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1. Introduction 

 

1.1 Overview 

 

As a ripple of light the fish turn. Like some animate fluid, the school glides and turns 

again. The synchrony of motion is captivating. A similar integration of behavior can be 

seen in a bird flock, where the volume and shape of the group changes as it turns and arcs 

overhead, and yet the aggregate remains cohesive. Many group-living vertebrates exhibit 

complex, and coordinated, spatio-temporal patterns, from the motion of fish and birds, to 

migrating herds of social ungulates and patterns of traffic flow in human crowds.  

 

The common property of these apparently unrelated biological phenomena, is that of 

inter-individual interaction, by which individuals can influence the behavior of other 

group members. It is on how these interactions result in the collective behaviors of 

vertebrate animal groups that we focus on here. Specifically, we consider systems in 

which insights from self-organization theory have been useful in improving our 

understanding of the underlying mechanics. Self-organization theory suggests that much 

of complex group behavior may be coordinated by relatively simple interactions among 

the members of the group. Following this theory, the form, and therefore often the 

function, of the collective structure is encoded in generative behavioral rules. Self-

organization has recently been defined as “a process in which pattern at the global level 

of a system emerges solely from numerous interactions among the lower-level 

components of a system. Moreover, the rules specifying interactions among the system’s 

components are executed using only local information, without reference to the global 

pattern” (Camazine et al., 2001). It should be noted that often in nature, pattern-forming 

processes may not strictly conform to this classification: in some instances, such as 

animal migration, individuals may modify their local (self-organizing) interactions with 

others with reference to global information, such as a general desire to move in a certain 

direction. This type of system therefore self-organizes within the context of global cues.  
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In recent years there has been an expanding interest in pattern formation in biological 

systems (Gerhard and Kirshner, 1997; Maini and Othmer, 2000; Camazine et al., 2001). 

The field of pattern formation covers a wide range of areas, including attempting to 

explain fetal development (Keynes and Stern, 1998), patterns on the coats of mammals 

(Murray, 1981), the structure of social insect nests (Theraulaz and Bonabeau, 1995), and 

the collective swarms of bacteria (Ben-Jacob et al., 1994), army ants (Deneubourg et al., 

1989) and locusts (Collett et al., 1998). In particular there is a growing interest in the 

relationship between individual and population-level properties. A fundamental question 

is how large-scale patterns are generated by the actions and interactions of the individual 

components. Many pattern-forming processes in biological systems, such as cellular 

sorting or the collective organization of group-living (particularly eusocial) insects, are 

dynamical mechanisms whereby the large-scale patterns (e.g. clustering of cell types, 

Glazier and Graner, 1993; or periodic activity cycles in ant colonies, Boi et al., 1999) can 

be accounted for by the interactions among the individual components of the system (e.g. 

differential adhesion among cells; ants responding locally to the activity of others). 

 

Applying such a self-organization viewpoint to vertebrate groupings is a more recent 

development, and despite the importance of understanding group dynamics for ecological 

processes (Levin, 1999), many collective behaviors are still only qualitatively 

understood. Vertebrates often have superior cognitive abilities and more complex 

behavior patterns than organisms such as social insects. Consequently it may appear that 

this approach may be less able to account for the collective behaviors of these organisms. 

However, the self-organization approach is applicable to even the most complex of 

organisms, such as humans, but is restricted to certain aspects of their behavior, such as 

the motion of pedestrians within crowds (see sections 2.2a and 2.3) where interactions 

may be (mechanistically) relatively simple. A further reason that vertebrate groups have 

been less well studied in this context is that for many vertebrate groups, such as ungulate 

herds, pelagic fish schools, or human crowds, the interactions among the individuals are 

much harder to study than in group-living insects, or bacterial swarms, where the 

manipulative experiments required to understand the underlying mechanisms better are 

easier to perform (and replicate). 



 4

Here we will review progress in this newly emerging field, that of applying self-

organization theory to mobile vertebrate groups composed of many interacting 

individuals (such as bird flocks, ungulate herds, fish schools, and human crowds) in an 

attempt to improve our understanding of underlying organizational principles.  

 

1.2 Understanding the dynamics of collective behavior 

 

Mathematical modeling is becoming increasingly recognized as an important research 

tool when studying collective behavior. This is because it is usually not possible to 

predict how the interactions among a large number of components within a system result 

in population-level properties. Such systems often exhibit a recursive, non-linear 

relationship between the individual behavior and collective (‘higher-order’) properties 

generated by these interactions; the individual interactions create a larger-scale structure, 

which influences the behavior of individuals, which changes the higher-order structure, 

and so on. Consider the movement of ungulates across grassland, or over snow-covered 

terrain. The motion of an individual is likely to change the environment through which it 

moves (by compression of the grass or snow). This local change influences the motion of 

other individuals passing near that point: they exhibit a tendency to maximize their 

comfort of travel (and hence minimize energy expenditure) and thus have a greater 

propensity to move over the ground previously walked on. This results in further changes 

to the environment at that point (further compression of the substratum), which in turn 

increases the probability of others to choose to move over that point if close to it. Taken 

over a larger area, this feedback results in the generation, and use of, trail structures. Thus 

individuals change the local properties of their environment, which influences the motion 

of others, which further alters the environment, and so on. The generation of animal 

(including human) trails will be discussed in more detail below, and the results of 

computer models will be used to reveal the dynamics of this system.  

 

When modeling population-level processes, continuum approaches (‘Eulerian’ models) 

have typically been used. These abstract the movement of very large populations to 

population densities, and movement is usually represented using diffusion and advection 
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processes. Such approximation procedures are very useful, since there are well-developed 

mathematical tools for their analysis. Although well suited to the movement of very large 

populations (e.g. bacterial, planktonic and certain insect aggregations), they are less 

suitable for most vertebrate animal groups where the number of individuals within an 

aggregate is relatively small. Furthermore, the analysis of such models is typically greatly 

complicated when social interactions, or interactions between individuals and their 

environment, are an important organizing mechanism. Consequently, here we will largely 

consider the motion of groups as resulting from interactions among the individual group 

members, and use, where appropriate, individual-based (or ‘Lagrangian’) models of 

animal motion to elucidate certain (often generic) principles. This approach to modeling 

shares certain properties with techniques developed in non-linear statistical physics to 

simulate the motion of particles, as for example in gases, fluids or magnets. While 

particles may be subject to physical forces, animal behavior can conceptually be 

considered to result from individuals responding to “social forces”: for example, the 

positions and orientations of neighbors, internal motivations (e.g. degree of hunger), and 

external stimuli (such as the positions of obstacles). In understanding the movement 

decisions of animals we must better understand how and why motivations exist, and how 

these translate to collective patterns.  

 

The global-level (‘emergent’) dynamics of the group are usually not explicitly encoded: 

there is often no global blueprint or template for the pattern (although the formation of 

trails, as described above, may to some degree be considered as the generation of an 

interactive, labile template). The form of the collective structure, and hence often the 

function, is usually encoded in generative behavioral rules. Such rules, being subject to 

natural selection, allow the generation of self-organized adaptive patterns at the group-

level. Since the costs and benefits to individuals when grouping may change dynamically, 

even as a function of the position of an individual relative to other group members, 

changes in individual rules are likely to occur as group members attempt to maximize 

their individual fitness. This can result in groups adopting different shapes, or motions, as 

well as being a potential driving force for internal structuring within vertebrate groups. 

Such properties will also be discussed here. 
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Environmental factors, such as physical habitat structure or temperature may influence 

the behavior of individuals within groups, and consequently their motion and structure. 

These factors may affect the cohesion of groups, or act as ‘seeds’ for self-organized 

aggregation processes. Individuals may balance global goal-oriented behavior (such as a 

desire to move up a temperature gradient) with local conditions, such as avoidance of 

isolation from a group, or alignment with group members. Such a balance of external and 

internal social forces may underlie the motion of certain vertebrate groups, such as 

migrating fish schools. The structure of the environment through which individuals move 

is also important. In some cases, the spatial heterogeneity in the environment may be 

temporally stable (relative to the timescale over which grouping mechanisms function), 

such as the positions of trees, rocks, and other landmarks. Such heterogeneity may 

influence both the suitability of the environment for locomotion, and the effective range 

of interaction among individuals. This variability is likely to have a strong influence on 

both individual movement patterns and interaction range. In other cases spatial variation 

in habitat is dynamic, such as the flows and turbulent eddies within certain aquatic 

environments. 

 

A further important factor to consider when understanding the collective behaviors of 

animal groups (and self-organized pattern-forming processes in general) is the influence 

of stochastic (random) events. Animal behavior is inherently probabilistic, and stochastic 

properties of animal movement are likely to strongly influence the structure of many 

vertebrate groups. It is becoming increasingly evident that self-organized patterns often 

arise because of the amplification of random fluctuation (Nicolis and Prigogene, 1977; 

Seeley, 1995), as shall be discussed here when we consider the shape of migrating 

wildebeest herds. By developing stochastic computer models of animal groups one can 

aim to capture the essential statistical mechanics of the system. The aim of modeling is 

often not to attempt to include all the known properties of a system, but rather to capture 

the essence of the biological organizing principles. One of the principal aims of self-

organization theory is to find the simplest explanation for complex collective phenomena. 

A commonly perceived problem when modeling animal behavior, especially that of 

humans, is that of the representation of complex organisms through simple behavioral 
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rules. The apparent complexity of the entities to be represented in a computer model may 

be misleading, however. In order to gain insight into the dynamics of a collective 

phenomenon, all of the complex details may not be necessary or even relevant. For 

example, much of human behavior within crowds is carried out almost automatically with 

little conscious decision-making, and although the organism is complex, the interactions 

need not necessarily be so.  

