m; and m,.
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FIGURE 3. Two matchings and the set of maximal increasing paths.

following equation,

(5)

Mega(k) = > () Y P(lrk)-Ti(r).

mieM myrEM

11

From the way the Markov chain has been defined, it evolves accordingly to the

Notice that the coefficient TI(/, k) in the transition matrix of M(TT) is given by the
equation

(k)= Y P(,rk)-T(r).

mrEM

system and the Markov chain converge.

3.1. Convergence. We want to study the conditions under which the genetic
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LEMMA 2. Given a path {my,---,m,} on the underlying graph of M, the sta-
tionary distribution Iy, verifies,

r—1 r—1
Moo (1) H piyi+1 = Moo (7) H Pit1,i-
i=1 i=1

ProoF. The time reversibility of M implies I, (¢) - p;; = pji - oo (j), therefore

r—1 r—1
oo (1) [] pisie1 = Teo (1) - pr2 [ Piien
=1 i=2

r—1
=p21-Te(2) [[ priinn
=2

s—1 r—1
= sz'+1,z' oo (s) - H Piyit1
i=1 i=s

r—1
= Hpi+1,i'Hoo(7’)-
i=1
O

Given a matching m;, we denote by S(¢) the set of edge sequences obtained by
sorting the edges in m;. Given three matchings m;, m, and my, and an element
7 € 5(r) let us denote by P(!, 7, k) the probability of going from m; to my, following
a sequence given by 7 in M, so we have P(l,r, k) = EFGS(T)P(Z,F,/?)AS(TH.
Notice that P(l,r, k) € [0,1], with ), P(l,r, k) = 1. Using lemma 2 and the fact
that, when P(l,7, k) # 0 there is a matching m; of the same size as m, such that
P(k,5,1), we get,

LEMMA 3. Given three matchings m;, m, and my, we have
Me(l) - P(l,r k) = P(k,r 1) - Tleo (k).

This lemma gives us the property we need to prove convergence of both, M (IT)
and G to the same distribution II...

THEOREM 8. Given a distribution Il over the set of matchings of a given graph
G = (V, E). If for every matching m with exactly one edge we have TI(m) > 0, then
M), and G converge to the limit distribution of M.

ProOOF. In order to prove the convergence of M(II), we show the time re-
versibility of M(TI) with respect to the distribution TTs,. Recall that the proba-
bility of going from m; to my in the Markov chain M(IT) is given by the equation
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T(l, k) =3, ear P(L,7, k) - TI(r), therefore using lemma 3 we have
Moo (1) - T, k) = Tha (1) Y P(lyr, k) -TI(j)

myreM
= Y Tu(l)-P(l,r,k)-TI(r)
mer€EM
= Y M(k)- P(k,r,1)-TI(r)
me-EM

= T1(k, 1) - o (k)

Let us prove the convergence of the genetic system G . Recall that the system
evolves according to the equation

Mepr (k)= > (1) > P(l,rk)-T0(r).
mieEM mrEM
Substituting 1, in the previous equation and using again lemma 3 we get,

S Me(l)- Y. P(lrk)-To(r)

mieM mereM

> Mol Pl k) - T (r)

mieM m,.eM

S0 Teo(k) Pk, 7, 1) - oo (r)

mieM m,.eM

=Moo(k) Y Teo(r) > P(k,r,l)

mpreM mieEM
) D Meo(r) =Moo (k)
mreEM

Therefore Il is a fix point for the system, let us see that it is the unique fix point
of the system. Suppose that A is another fix point, by the restriction on the initial
distribution, A must assign positive probability to any matching. Therefore the
Markov chain defined using the mating rule and the A distribution converges to

II, and A therefore A =Tl. O

I figure 4 it is given a diagram of the behavior of the genetic system and the
sequence of Markov chains. The previous theorem, give us one of the rear cases of
convergence for non-linear systems.

3.2. RNC computation of the mating rule. Given two matchings m; and
m, we wish to compute with a randomized PRAM, in polylogarithmic number of
steps and using a polynomial number of processors, the mating operation, that
gives birth to child my. Consider the following procedure:
(1) With probability 1/2, my = my
Otherwise :
(2) Tn parallel assign an order to the edges in m,.
(3) For every edge in the graph, check if it is in both matchings. If so with
probability 1 — 1/(1 4 ¢) choose that the edge is in the offspring my.
(4) For every edge (u,v) € m, check whether v and v are unmatched in my. If
so, with probability ¢/(1 + ¢) choose (u,v) to be in my.
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The column on the right shows
the evolution of the genetic
system (G. At any given time ¢

= T
;om we may use the distribution of
states in G to start a Markov
chain p(m;). All of these
systems converge to the same
distribution 7.
t=3 ms
t=2 )
t=3
t=1 ™
t=0 mo

F1GURE 4. The genetic system Gand the Markov chains associated
to every distribution.