 

Furthermore, when exploring potential grouping mechanisms one often deliberately 

explores a simplified representation of the system that characterizes a broader range of 

general mechanisms. That a biological population is described as being self-organized 

does not suggest that all individuals within the population are simple, identical, or have 

the same influence on one another. Of course this is not to say that more specific 

representations of certain systems are not important. To the contrary, developing models 

of specific cases of a broader mechanism is extremely valuable. However there are 

currently often limitations in the quality of empirical information available, and thus 

creating a generalized model can often be more appropriate. Also, without an 

understanding of the behavior of the simplest system we cannot possibly know how 

changes made to the model affect its behavior. Even with relatively few parameters, the 

exploration of parameter space can be time-consuming and complex. A further point to 

bear in mind is that with collective systems, understanding the behavior of an individual 

in isolation does not necessarily provide information about the properties of that 

individual within a collective situation, where non-linear interactions may determine 

much of the group dynamics.  

 

2. Group shape and motion 

 

2.1 The wave-like front of migrating wildebeest herds  

 

Many collective behaviors result in complex, and coordinated, spatio-temporal patterns, 

from an undulating flock of birds, to mobile herds of social ungulates and lanes of traffic 

flow in human crowds. One of the most dramatic examples of collective motion in 
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vertebrates is that of migrating wildebeest (Connochaetes taurinus) that form huge herds 

that cross the Serengeti grasslands, moving to the north in May-June, and returning south 

in November. A single herd may include in excess of 100 000 individuals which viewed 

from above exhibit a common direction of motion, and a broad front that exhibits a 

characteristic wave-like form (Fig. 1). Interestingly, the wavelength of this front pattern 

is much larger that the possible interaction range of an individual. To gain a better 

understanding of how this group shape may be generated, Gueron and Levin (1993) 

developed a mathematical model of the herd front. They made the simplifying 

assumptions that individuals have a common directional preference, and that it is likely to 

be the motion of individuals at the front of the group (leaders) that primarily explains this 

pattern. How certain individuals within a group may become leaders, and the influence of 

leadership within vertebrate groups, is discussed more fully in sections 3.2 and 3.4 below.  

 

Since these migrating wildebeest herds are so large, Gueron and Levin abstracted the 

herd front to a curve evolving in time and space, making the system tractable to 

mathematical analysis. Given that the phenomenon of interest, the wavy front, has a 

periodicity much greater than that of the supposed interaction range, individuals within 

the model were restricted to modify their motion in their desired direction only as a 

function of that of neighbors within a specified range (the average location of individuals 

in a local neighborhood). Thus it was possible, using the model, to investigate the 

potential influence of the range of interaction. Using the following simple rule set, the 

model was found to generate a wave-like front: 

1) Individuals have an intrinsic speed and accelerate or decelerate in response to the 

positions of neighbors within a local neighborhood. 

2) Those lagging behind others in their local neighborhood can fall further behind, 

until the gap reaches a specified maximum distance. When this distance is 

reached individuals speed up to reduce the gap. 

3) Those ahead of neighbors can speed up until the gap reaches a specified 

maximum distance, where the behavior is reversed, and they slow down. 
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Following these rules, an initial uniform herd front (straight line) is unstable. Small 

perturbations (stochastic irregularities) in the curve representing the herd front appear and 

tend to grow (amplify), yielding the irregular “wavy” fronts (Fig. 2), similar in 

appearance to those seen in nature (Fig. 1). Thus a simple and local set of behavioral 

rules can explain the long-range pattern. Importantly, the solutions to the model were 

“semi-stable”, meaning that although they did change over time, the characteristic feature 

of the system (the presence of the irregular wavy front) was persistent. The exact shape of 

the front was found to be largely dependent on the range of interaction, and the model 

was better able to represent the waveform seen in reality with relatively local interactions 

(the front becoming flatter as the range of interaction increases). Consequently the model 

makes broad-level predictions about the type of behavioral interactions herding 

wildebeest may exhibit, and about how interaction range affects group shape in this 

system. Furthermore, the model makes it clear that long-range patterns need not be 

explained by long-range interactions. However, it is unclear how such predictions may be 

tested in practical terms given the huge spatial scale of the system in question, and 

therefore, whether alternative local rules may also explain this phenomena. In this case it 

may be very difficult to test the predictions of computer models. Ideally one would like to 

be able to manipulate the system such that it would be possible to investigate the 

consequences of changing the parameters of the model (e.g. manipulate the interaction 

range of real organisms), or more realistically perhaps, to track the motion of individuals 

within a subset of the herd to see if they conform to the type of local interactions assumed 

by the model. This may be achieved by recording how the velocity of individuals 

depends on the velocities of neighbors (bearing in mind that velocity incorporates the 

position of an individual, its direction of motion and speed). We discuss the analysis of 

such groups in more detail below (3.1). 

 

Gueron and Levin also point out that their type of approach may be relevant to 

understanding the motion of narrow bands of animals only one or a few individuals in 

width, such as thin streams of ungulates, birds, or bats. One would then consider the 

direction of travel to be perpendicular to that in their wildebeest model, and that 

individuals tend to adjust their position to either side, relative to individuals ahead of, and 
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behind them, for example to avoid collisions or perhaps to improve visual range. Given 

this formulation, individuals would tend to move to one side (e.g. to avoid collisions) 

until they reach a maximum distance, at which time they would tend to move back 

towards the group (representing a tendency to avoid being isolated). In this context, as 

suggested by Gueron and Levin, it may be beneficial to modify the rules of interaction 

such that individuals tend to predominantly respond to those ahead (as opposed to equally 

to those ahead and behind, if one were to abstract the original model exactly). However, 

similar predictions are likely to result: that perturbations tend to grow, resulting in 

winding, as opposed to straight, lines and that the exact form of the wave will similarly 

depend on the interaction range. 

 

2.2 The generation and use of collective trail systems by animals, including humans 

 

A further property that influences the motion of organisms such as herding ungulates is 

their ability to change the environment through which they move, and to respond to such 

changes. This recursive feedback loop may also be an important determinant of the types 

of patterns that form at the population-level. Consider the type of situation outlined 

previously in section 1.2, where individuals change local properties of their environment 

as they move through it, such as by trampling of grass or snow. As well as responding to 

the positions of other group members, individuals respond to their environment. We are 

not aware of any mathematical approach that has been applied to this problem for 

organisms that actively aggregate, and thus the theoretical consequence of the balance of 

these forces has not yet been investigated. However, progress has been made in the case 

where the effects of direct interactions between individuals can be ignored, such as when 

they are very rare. Initially this may seem irrelevant in a chapter on animal groups where 

interactions are known to be very important. However, since the only work on this topic 

has made this assumption it is still beneficial to understand what pattern forming 

processes occur when direct interactions are a trivial influence. Furthermore, even when 

individuals themselves do not interact directly, the pattern-forming mechanism is still 

collective through indirect interactions by environmental modification. We will then 
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make suggestions about suitable modifications of this approach to include direct 

interactions, and the potential outcome of such modifications, to this type of model. 

 

a) Human trails 

 

Helbing et al. (1997a, b) developed a model of trail formation by mobile individuals (or 

“active walkers”). These walkers were considered to have the potential to modify the 

environment through which they move. In their model these changes represent the 

trampling of substratum as described previously. Using such a model one can investigate 

the influence of the degree to which individuals change their environment (and 

consequently the effect this change has on others) and the lifetime of the environmental 

changes (simulating the local durability of a change; for example the re-growth of 

vegetation or further falls of snow will act to return the environment to its former state). 

Although Helbing et al. (1997a, b) restrict their discussion of vertebrate trails to those 

generated by humans, the type of model is applicable to any system where individuals 

can modify their environment, and respond to such modifications.  

 

For humans one can consider the situation where people move between certain points in 

space, each for example representing doors to buildings. Within the model of Helbing et 

al. (1997a) it is assumed that people will tend to take the shortest route to their 

destination, but tend to reconcile this global goal-oriented behavior with a relatively local 

preference to walk on previously used (less bumpy) ground. They considered the 

movement of simulated pedestrians over initially homogenous ground from, and to, 

specific points in space. Figure 3A shows a trail system forming near the beginning of a 

simulated run in the case where there are four entrance/destination points, one in each 

corner of the simulated domain. As can be seen, pedestrians initially tend to take the 

direct route to their destinations. Over time, however (Fig. 3B), frequently used trails 

become more comfortable (and hence attractive) and this influences the characteristics of 

the trail system: sections of trails become shared by walkers with different desired routes, 

creating a trail system in which the overall length is reduced. Increasing comfort means 

that a given section of trail is more likely to be used in future, which further increases its 
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comfort, and so on (autocatalysis). Trails that are not sufficiently reinforced will decay 

through processes such as the regeneration of vegetation and weathering effects, thus 

providing a negative feedback within the system. The exact type of collective trail system 

that forms will depend on the properties of the system that affect these feedbacks. For 

example, increasing the number of pedestrians within the environment, or the degree to 

which pedestrians influence the comfort of the ground over which they walk, will 

increase the positive feedback. Increasing the rate of recovery of the environment, by 

contrast, will amplify negative feedback. This will influence how individuals reconcile 

their global and local behavioral tendencies. If pedestrians’ desire to use existing trails is 

very large, the final trail system will be a minimal way system (the shortest system that 

connects all the points). Conversely if there is no advantage to using trails (as in most 

urban environments) individuals will use a direct route system (similar to that seen in Fig. 

3A). In between these extremes, the simulation suggests that pedestrians collectively will 

find a compromise between short and comfortable ways.    