(5) For each free node in my, obtain the list of edges in m, that form a maximal

increasing path,

if it has even length.

(5.1) Toss the coin and assign labels 0/1 with equal probability to the edges.

(5.2) Obtain the first edge a with label 0. All the edges before a that belong
to m, and all the edges after a that belong to m; form the matching
mg.

otherwise keep the edges in m;.

It is easy to implement steps (1) to (4) with a CREW PRAM in O(logn) steps
and p processors. The data structure we use to represent a matching is an array
with 2n positions, numbers between 1 and n represent nodes in one bipartition and
numbers between n 4+ 1 and 2n the other one. A value j in position 7, j # 0 means
that edge (¢, 7) is in the matching, when j = 0 7 is unmatched. To implement step
(5) we add pointers to the data structure. For an edge e = (y, z) in m; the number
of edges in m, that touches e may be 0,1, or 2. If this number is 0 we we link
the edge to itself. When there is only one €', assuming that ¢’ = (2, z), we link
(z',2) with (2,2’). And in the case that there are two edges €', e”, such that ¢’ is
previous to €, suposse the ¢/ = (2’,2) and ¢’ = (y,y'), we link (', z) with (z,y)
and (z,y) with (y,y’) (see figure 5). Finally each node i unmatched by my is linked
to the corresponding node position in m,. The additional pointer structure can be
computed in O(1) time with O(n) processors with a CREW PRAM. Starting from
the edges leaving free points in my, use pointer jumping to obtain the maximal
paths and compute their length. Keep those paths which have even length. All this
can be done in O(logn) using O(n) processors in a randomized CREW PRAM,
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FIGURE 5. Data structure and links

including the label assignment. Finally step (6) can be implemented with the same
bounds, using again the pointer jumping technique.

4. Local Search and Optimization Problems

One of the characterization of algorithms in recent time is the use of heuristics
greedy type. Those heuristics seems to work quite well in practice for some problems
but the theoretical foundations of why or how they work is an open and difficult
topic of research.

Let us recall that given a combinatorial search space S and an objective function
f: S — RT, a maximization problem consists on finding ¢* € S such that
Yo € S: f(o) < f(c*), i.e., to find a maximum. A minimization problem
consists on finding ¢* € S such that Vo € S : f(o) > f(c*), i.e., to find a
minimum.

For example the Graph Bisection problem consists in given G = (V, F) with
V| = n = 2k, find V1, V2 € S with |Vi| = [V2| = n/2 and V; U V2 = V such that
{{u,v}: ueVy, v €Va}|is minimum.

Here the search space S is the set of all possible bisections and f(o) is the
number of crossing edges. This problem is NP-hard [GJ79].

A black-box heuristic is a randomized search heuristic operating on a con-
nected neighborhood structure H on the vertex set S. Usually, the edge neighbors
of a particular state are defined under some measure of distance that is natural to
the combinatorial problem under consideration. The term Black-box was coined by
Ari Juels in his PhD dissertation [Jue90].
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The choice of the neighborhood represents a key decisions in the application of
an algorithm and affects much of its performance.

An heuristic that has been used to solve efficiently some difficult optimization
problems is hillclimbing. It has the following generic structure,

function HillClimbing (S, N, f)
Select initial state o € .S
while movement is possible do
Randomly select o’ € N(o)
if f(o') > f(o) then — could also be > —
ag = 0',
end if
end while
return o
end
The algorithm terminates when it encounters a local maximum (or minimum), i.e.
an state o such that Vo' € N(o) : f(o) > f(o'). A local maximum can be on a
“peak” (its objective function value is strictly greater than all its neighbors) or in
a “plateau” (its objective function value is greater or equal than all its neighbors.
This is why one must decide to choose a > or a > sign in the algorithm and be
careful in the last case to avoid cycling.

For instance, in [KP92] the authors prove that hillclimbing finds a satisfying
truth assignment, if one exists, with high probability.

The problem of the hillclimbing algorithm is that once a local optimum is
found the algorithm returns it, but this local optimum can be different of the
global optimum. In order to enable the algorithm to accept downhill moves, the
Metropolis algorithm is parameterized by a temperature ¢ and proceeds as follows:

function Metropolis(S, N, f,t)
Select initial state o € S
while movement is possible do
Randomly select o’ € N(o)
A= f(o) — f(o")
with probability min (1, e_A/t) do
ag = O'/
end with
end while
return o
end

Observe that uphill movements will be automatically accepted, whereas down-
hill movements are accepted randomly in function of the height (A) of the movement
and the temperature t. With a high temperature the probability of descending is
high; with a small temperature, it is low. In the limit, as ¢ = oo Metropolis makes
a random walk and as ¢ — 0 Metropolis becomes the hillclimbing algorithm.