 

b) Extending trail-laying/response concepts to other animals 

 

This type of modeling approach is similar to earlier studies investigating the generation 

of trails by ants (Deneubourg et al., 1989; Franks et al., 1991). In the latter case positive 

feedback (amplification) can occur when the orientation of a trail-laying ant depositing 

chemical pheromone at a certain location influences the direction taken by a further ant 

passing that point. The latter ant may reinforce the pheromone trail, which can further 

influence the direction taken by subsequent ants, and so on. This can lead to a selection of 

trail orientation at that location. Pheromones decay, causing negative feedback. A 

decaying trail is less likely to be followed, and will therefore be subject to further decay. 

As in the case of human trails, trail persistence depends on the balance between 

reinforcement (positive feedback) and decay (negative feedback).  

 

Thus at a certain level of description, vertebrate and insect trail-laying may share some 

fundamental properties of organization. Consequently, the results of research on ant trail 

systems may also shed light on fundamental properties of trail formation by vertebrates. 
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For example, it has been found that ants can find the shorter of two routes between the 

colony and a food source. Ungulates may create and use trails as they move between 

feeding areas, or watering holes, and as described above, humans may move between 

buildings. Fig. 4A shows trails forming in the model of Helbing et al. (1997a) where 

individuals have a desire to move from the top to the bottom of the domain, and vice-

versa. Fig. 4B shows similar natural trail systems used by ungulates in the Australia. The 

potential consequences of such dynamics can be considered in a hypothetical, and 

deliberately simple, situation shown in Fig. 5A where individuals are considered to desire 

to move between just two points labeled 1 and 2, and vice versa, but in doing so must 

move around an impassable landmark in the center. Individuals create and follow trails as 

described above. Initially, in the absence of any trails, individuals first reaching the 

landmark, having limited and local visual information, will randomly select a route 

around it (Fig. 5B). However those individuals that take the shorter route will reach their 

destination more quickly. This causes that route to be more rapidly reinforced. This 

means further individuals reaching the point at which trails bifurcate to the right and left 

around the landmark will tend to be more “attracted” to the shorter route, which will 

become even more attractive, and so on. Thus the counterbalance of positive and negative 

feedback could be expected to facilitate the collective selection of the shortest trail to a 

specific point, without individual decision-making being invoked (Fig. 5C). 

 

A further property highlighted by research on ant recruitment mechanisms that may also 

relate to vertebrate trails is that of a trade-off between accurate and rapid decision-

making. Consider our earlier simplistic scenario, involving the navigation of organisms 

between two points in space around an asymmetric obstacle. If positive feedback is very 

high (trails are very attractive, as would be the case, for example, if the ground is very 

difficult to move over unless you follow a path made previously) then the trail-forming 

system is very susceptible to initial conditions. For example, if the first individual to pass 

the obstacle were, by chance, to go the long way around, then it would be very likely that 

the next individual would also take that route. This would cause rapid fixation of the 

longer route. Thus the system will be very dependent on the initial (random) choices of 

individuals. If each individual were to have a weak effect on the ground, or be only 
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weakly attracted to the trails of others, then it will take a much longer time for one 

particular route around the obstacle to be dominant, but it is very likely that it will be the 

shorter route that is “chosen”. A further point to be made is that even given a symmetrical 

obstacle, if positive feedback is relatively strong, then the organisms are still likely to 

select a (randomly determined) single route around the obstacle.    

 

We are not suggesting here that vertebrates behave just like ants, and the predictions we 

make above are deliberately speculative. Caution should be used when extrapolating the 

results between different systems. However, the presence of similar fundamental 

feedback mechanisms may mean that, as demonstrated by human trail formation, some 

collective processes exhibited by vertebrate populations may be explained without 

invoking complex decision-making abilities at the level of the individual.  

 

A further potential property of vertebrate trail systems that has yet to be investigated is 

the influence of direct interactions among the components of the system. Intuitively one 

may expect that herding behavior would tend to increase the amplification processes 

involved in trail formation, since individuals would tend to remain in the proximity of 

others, and would tend to follow one another. However, in the case of bi-directional 

traffic on a trail, congestion may cause trails to bifurcate more readily, creating a system 

with a series of anastomosing trails, as opposed to a single trail. However, it would be 

important to further develop models of these processes, and to find systems where it 

would be possible to test the predictions of computer models. For example, it may be 

possible to compare trails made by organisms moving over vegetation that offers 

different resistance to locomotion (and consequently the ease of creation and relative 

comfort of trails). It may also be possible to set up experiments similar to that shown in 

Fig 5, and investigate the collective solutions ‘found’ by the organisms in question. 

 

In some cases vertebrates may deposit chemicals that can facilitate trail formation (or 

complement the mechanisms discussed previously). For example, Norway rats Rattus 

norvegicus (Galef and Buckley, 1996) and naked mole rats Heterocephalus glaber (Judd 

and Sherman, 1996), having found a food source, can deposit odor that can bias the 
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direction taken by other individuals, somewhat analogous to trail deposition and 

following by ants and termites. Being central-place foragers, such trails can facilitate 

information transfer to other (naïve) individuals about the location of resources. It is 

known in rats that deposition of scent in urine is used as a trail-marker (Wallace et al., 

2002), whereas in naked mole rats it is unclear how the scent is deposited by the 

individual (Judd and Sherman, 1996). For rats it has also been shown that the 

attractiveness of a trail increases as a function of how many times a trail section has been 

traversed, and that rats deposit trail only when moving away from the food source (Galef 

and Buckley, 1996). Furthermore, it has been shown that the odor discriminatory ability 

of rats allows them to distinguish between self-generated trails, and those of conspecifics 

(Wallace et al., 2002). Such an ability is also known to occur in certain ant species 

(Hölldobler and Wilson, 1990), and could be useful for rats when searching within very 

dark environments in allowing them to retrace their trajectory. Further studies of Norway 

rats and naked mole-rats are likely to provide an excellent basis for future research efforts 

since they can be more readily kept in captivity, and their experimental conditions more 

easily manipulated than for larger organisms such as ungulates 

 

It is possible that trail deposition and following may be widespread in rodents, and may 

be combined with environmental modification such as trampling or removal of obstacles 

from the environment. Scent deposition and detection may also be important in other 

vertebrate trail systems, such as those discussed for ungulates above.  

 

A further extension of the trail formation concepts discussed here can be made to include 

collective burrow systems, such as those made by naked mole rats. Here, individuals 

modify their environment by digging, and unmodified environment would need to be 

considered as resistant to motion. A further modification of the previous concepts would 

be that the environment would not return to its former state once modified (or would do 

so only extremely slowly).   

 

 

c) Collective generation of home ranges through deposition of, and response to, scent 
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Another collective biological phenomenon that relies on the modification of, and 

response to modifications of, the environment is the generation of home ranges by 

vertebrates such as carnivores (Gosling and Roberts, 2001; Macdonald, 2001) and 

rodents (Brown and Macdonald, 1985; Viitala et al., 1995; Gray and Hurst, 1997). In this 

case individuals, or groups of individuals in the case of pack-living canids (such as 

coyote or wolf) mark their territory with scent, which diffuses over time. The motion of 

individuals is dependent on the scent they detect as they move: they will tend to turn 

around (and hence not occupy space) in which they detect the scent of another individual 

(or group of individuals in the case of pack animals). Long-range patterns of space use 

result from these local interactions. Moorcroft et al. (1999) developed a mechanistic 

model based on these basic principles. Individuals were assumed to increase the degree to 

which they scent-marked after interaction with the scent of another individual/group. 

Encounters with such foreign scent-marks would also bias the trajectory of individuals 

towards the center of their own home range. Using a Eulerian approach (using partial 

differential equations, PDEs) they showed that these rules were sufficient to explain the 

general properties of territory generation, and were better suited than models in which 

individuals did not bias their movement after discovering foreign marks, for their 

experimental system (the coyote, Canis latrans, in the Hanford Arid Lands Reserve, 

Washington, USA). 

 

2.3 The collective behavior of humans within crowds 

 

In our earlier discussion of humans we considered the case where people interact through 

environmental modification (trail formation), and largely ignored the influence of direct 

interactions among pedestrians. However, within an urban setting individuals can seldom 

influence their surroundings in this way. Furthermore, when walking down a busy street, 

or corridor, one balances global goal-oriented behavior (desire to reach a certain point) 

with local conditions created by the motion and positions of other nearby pedestrians. 

Each member in such a crowd is likely to have a limited perceptive radius in which 

information to determine future movement must be gathered. Consequently, larger scale 
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patterns in crowds are seldom evident from an individual pedestrian’s viewpoint. 

However, if viewed from above crowds often do display obvious and consistent patterns. 

One of the most common of these can be seen when there is bi-directional traffic, as for 

example when people are trying to move both ways along a walkway, or crossing the 

road at a crosswalk. Under such circumstances ‘bands’ of pedestrians form: each band 

composed of a number of pedestrians with a common directional preference (Milgram 

and Toch, 1969). See Fig. 6A. 

 

The flow of pedestrians under conditions of crowding was likened by Henderson (1971) 

to the motion of fluids or gases. He used a well-known technique for the mathematical 

analysis of such materials, the Navier-Stokes equation for fluid dynamics, to simulate a 

crowd. Although providing an insight into how individual-level (microscopic) properties 

lead to large-scale (macroscopic) properties, such an approach is difficult to implement 

since the conservation of energy and momentum assumptions for a physical system do 

not apply to a biological system in which the individual components are ‘self-driven’. 

Despite this, Helbing (1992) was able to modify such equations with respect to some of 

these properties, but analytic solutions proved hard to find. The most promising approach 

to studying crowd behaviors comes from individual-based modeling.  

 

a) Influence of repulsion (collision avoidance) 

 

Helbing and Molnár (1995) developed a simple individual-based model of pedestrian 

motion in which they consider people moving in opposite directions along a corridor. 

This simple geometric representation of space allows the assumption that all individuals 

have a desire to move only in one direction or another along the walkway. However, 

pedestrians will also tend to avoid collisions by decelerating and turning away if they 

come into close contact with one another. When no other individuals are within a 

specified local range, individuals will tend to accelerate to a desired speed, and orient 

towards their destination. This simple behavioral response alone can account for the 

formation of bands when there is bi-directional traffic. Individuals meeting others head 

on will have ‘strong’ interactions in which they are likely to slow down and move aside 
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to avoid collisions. Initially this occurs frequently. However, individuals that find 

themselves behind others moving in the same direction are less likely to have to perform 

such extreme avoidance maneuver, and in turn they ‘protect’ others behind them, from 

head on avoidance moves. Given a sufficiently long corridor (and a sufficiently high 

traffic flow for interactions among pedestrians to be an important factor) the system will 

self-organize into lanes. Individuals entering the corridor (at random positions) move 

around in the direction perpendicular to their desired direction of travel when they 

interact with oncoming pedestrians. However, if by chance they fall in behind another 

individual moving in the same direction this is a more ‘stable’ state. Thus the system 

naturally self-organizes into a situation where pedestrians are in the ‘slipstream’ of others 

moving in the same direction as themselves, thus creating bands, and reducing movement 

in the direction perpendicular to desired motion (Fig. 6B). Helbing and Molnár (1995) 

also demonstrated in their model that the number of bands that tend to form scales 

linearly with the width of the walkway. This demonstrates that there is a characteristic 

length-scale to the pattern-forming process: that is, from any point in the system 

statistically similar motions occur one wavelength away.  

 

b) Influence of attraction to other pedestrians 

 

Clearly one does not need to invoke complex individual behavior to explain the banding 

patterns found in human crowds. The above model shows how individuals would 

‘naturally’ occupy space (in the dimension perpendicular to desired direction of travel) in 

which others ahead and behind them tend to have a similar direction of motion. It is 

possible in real crowds, however, that individuals actively (as well as passively) seek 

such positions. That is, instead of finding such positions by chance, as in the previous 

model, they will tend to deliberately walk behind individuals moving in the same 

direction as themselves. For example, Couzin (1999) simulated the motion of pedestrians 

crossing a road at a crosswalk. Given the type of rules described in 2.3a the system 

requires some time to ‘find’ the collision-minimization state. Consequently, in the 

crosswalk situation, although some banding does occur, congestion is still relatively high 

(Fig. 7A). However, if one adds a supplementary rule such that an individual will exhibit 
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a propensity to follow other individuals moving in their desired direction, then bands tend 

to form much more readily, thus reducing head-on collisions and increasing the rate of 

flow (Fig. 7B). On a crosswalk, such bands begin to form even before the pedestrians 

moving in different directions meet. Thus the groups act as ‘wedges’ when they come 

into contact with one another allowing the bands to interlace more readily when they 

reach the central area of the walkway. Thus, although attraction is not a necessary 

condition for bands to form in crowds, it decreases the time taken for bands to develop, 

and increases the flow rate more rapidly than does avoidance alone.  

 

c) The influence of the geometry of the environment 

 

In these pedestrian models, the geometry of the environment is very simple. However, 

what happens when one introduces an obstacle within the environment? Helbing and 

Molnár (1995) investigated how their model behaved when they placed a doorway in the 

corridor. What they found was that, given a sufficient density of pedestrians, oscillations 

in alternating flows of passing direction at the doorway occur. This occurs because the 

“pressure” of pedestrians at one side of the door eventually results in an individual being 

able to make it through the door. This makes it easier for individuals with the same 

desired direction to follow, resulting in a unidirectional flow of individuals through the 

doorway, as shown in Fig. 8. This reduces the “pressure” of pushing pedestrians at that 

side of the door, which will then result in a situation where the flow is stopped, and then 

individuals moving in the other direction are able to pass through (since the “pressure” on 

their side is now greater), and so on. If the doorway is widened, changes in direction of 

flow become more rapid.  

 

It was also found that, given the same total width of doorway, two half-sized doors near 

the walls of the corridor increase the rate of flow of pedestrians relative to a single door. 

This is because, due to the mechanism of band-formation described above, each door 

becomes used by pedestrians flowing in a common direction for relatively long periods of 

time. Individuals leaving their respective doorway in one direction ‘clear’ the space 

ahead of the door for their successors. 
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d) Crowd behavior and emergency situations 

 

Under certain extreme conditions, such as when people are evacuating from a crowded 

building, panic can result in pedestrians being injured or killed through crushing or 

trampling. In some cases crushing can occur in the absence of any external factor (e.g. 

fire) resulting instead from the impatience of queuing individuals, who having 

predominantly only local information, push forward. The physical interactions among 

members of a crowd can add up to cause dangerous pressures up to approximately 4,450 

Nm-1, which can cause brick walls to collapse, bend steel barriers, and result in a large 

number of fatalities (Elliott and Smith, 1993). In an attempt to understand better such 

collective situations, Helbing et al. (2000a, b) extended their models of pedestrian 

behavior to include a ‘body force’, which counteracts the compression of bodies, and a 

‘sliding friction force’ which impedes relative tangential motion within crowds. 

Furthermore, they assume that, within such crowd situations, people exhibit a greater 

degree of stochasticity (fluctuations) in their movement, and a higher desired velocity, 

due to the psychological effects of panic (Kelly et al., 1965). The model showed that 

increasing the value of either, or both, of these parameters caused an increase in 

evacuation time from a building by increasing the degree of interpersonal friction. This 

resulted in blockages which occurred especially in the vicinity of bottlenecks. Thus, 

people fleeing from a building can decrease their chances of survival by attempting to 

move as fast as possible, or by performing uncoordinated movement through nervousness 

or panic. 

 

Within conditions where individuals have very restricted information about their local 

surroundings, such as in a smoke-filled room, Helbing et al. (2000a) investigated the 

possibility that people may respond not only individualistically, but also in response to 

the motion of individuals near them, which they term a ‘herding effect’. Under such 

conditions neither pure individualism nor herding behavior performs well. Following just 

the individualistic rule, the discovery of an exit becomes a largely random process for 

each individual. Although herding can result in groups of individuals escaping if an exit 
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is found, it is more likely that the crowd will move in the same, blocked, direction. 

However, if people are assumed to use an intermediate strategy combining both 

individualism and herding, then the rate of escape is maximized, given the assumptions 

of the model.  

 

These models of human crowds are based on a simplified set of plausible interactions, 

and as such provide useful insights into the general behavior of such groups under a 

variety of conditions. There is, however, a need for further empirical studies, which are 

lacking despite the economic and/or social benefits of such research (e.g. in designing 

facilities so to reduce risk during evacuation). We encourage initial studies to be made of 

crowds within relatively simple environments, such as on walkways, where an 

individual’s desired direction of travel can be better judged than for example in a 

crowded street, where motivations may change dynamically and be influenced by many 

more factors. Gathering data during genuine evacuation procedures will always be 

problematic (practically, and in some cases ethically), but data gathered from practice 

evacuations may be very useful in testing, and further improving, current models. The 

importance of such safety issues has been further emphasized by the events of September 

11th 2001 where large, highly populated buildings (‘The World Trade Center’ in New 

York and ‘The Pentagon’ in Washington D.C.), and the streets around these buildings, 

had to be evacuated. 

 

2.4 Fish schools and bird flocks 

 

In other animal aggregates, such as fish schools and bird flocks, group shape is often less 

constrained by environmental structure than in the human crowd examples discussed in 

section 2.3. In open space these groups can display clear cohesion and structural order, 

with the behavior of the individuals resulting in such ordered patterns of motion that they 

appear to move as a single coherent entity. When perturbed, as for example when a 

predator is detected, rapid waves of turning can propagate across the group (Radakov, 

1973; Davis, 1980; Partridge, 1982; Potts, 1984). Many of these kinds of collective 
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behaviors can only be understood by considering the very large number of interactions 

among individual group members. 

 

Early work on such collective phenomena hypothesized that birds can transmit 

information about turning almost instantaneously to other group members by “thought 

transference” (Selous, 1931), or by the generation by muscles or the brain of an 

electromagnetic field that could be detected by other group members (Presman, 1970). 

Heppner and Haffner (1974) argued that that a ‘leader’ must coordinate the motion of 

such groups whereas Radakov (1973) concentrated on the possibility that fish schools 

may interact through the propagation of relatively local information among group 

members. Radakov made important steps in moving towards quantifying certain aspects 

of collective motion in these groups, including the propagation of “waves of excitation” 

which spread across his experimental schools when disturbed. Such waves of turning 

were shown to share certain properties with physical waves in that they attenuated, 

potentiated, reflected off the tank walls and even seemed to cancel out if they met mid-

school. The essential advance here is that Radakov realized that collective behavior need 

not be explained as a phenomenon coordinated by a leader, or by global information, but 

by the rapid propagation of local information about the motion of near-neighbors. 

 

a) Models 

 

Some of the most conceptually simple models of the coordination of such animal groups 

have focused on explaining how a propensity to align with near-neighbors can result in a 

longer-range alignment within a population of mobile individuals (Vicsek et al., 1995; 

Czirók et al., 1997; Czirók et al., 1999). In these models it is assumed that individuals 

move at a constant speed and assume the average direction of motion (this direction being 

subject to error) of those within a local neighborhood. Such models are useful because 

their minimalism allows them to be analyzed using techniques developed for non-

equilibrium statistical physics (for a review see Czirók and Vicsek, 2001). This comes at 

the cost of biological realism, however. For example, the mobile particles in these 

simulations neither avoid collisions nor exhibit attraction towards others. Consequently 
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they cannot form a self-bounded group (such as the bird flocks and fish schools described 

above) when individuals exhibit any error in decision-making, and thus cannot fully 

explain the clearly defined animal groups seen in many species. 