Formally, let d(o) be the degree of o and D = max,cs{d(c)}. The Metropolis
algorithm can be seen as a Markov chain on H with transitions defined by

1. Self loop with Pr = 1/2 when ¢/ = 0.
2. Choose: ¢’ with probability
1/D if o/ € N(0)
Pr(oc/) =< 1—-d(o)/D ifo' =0

0 otherwise.
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3. With probability min(1,e=2/%) go to o’.

Let p; be the above chain. Its transition probability matrix is P = [pyo/]
with pser = Pr(o’) -min(l,e‘A/t). Define m(o) = ef(;)/t, where m; represents the
stationary distribution for p;. It is straightforward to prove that ur is ergodic and
reversible. Moreover notice that when ¢ — oo, we have e'/* — 1 and thus 7 is the
uniform distribution (1/|S]). On the other hand, when ¢ — 0, m becomes more
sharply peaked around optimal solutions in S.

Therefore, fixing ¢, the Metropolis algorithm is just a “sufficiently long” random
walk on the Markov chain p;.

The Monomer-Dimer procedure described in Section could be seen as a Me-
tropolis algorithm for the problem of finding a matching of maximum cardinality
in a graph. Using that chain, it can be proved the following result [SH88§],

THEOREM 9. For graphs such that My, _1/M,, < poly(e') running Metropolis

for O(n) steps, with probability 1 — n%—l a perfect matching is found.

Another classical example is the Graph Bisection, that we already mentioned
above. Jerrum and Sorkin considered the problem for the following restricted graph
model [JS93],

In the model G4y, p », a graph G has 4n nodes, colored half white and half black.
Edges between nodes with the same color are included independently with proba-
bility p, while those between nodes of different colors are included with probability
r with r < p. For sufficiently large values of p—r, these graph instances will contain
a bisection §* (the one in which white and black nodes are separated) which is very
likely to be the unique minimum. This is referred to as the planted bisection.

The value p — r characterizes the difficulty. For p = r = 1/2, the expected
cut of the planted bisection is n?/8. In the case p = 1/2 and r = p — n®~2 for
3/2 < A < 2, the expected cut of the planted bisection is n?/8 — n® /4.

Given a bisection 8, we define b(3) as its cut. We refer o (I, r) as the operation
of swapping two vertices » € V; and | € V5. We define N(3) as the set of all possible
states obtainable from 3 by a single move . We finally define B as the set of all
possible bisections of . The Metropolis algorithm is given:

function Metropolis(G) is
Choose 8o uniformly from B
for ::=1..t do
Choose randomly 3’ € N(3)
AC = b(') — b(B)
with probability m do

B:=p
end with
end for
return 3

end

The Markov chain for this problem is given by the set of states B and the following
transitions:

1) With probability 1/2, stay in the same state; 2) Choose ' € N(f) and with
probability l-ke%” move to it.
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The transition matrix is P = [pgg] with pgg = Pr(5’) - Heﬁ As we have
an ergodic chain, it converges to a stationary distribution mg. Jerrum and Sorkin
proved the following result,

THEOREM 10. Let € > 0, p— r = n'=6%2¢ T = pb/6%¢  Gelect G € Ganp,r- At
constant temperature, the metropolis algorithms reaches the unique 3* in O(n**c)
steps with overwhelming probability .

Ari Juels [Jue90] proved that in some measure these results also extrapolate to
the hillclimbing algorithm. Jerrum and Sorkin [JS93] proved that T is too high to
be effective on small instances. There have been other work on proving formalizing
convergence and rapid mixing for Metropolis algorithms. For instance Nolte and
Schrader use similar ideas to the ones developed by Jerrum and Sorkin, to give a
kind of Metropolis algorithm for [NS97] 3-colorability, restricted to some particular
“coloring planted” kind of graphs [NS97].

The authors believe that an important and difficult topic of research is the
formalization of hillclimbing type algorithms, and their parallel implementation
and formalization. For the parallel implementation, non-linear systems could be
of help. But they have the inconvenience that little is know about the theory of
non-linear dynamic systems. In fact another important and difficult open area of
research is to formalize and study the convergence of genetic algorithms of which
the systems studied in section 3 are just an oversimplified model. To give conditions
for convergence of genetic algorithms would be of great theoretical and practical
relevance.
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