 

Here we will focus on more biologically realistic (yet still much simplified) models of 

animal motion, based upon generic abstractions of the aggregation tendencies evident in 

fish schools and bird flocks (Partridge, 1980; Partridge and Pitcher, 1980; Partridge, 

1982; Heppner, 1997). Several authors have developed models in which grouping results 

from individuals exhibiting local repulsion, alignment and attraction tendencies based 

upon the positions and orientations of individuals relative to one another (Aoki, 1982; 

Reynolds, 1987; Huth and Wissel, 1992; Couzin et al., 2002). Repulsion simulates 

individuals avoiding collisions if they come very close to one another. Alignment reduces 

collisions among mobile individuals within a group and facilitates collective directional 

motion of large groups. Attraction allows groups to retain cohesion, and simulates an 

individual tendency to join groups and to avoid becoming isolated (Hamilton, 1971). In 

these models the individual behavioral rules result in group formation and cohesion, 

rather than fixing individual density within a periodic domain1 (as in the simplest models 

described above). 

 

Reynolds’ model (1987) simulated the motion of computer-animated flocking “boids” 

within three-dimensional space, and demonstrated how local interactions among 

individuals can lead to realistic-looking collective behaviors such as polarization within 

groups, and cohesion of groups, even when moving around environmental obstacles. 

Incorrectly, this model is sometimes thought to have included global information, 

perhaps due to Reynolds’ use of the term “flock centering”. However it is clear from the 

original model description that information is restricted to local regions around each 

“boid”. Although capable of simulating motion similar to that of real birds, this model is 

somewhat complicated, including properties such as banking during turns to make it 

“look better” (this was intended as an animation tool for computer games and films). This 

                                                 
1 A periodic domain is one with no boundaries. Individuals leaving the domain at one side reappear at the appropriate 
position at the opposite side. This is a standard technique in computer modeling to minimize the influence of “edge 
effects”. 



 24

makes it difficult to interpret and analyze from a more rigorous scientific perspective. 

Somewhat simpler models have been developed in 2-dimensional space by Aoki (1982) 

and Huth and Wissel (1992), and in 3-dimensional space by Couzin et al. (2002). Aoki 

(1982) demonstrated that simple stimulus-response behaviors, similar to those used by 

Reynolds (1987), could account for the coordinated movement of groups of fish. 

Extending this model, Huth and Wissel (1992) investigated in more detail the potential 

interaction processes involved in coordinating such collective motion. They explored the 

possibility that individuals use a “decision-making process” from which they determine a 

single near neighbor with which they then interact, or an alternative “averaging process” 

whereby individuals average the influence of a different number of neighbors. Averaging 

models in which individuals combined the influence of several nearest neighbors were 

found to better account for the behavior of real fish, since they produced groups which 

were better aligned and less likely to fragment. Decision models, by contrast, could not 

account for the type of highly coordinated motion seen in real groups.   

 

b) Individual behavior and group shape 

 

Couzin et al. (2002) developed a model of animal aggregations in 3-dimensional space 

(e.g. flocking and schooling) similar to those described above. They demonstrated how 

relatively minor changes in individual behavior can result in dramatic changes in group 

shape. They also investigated some properties of the transitions between group-shapes 

that may highlight some fundamental properties of animal groups. Following the 

approach of Aoki (1982) and Huth and Wissell (1992) they assumed, for tractability, that 

individuals respond to each other within specified behavioral “zones” (see Fig. 9). The 

highest priority for individuals was assumed to be maintenance of a minimum distance 

between themselves at all times to avoid collisions (Krause and Ruxton, 2002). They 

achieved this by moving away from other individuals within a close-range spherical 

“zone of repulsion”, with radius rd. If not performing an avoidance maneuver, individuals 

were assumed to align with others within a “zone of orientation”, ro, and to be attracted to 

other individuals within a “zone of attraction”, ra. These latter two zones were spherical, 

except for a volume behind the individual in which neighbors were undetectable. All 
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behavioral zones in this model were non-overlapping. An individual would perform a 

correlated random walk if it did not detect any neighbors. Following these rules, 

individual trajectories were integrated over time at discrete intervals (timesteps), set as 

0.1s apart, representing the response latency of fish (Partridge and Pitcher, 1980). 

 

 Couzin et al. (2002) investigated the consequences to group shape of changing the size 

of the zone of orientation (its width defined as ∆ro = ro – rd), and the zone of attraction 

(width defined as ∆ra = ra – ro), given random starting conditions. They calculated two 

properties from the simulation (after it had reached a dynamic equilibrium) that could 

allow group shape to be quantified: 

1) Group polarization (pgroup), ranging from 0 – 1. This increases as the degree of 

alignment of group members increases, 

2) Group angular momentum (mgroup), ranging from 0 – 1. This measures the degree 

of rotation of a group about the group center, increasing as degree of rotation 

increases. 

It was found that, if individuals exhibited attraction to others but little, or no, orientation 

tendency, they formed a “swarm” group-type (Fig. 10A), characterized as having low 

pgroup and low mgroup (even though individuals do rotate around the group center they do 

so in different orientations, thus resulting in low group angular momentum). As the size 

of the zone of orientation increased, however, the group was found not to adopt the 

swarm formation, but instead would form a “torus” with low pgroup and high mgroup in 

which the individuals perpetually rotated around an empty core (even though individuals 

are locally polarized, overall group polarization is low) (Fig. 10B). The direction of 

rotation was random. If the zone of orientation was increased further, however, the group 

initially adopted a “dynamic parallel” conformation (higher pgroup, low mgroup) (Fig. 10C), 

and then a “highly parallel” arrangement (highest pgroup, low mgroup) (Fig. 10D).  

 

This model predicts that these are the four fundamental types of collective state that 

individuals within such groups can adopt, and between these states the collective 

behavioral transitions are very sharp (Fig. 10E, F). It also demonstrates that large changes 

in group properties and organization can result from relatively minor changes in local 



 26

individual response, and that animal groups are likely to change rapidly between these 

states since intermediate group types are unstable. Biologically the ability of groups to 

change between structural types could be very important in allowing individuals to 

maximize fitness as conditions change. This may occur, for example, as a response to 

hunger, or to external stimuli such as the presence of predators. It is known that fish and 

birds tend to become more polarized within groups (individuals become better aligned) 

when predators are detected (Wilson, 1975; Partridge, 1982). This is important since it 

not only allows the individuals within the group to avoid colliding with one another, but 

also facilitates the transfer of indirect information about the presence of a predator. For 

example, if only one, or a subset of, individuals turns in response to such a stimulus, the 

alignment tendency allows this change in direction to be transmitted over a range much 

larger than the individual interaction radius. This property of groups is discussed in more 

detail in section 2.4d below.  

 

If alignment range in the model is reduced the individuals adopt a torus conformation. 

This group shape may initially appear uncharacteristic of real animal groups, but is in fact 

adopted by many species of fish including barracuda, jack and tuna (see Parrish and 

Edelstein-Keshet, 1999, for a photograph of jack performing this behavior). This 

behavior results in a quasi-stationary group, yet allows the continual motion of 

individuals that is required by certain fish species for respiration, while permitting 

individuals to benefit from local polarization. Furthermore it may allow individuals to 

save energy since each is in the slipstream of another. If individuals exhibit attraction, but 

little or no alignment, they form a swarm. This behavior is often seen in aggregates of 

insects, such as midges (Okubo and Chiang, 1974) and mosquitoes (Ikawa and Okabe, 

1997), but can also be exhibited by fish schools (Pitcher and Parrish, 1993). Although 

cohesive, this group type does not benefit from the advantages of polarization discussed 

above. 

 

 

 

c) Behavioral transitions, collective memory and hysteresis 
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After initially exploring the types of group shape that form from random starting 

conditions, as described above, Couzin et al. (2002) investigated the consequences of 

different starting conditions to the collective behavior within their model. In nature, 

groups are likely to move between collective states as conditions change, and as a 

consequence of this the previous history of individual orientations and positions may 

have an influence on the collective behavior as behavioral parameters change. To 

investigate this possibility, the same simulation was used but the starting conditions were 

non-random. Keeping the size of the zone of attraction constant, the influence of 

individuals modifying the size of their zone of orientation was investigated.  Starting with 

no alignment tendency (∆ro = 0) the model was run to dynamic equilibrium (resulting in a 

swarm). Then, without resetting the model to the random starting conditions, the size of 

the zone of orientation (ro) was increased slightly, and the model allowed to run to 

dynamic equilibrium again, and the process repeated until the group entered the dynamic 

polarized state. Then, the size of the zone of orientation was decreased sequentially in the 

same way, until eventually the model was returned to the original parameter settings (∆ro 

= 0). Intuitively one would assume that this would simply mean the collective state 

moves from being a swarm, to a torus, to a parallel group type (as ro is incrementally 

increased) and then back to a torus and finally a swarm (as ro is decreased). As shown in 

Fig. 11, when the zone of orientation was increased the model behaved as assumed, but if 

moving through the same parameter space in the opposite direction (as ro is decreased) 

the collective behavior was different. The group did not adopt the torus conformation, 

and instead eventually only returned to the swarm configuration. This demonstrates an 

important principle: that two completely different collective behavioral states can exist 

for identical individual behavioral rules, and that the transition between behavioral states 

depends on the previous history (structure) of the group, even though the individuals have 

no explicit knowledge of what that history is. Thus the system exhibits a form of 

“collective memory”. 

 

Intuitively one might assume that group-living animals only need evolve a direct 

interaction between individual internal state (resulting from internal and external stimuli) 
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and behavior (here the rules of interaction employed). Our results suggest, however, that 

the situation is not so simple, and that the evolution of collective (extended) phenotypes 

may be more complex. Importantly, this kind of behavior is likely not to be specific to 

this model, or even this class of model, but rather may be a generic property of transitions 

between collective behaviors. 

 

d) Group shape and motion in the presence of external stimuli 

 

Although the fundamental organizing principles defining the shape of aggregates such as 

fish schools and bird flocks do not rely on external stimuli, such stimuli may also be 

important in explaining shape under certain circumstances. For example, as suggested in 

section 2.4b, local interactions allow information (here encoded as the positions and 

orientations of neighbors) to be propagated across the group. Thus individuals within 

such groups can perform avoidance maneuvers without direct detection of an incoming 

signal. Simulating predator attack allows the response of groups to transient disturbance 

to be investigated. For example, Fig. 12 shows a time-series from an animation of a 

simulation of grouping developed by Couzin et al., (2002) in which a predator is included 

(shown in red). Here the predator follows a simple rule; it moves towards the highest 

perceived density of individuals (Milinski, 1977). A supplementary rule is included to the 

behavior of prey individuals in the model described in section 2.4b above, which allows 

them to detect and move away from a predator. The model exhibits the characteristic 

collective patterns that have been described in natural groups under attack (Partridge, 

1982), including “flash expansion” where individuals rapidly move away from the 

predator as it strikes (Fig.12a); “vacuolation”, where the expansion results in a cavity 

forming around the attacker (Fig. 12c, d); and the “split effect”, where a group may be 

fragmented (Fig. 12h). 

 

The size of the volume in which individuals respond to others is also important in 

coordinating collective avoidance behaviors (Fig. 13). If this volume is small an 

individual will behave more or less independently of those around it. This increases the 

tendency of individuals to become non-aligned, and for groups to become fragmented 
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(Fig. 13a). As the size of this zone increases, an individual will respond to a greater 

number of neighbors. This increases the quality of information an individual has access 

to, and decreases the variance (through averaging over a greater number of influences). 

The group becomes capable of transferring information (Fig. 13b). The response of 

individuals not only to nearest neighbors, but also to neighbors further away (but still in a 

relatively local volume) also increases the speed of information transfer. This can explain 

the high speed of maneuver waves in birds (Potts, 1984) and fish (Radakov, 1973). If this 

zone continues to grow, however, the quality of information an individual acquires from 

the movement of others may decrease. The orientation and position of individuals further 

away is less likely to encode relevant information (Fig 13c). Large behavioral zones 

increase the homogeneity of response within the group. If all individuals respond equally 

to all others within a group, for example, they can collectively select a direction that may 

be detrimental to all, or almost all, of them. Group members would therefore be expected 

to respond only to those individuals that are most likely to have information that would 

benefit them. Proponents of self-organization theory often stress that animals do not need 

long-range information to coordinate group behavior (Bonabeau et al., 1997). However, 

localizing information input may provide significant adaptive benefits to an individual 

within a group, allowing sensitive response not only to predators but also to 

environmental obstacles.  

 

Similarly, Inada and Kawachi (2002) investigated how directly changing the number of 

neighbors that an individual responds to affects the information transfer within such 

groups. Their model was also able to emulate the escape responses of fish within real 

schools, and showed that in groups of 50 individuals, responding to a relatively small 

number of neighbors (≈ 3) was the best strategy for escape. However, their model 

requires individuals to be able to count the number of neighbors. Currently it is unclear 

whether fish perform such counts, or whether they perform behaviors such as changing 

the range over which they respond to others (which would indirectly change the number 

of neighbors with which they interact). 

In addition to allowing collective avoidance behaviors, the rapid changes in turning and 

group shape in such animal groups may also act to confuse the sensory system of 
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predators, thus making it difficult to isolate and catch any given individual (Landeau and 

Terborgh, 1986). 

 

Information transfer among individuals is also likely to influence their response to other 

stimuli, such as the positions of resources, or favorable regions within a heterogeneous 

environment. In aquatic habitats, for example, resources such as phytoplankton, the 

temperature or salinity of the water, and concentrations of dissolved gases are all known 

to vary in a non-uniform way, and over both small and large length scales. Individuals are 

therefore expected to modify their positions with respect to these properties so as to 

maximize resource intake and minimize physiological stress. However, this is a non-

trivial task: unpredictability and local fluctuations make finding and moving up or down 

such environmental gradients (taxis) difficult where an individual has only local 

knowledge on which to base its motion. In many cases, such as phytoplankton or gaseous 

concentration, the gradients occur over such large spatial scales (in the order of 

kilometers) that local detectable gradients are inherently extremely shallow. In the case of 

thermal gradients, for example, even the steepest horizontal gradients in the open sea are 

0.01 – 0.1ºC/100m (Dizon et al., 1974).  

 

Grünbaum (1998) used computer simulation to investigate the theoretical consequences 

of grouping to such taxis behavior. He assumed individuals use a simple form of taxis, 

known as klinotaxis, whereby a moving individual modifies its probability of making a 

turn as a function of whether conditions are perceived to improve or deteriorate over a 

given time interval. Such behavior is known to facilitate taxis in even very simple 

organisms, such as bacteria (Keller and Segel, 1971; Alt, 1980; Tranquillo, 1990). 

Although they are not directly detecting the gradient, individuals performing such taxes 

will, on average, spend more time moving in favorable directions than in unfavorable 

ones. By simulating groups of individuals performing this behavior under conditions 

where they do not interact with one another (asocial taxis) and do interact by balancing 

the tendency for taxis with a simple schooling behavior (social taxis), Grünbaum (1998) 

demonstrated that such social interactions improve the motion of individuals up a 

gradient. The alignment of individuals, and thus transfer of information, when schooling, 



 31

allows averaging of individual errors in gradient detection, and therefore results in 

reduced deviations in motion from the desired direction of travel. This information-

sharing within schools of fish has been likened to a “sensory array” (Kils, 1986) which 

allows information to be gathered over a wider spatial range than would be possible for a 

solitary or non-interacting individual, and dampens the influence of small-scale 

fluctuations in the environment. The model also predicts that the benefits of such 

information-sharing are dependent on group size. As group size is increased the 

efficiency of taxis shows an asymptotic increase: initially it increases steeply, but then the 

rate of increase reduces over time leading to a plateau where further increases in group 

size have very little effect on taxis accuracy. Owing to the deliberately abstract nature of 

the model (to characterize a generic property), the absolute group sizes are less important 

than the general prediction of the type of relationship that should be expected in natural 

groups.  

 

A further property of individual behavior that Grünbaum (1998) explored was the balance 

of the taxis and interaction ‘social forces’ within his simulation, which demonstrated a 

trade-off between these two tendencies. Individuals that only interacted weakly with 

others (the taxis response is weighted strongly) would benefit little from averaging of 

information. At the opposite extreme, where the interactions of individuals with one 

another are strong relative to taxis, the group will take a long time to adjust to changes in 

gradients. Thus, in reality, individuals may be expected to evolve an intermediate 

strategy. 

 

Niwa (1998a) developed a conceptually similar model to investigate how very large fish 

schools could use klinotaxis to move up heterogeneous temperature gradients when 

migrating. Migrating pelagic fish such as sardines, anchovies and mackerel form 

cohesive groups that can extend over kilometers, and contain in excess of 106 fish 

(Pitcher and Parrish, 1993). The memory necessary for thermal klinotaxis (comparing 

previous and current temperature) may be obtained from internal core temperature 

providing fish with information about previous thermal history (from internal sensors), 

and their current temperature detected by sensors in the skin (Neill et al., 1974). In 
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Niwa’s model individuals were considered to have a desired internal temperature, and to 

behave in a similar way as individuals in Grünbaum’s (1998) model described above. 

Even for such large groups, simple and local response behaviors are able to account for 

the collective migration behavior.  

  

Group shape has also been found to be influenced by parasites. In wild schools of banded 

killifish (Fundulus diaphanus), for example, group geometry is dependent on the overall 

prevalence of a trematode parasite (Crassiphiala bulboglossa) among group members: 

groups with high parasite prevalence tended to exhibit a broad phalanx-like shape, 

whereas those with low parasite prevalence tended to be elliptical, with the major axis 

aligned with the direction of travel (Ward et al., 2002). Interestingly, a similar change in 

group shape has been exhibited in a general model of grouping behavior (of zebra herds, 

Equus burchellii, but also applicable to other group-types) by Gueron et al. (1996). The 

difference in this model resulted not from changes in the interactions among individuals, 

but simply from a difference in individual speed. Groups in which individuals moved 

more slowly tended to proceed as a phalanx, whereas groups in which individuals tended 

to move more rapidly formed a more columnar structure, elongated in the direction of 

travel (see section 3.2 below for further discussion of this model). If parasite load affects 

swimming speed, such a difference may be able to account for the difference in group 

shape in killifish. Ward et al., (2002) suggest that the trematode cyst may reduce 

swimming performance by affecting the dorsal musculature of infected individuals, 

and/or by reducing the hydrodynamic streamlining of individuals. It should be noted, 

however, that other changes to behavior in schooling models can also change group 

shape. For example, decreasing the angle of perception (increasing the frontal bias) will 

also result in a group more elongated in the direction of travel (Couzin, unpublished 

data).  

 

 

 

e) Parabolic groups of predatory fish 
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Group shape may also be important to predatory fish. Partridge et al. (1983) analyzed the 

structure of Atlantic bluefin tuna (Thynnus thynnus) schools in the wild, from aerial 

photographs. Such groups are well suited to this kind of analysis because they swim just 

under the water surface, so the third spatial dimension is not required for the analysis of 

their positioning behavior. Schools varied in size from 2 to 79 individuals, and group 

members tended to occupy very defined positions relative to one another. In small 

schools (≤ 10 members) nearest neighbors tended to be alongside (90º), and consequently 

groups tended to be more or less straight lines (perpendicular to the direction of travel). 

For larger groups, however, nearest neighbors tended to occupy positions of 45º and 

135º. Perhaps the most interesting type of group shape was a “parabola” with the 

deflection point in the center of the group with respect to the direction of travel. Partridge 

et al. (1983) suggest that this group shape allows the school to act like a ‘seine’ net, 

funneling or encircling the prey fish. They also hypothesize that individuals at the edge of 

the parabola would be less likely to catch prey (due to increasing overlap of strike zones 

from the group center), and thus it is possible that some alternative benefit may be 

associated with these positions, or that individuals change position within the group 

between hunting events. 

 

3. Group internal structure 

 

3.1 Analyzing spatial positions in natural groups  

 

Despite the ubiquity of animal aggregations, there is limited quantitative information 

about the internal structure of most vertebrate groups. Groups moving in three-

dimensional space present a particular challenge to study since there are significant 

technical complications involved in recording accurately the spatial positions and 

orientations of group members. Consequently, attempts to characterize such structure are 

often limited to qualitative observations (Radakov, 1973), although through the use of 

inventive camera-based techniques it has been possible to make accurate recordings of 

spatial positions in fish schools (Cullen et al., 1965; Partridge, 1980; Partridge and 
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Pitcher, 1980; Partridge et al., 1980) and bird flocks (Major and Dill, 1978; Davis, 1980; 

Pomeroy and Heppner, 1992; Heppner, 1997). 

 

Partridge et al., (1980) used photographic techniques to record the positioning of 

individuals within fish schools in three-dimensional space within a large circular channel 

(1.8m wide and 31m in circumference) in the laboratory. A moving gantry projecting 

from the center allowed fish schools to be filmed from above. Fish were trained to swim 

over a “speckled spot of light” projected onto the floor of the tank, and thus by rotating 

the gantry at a constant speed they could film the school as it swam to keep pace with the 

spot. To reconstruct the three-dimensional positions and orientations of the fish they used 

a shadow method (Cullen et al., 1965) in which a secondary light shone at a known angle 

on to the school casts shadows of the fish. The area filmed included that where the 

shadows were cast, and a calculation involving the known position of the light and the 

depth of the water allowed the height of the fish in the water column to be estimated, thus 

providing the third spatial dimension. There are, however, limitations to this method. 

Firstly, it is very time-consuming, and somewhat subjective, to relate a shadow to an 

individual fish within the video sequence. Secondly, in situations where fish become 

closely packed, it is not possible to record the positions of all fish due to individuals 

occluding one another. A third limitation to this particular study was that an extraneous 

stimulus controlled the position and speed of the group. Such a stimulus was likely to 

have an influence on the grouping behavior of fish by constraining their natural 

movement tendencies, and by forcing fish to balance two social forces: their motion with 

respect to one another, and their motion with respect to the stimulus.  

 

Nevertheless, this technique is still vastly superior to qualitative observations, and 

Partridge et al. (1980) were able to investigate positioning behavior in groups of up to 30 

individuals for three species of fish: cod (Gadus  morhua), saithe (Pollachius virens) and 

herring (Clupea harengus). As well as being commercially important, these fish possess 

different degrees of schooling tendency. Cod are weakly facultative schoolers, whereas 

saithe, although facultative schoolers, spend the majority of their time in polarized groups 

(individuals within the group are aligned). Herring are obligate schoolers, and form 
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highly polarized groups. In order to examine internal group structure, both nearest 

neighbor distances, and the elevation and bearing of group-members to their nearest 

neighbors were recorded. Elevation and bearing correspond to the angle between the 

current orientation of the reference individual and the position of the nearest neighbor, in 

the vertical and horizontal plane, respectively. The angles 0º and 180º refer to directly 

ahead of, and behind, the reference individual, respectively. 

 

Individuals were shown to exhibit a minimum approach distance (analogous to the “zone 

of repulsion” described in section 2.4b). To ascertain whether positioning was non-

random, the elevation and bearing distributions were compared to those generated by a 

random (null) model in which individuals were assigned positions at random within a 

volume equal to that of the real school. Fish within the real schools were found to occupy 

non-random positions in all experiments. In cod and saithe, the distribution of bearings 

had a peak at 90º, showing that individuals tended to be closest to lateral individuals. The 

distribution was more peaked for the relatively more polarized saithe groups. In herring 

schools, however, the distribution of bearings was found to be bimodal with nearest 

neighbors found most frequently at angles of 45º and 135º, showing that these fish adopt 

a more lattice-like structure. Dill et al., (1997), however, questioned the use of the null 

model used in these analyses, arguing that the results may actually be an artifact of using 

such a simplistic model with which to compare the data. They demonstrate how more 

complex, and perhaps more biologically meaningful, null models can be constructed.  

 

There are relatively poor data available to quantify the internal structure of bird flocks. 

Using stereo photography it was possible for Major and Dill (1978) to record the 

positions of birds within flocks of European starlings, Sternus vulgaris, and dunlin, 

Calidris alpina. They concluded that there were “striking similarities” between the 

internal organization of bird flocks and fish schools, although the large variance in the 

data from bird flocks, and the limited number of species investigated, makes rigorous 

comparison difficult. Furthermore, they were unable to record the flight-paths of 

individual birds over time. Davis (1980) observed the coordinated turns in flocks of 

dunlin, but had a very small sample size (nine “analyzable incidents”), and just recorded 
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the number of birds with light plumage visible over very short time-periods (700 

milliseconds). The main problem with this type of analysis, as Heppner (1997) points out, 

is that as a flock moves relative to an observer, a ‘wave’ of brightness (through revealing 

light plumage, or the reflection of light from the body) may appear to cross the flock, 

indicative of a turn. However, such an effect is likely to be an artifact of the change in the 

position of individuals relative to the stationary observer and the light source. 

 

In both bird flocks and fish schools it appears that the internal structure of groups is 

usually dynamic, with individuals frequently shifting position. For example, Pomeroy 

and Heppner (1992) filmed a flock of 11 pigeons in flight, and found that during a turn 

birds in the front of the flock can readily fall to the back, or those on one side change to 

the other. This was a consequence of the birds seeming to employ a relatively constant 

turning rate during a turn, resulting in positions being rotated. 

 

Sinclair (1977) (in conjunction with J. M. Cullen) used aerial photographs to analyze the 

spatial positions of individuals within grazing African buffalo (Syncercus caffer) herds. 

They used a manually operated plotting machine (in a nuclear physics laboratory, 

designed to plot the tracks of particles in bubble chambers) to record the positions and 

orientations of adults and calves. From these data the distances and bearings to nearest 

neighbors were calculated. To search for non-random patterns they compared the nearest 

neighbor data with those generated by a model in which individuals were randomly 

assigned positions within the same area. In all five herds analyzed, the distance of 

individuals to their nearest neighbor had a significantly higher than expected number high 

values. This suggests that the animals are over-dispersed when grazing. When the angles 

to nearest neighbors were analyzed there appeared to be no consistent pattern. However, 

in sheep it appears that grazing herds display more evident structure, with nearest-

neighbors tending to be at a bearing of about 55º ahead (Crofton, 1958). These data 

suggest that in sheep herds individuals become progressively more crowded towards the 

front of the group, since, if this were not the case, nearest neighbors should be expected 

to be as often behind as in front. Until further studies are made, however, it is difficult to 

interpret what these results mean with regard to the interactions among individuals within 
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herds. We encourage any researchers who have any relevant data on the distribution 

and/or orientation of individuals within herds to make this information publicly available 

so more rigorous analysis of the grouping behavior, and comparisons between species, 

can be made. 

 

Throughout this paper we have emphasized the need for empirical studies to test existing 

models, and develop new theoretical approaches. One of the principal limitations to the 

study of collective behavior is the difficulty in recording and analyzing the movement of 

many organisms concurrently. However, only by obtaining accurate recordings of the 

movement of individuals from which behavioral properties such as the interactions 

among individuals, and between individuals and their environment can be made, can we 

begin to understand the processes that underlie collective behaviors. As described above, 

the manual recording of the positions of individuals over time is extremely laborious. 

Through recent technological advances, however, a new possibility has been introduced: 

that a computer can be programmed to ‘see’ and record the movement of animals 

automatically. In this way it is possible to track a large number (tens or hundreds) of 

organisms simultaneously in 2-dimensions (e.g. fish within shallow water) by analyzing 

film made from above (Couzin, 1999; Roditakis et al., 2000) or fewer individuals within 

three-dimensional space (where occlusion of individuals in the center of large groups is 

inevitable) from film made by two or more cameras (e.g. one camera filming from 

directly above a group, and another from the side) (see Osborn, 1997; Parrish and 

Turchin, 1997). Once trajectories have been obtained it is possible to perform time-series 

analyses of the velocities of each individual with respect to other group-members, 

investigating cross-correlations between the velocities of individuals, as well as auto-

correlation of the focal individual’s velocity (see Okubo, 1980; Partridge, 1980; Parrish 

and Turchin, 1997). Parrish and Turchin (1997), for example, examined a range of 

potential “foci” that may influence the behavior of individual fish (juvenile blacksmith, 

Chromis punctipinnis). Such foci were assumed to either be attractive, repulsive or 

neutral depending on the distance separating it from the fish and ranged from the 

individual’s nearest neighbor to the centroid (center) of the entire group. They found that 

individuals appear to pay most attention to their nearest neighbor and to the school as an 
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entire unit, although it is currently difficult to determine from these results what 

behavioral rules are being used by the fish. 

 

It would be interesting to further develop analysis techniques for such groups. One 

attractive avenue of research may be to use computer models of grouping to make 

predictions about where one would expect individuals to move to, from one instance (in 

time) from a video sequence, to a future instance. Thus one could search for theoretical 

behavioral rules that have the highest predictive power (over a range of time-intervals) 

when compared to a real data set. It would also be possible, using the type of computer 

vision systems mentioned above, to recreate the visual information available to each 

individual at an instance in time. This may provide further insight into the actual 

information available to individuals within groups (e.g. for fish that predominantly use 

vision, such as the stickleback, Gasterosteus aculeatus; or ungulate herds filmed from 

above). Since the imaging software can calculate the size, orientations and positions of 

individuals, it would be possible to program it to calculate where each individual’s eyes 

are, and generate an impression of what visual information is available when making 

movement decisions. This is important because there may often be limits (which may 

vary with environmental conditions and the degree of local crowding) to the distances at 

which individuals are able to detect, and respond to, neighbors. The influence of external 

stimuli (such as the perception of obstacles) could also be investigated in this way. Thus, 

we believe further developments of imaging and behavioral analysis systems could 

provide new, and important, insights into the mechanisms of grouping behavior.  

 

3.2 Differences among group members and the internal structure of groups 

 

Radakov (1973) considered fish within schools as being behaviorally identical and 

interchangeable with regard to position. In the simulations described above, it is also 

assumed that individuals are identical. This is necessary to demonstrate how patterns 

form with the simplest possible assumptions and information input. However, the 

positions that individuals take within groups, relative to others, have important 
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evolutionary and ecological consequences (Hamilton, 1971; Okubo, 1980; Krause and 

Ruxton, 2002); see Krause, 1994, for a review. 

 

In many cases group members are not intrinsically equivalent (Pitcher et al., 1985; 

Parrish, 1989a; DeBlois and Rose, 1996; Krause et al., 1996). Differences among 

individuals, such as age, nutritional status and sex, may all influence the position adopted 

by an individual within a group. For example, Krause (1993a), in a study of schooling 

fish (roach Rutilus rutilus), showed that starved individuals would tend to occupy 

positions towards the front of the group. It is likely that this increases food capture rate 

by these individuals since they are more likely to be able to detect and consume floating 

food items than are individuals towards the rear of the group. However, being at the front 

also increases the chance that these individuals will be the first to encounter predators 

(Bumann et al., 1997). Furthermore, there is evidence for certain mobile fish schools that 

individuals occupying positions whereby they are in the slipstream of others may need 

less energy for locomotion (Herskin and Steffensen, 1998). Consequently, there may be 

both benefits and costs to spatial positions. Individuals within groups may therefore be 

expected to modify their positions relative to neighbors as a function of their internal 

state; hungry individuals, for example, being more willing to risk dangerous positions if 

that will benefit their resource intake. When the advantage of being in a frontal position is 

outweighed by the perceived risk of predation, however, one may expect that individuals 

will avoid the group front, perhaps occupying positions closer to the group center 

(Hamilton, 1971). Krause (1993b) found that minnows, Phoxinus phoxinus, respond to 

perceived danger by moving to positions where they tend to be surrounded by near 

neighbors on all sides. However, the center need not necessarily be the safest position 

within a group. Individuals in the center may not be able to detect a threat directly and 

may also be constrained in their escape movement by the proximity of others. Parrish 

(1989a), for example, found that Atlantic silversides, Menidia menidia, suffered higher 

predation from black sea bass, Centropristis striata, if they occupied central positions 

within the school. McFarland and Okubo (1997) suggested that central positions in fish 

schools may also be detrimental for another reason. Individual fish consume dissolved 

oxygen and increase local ammonium concentrations. In the center of large groups the 
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modification of dissolved gases may be such that respiration is inhibited, which may be a 

group-structuring factor in large (particularly stationary) groups. 

 

To investigate the influence of individual behavioral heterogeneity on grouping 

dynamics, Gueron et al. (1996) developed a simple model of herding animals. Their 

model is conceptually similar to those described above to investigate fish schools and 

bird flocks, in that individuals are assumed to respond to others within local zones. In 

their model, individuals attempt to maintain a minimum separation distance. This 

behavior has the highest priority. Outside this zone is a “neutral zone” extending to the 

sides, and ahead of, the focal individual. In this zone, individuals do not respond to 

neighbors unless all neighbors are on the same side, in which case the focal individual 

will move towards neighbors, but not change speed (representing avoidance of isolation). 

Lower in priority is the “attraction zone”, which extends beyond the neutral zone, again 

to the sides and front. The rule employed if individuals are found within this zone is to 

bias both direction and speed to maintain proximity to neighbors. If no individuals are 

detected in any of these zones, then individuals respond to neighbors (if any) that are 

present to their rear. An individual that only has neighbors to the rear is termed a 

“leader”. Note that this definition emerges from the relative positions of individuals 

within the group, as opposed to being explicitly specified. A leader is assumed to reduce 

its speed to remain in proximity of other group members. Individuals that do not detect 

any neighbors within their behavioral zones are termed “trailers”. Such individuals speed 

up to represent their attempting to maintain contact with the group. 

 

In the case where all individuals are assumed to be identical, it was found that for a wide 

range of walking speeds, large groups (up to 100 individuals) could maintain cohesion for 

long time periods. At low walking speeds the group adopted a phalanx-like structure, 

with individuals forming a flat moving front. As individual speed was increased, 

however, the group structure became more columnar. 

 

As a next step, groups were considered to be composed of two subpopulations, each with 

a different speed. Not surprisingly, individuals in the faster subpopulation tended to 
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occupy positions at the front of the groups, becoming “leaders” irrespective of their 

positions within the group when the simulation was started. Without individuals 

responding to others behind them (in the “rear zone”) these subpopulations will 

inevitably separate, given time. If individuals did respond to those behind them, it was 

possible to retain cohesion, but as the difference in speed between the two subgroups 

increased this became less likely, and subgroup fission occurred more rapidly. However, 

given that the rear zone was set as the ‘lowest priority’ in this model, it is possible that 

fragmentation of subpopulations would occur even when the difference in speed was 

relatively low, since it is possible that individuals would not respond to those to the rear 

for sufficiently long periods of time. Gueron et al. (1996) suggest that differences in 

speed between lactating and non-lactating zebra (lactating individuals moving more 

slowly) may explain the segregation of these individuals into subpopulations. This 

segregation occurs particularly in circumstances where individuals tend to move quickly, 

such as when the perceived threat of predation is high (for example, when moving near 

waterholes).  

 

Couzin et al. (2002) also investigated the consequences of behavioral heterogeneity on 

the spatial positions individuals occupy within mobile animal groups, by modifying the 

model of grouping in 3-D space outlined in section 2.4b. Unlike Gueron et al. (1996), 

they assumed a continuous distribution of individual phenotype within the population, as 

opposed to just two classes of individual. To simulate variation they modified the 

behavioral parameter under investigation by adding a Gaussian-distributed random 

deviate centered on 0 (independently drawn for each individual). Therefore the standard 

deviation of this distribution determined the degree to which individuals within the group 

differed with respect to that parameter. They investigated the consequence of variation in 

individual properties, including speed, turning rate, error, and the size of each of the three 

behavioral zones. In order to quantify the spatial positioning behavior of individuals, the 

correlation between these parameters and the distance between individuals and the group 

center, and the distance to the front of the group, were measured (Fig. 14A-D). 
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Individuals’ speed was positively correlated with their being at the front of the group, and 

slightly further away from (negatively correlated with) the group center (Fig 14A). Those 

with a higher rate of turning tended to be at the rear, and slightly closer to the center, of 

the group (Fig. 14B) and individuals with higher degrees of error in movement tended to 

occupy the rear of groups. The size of the immediate personal space around individuals, 

represented as the zone of repulsion (rr), was important in structuring groups: individuals 

with small values of rr tended to occupy positions at the center of, and towards the front 

of the group (Fig. 14C, E). For all parameters investigated the strength of the correlation 

(degree of sorting) increased as the variation within the population increased. 

 

These results suggest that behavioral and/or motivational differences among individuals 

may constitute an important organizational principle within animal groups. As explained 

above, there may be many reasons why individuals within groups may be expected to 

modify their positions relative to others. This model provides potential self-organizing 

mechanisms whereby this may occur. Importantly the sorting within the model depends 

on “local rules of thumb” and not on the absolute parameters, but rather the relative 

difference between individuals. Thus an individual decreasing its zone of repulsion 

relative to near neighbors will tend to move towards the center of the group, even if it has 

no knowledge of where the center actually is. This is important, because in many 

naturally occurring large collectives of vertebrates it is extremely unlikely that 

individuals have the cognitive or sensory capabilities to calculate their absolute position 

within the group (individuals are often closely packed, restricting perception range). For 

example, pelagic fish schools can extend over kilometers and may consist of hundreds of 

thousands of individuals (DeBlois and Rose, 1996), so it would be impossible for 

individuals to measure their distance from the edge. Thus natural selection is likely to 

favor local self-organized mechanisms that individuals can use to modify their position 

relative to others, without necessitating a specific destination or knowledge of current 

location. 

 

Another point to note about this type of sorting mechanism is that, due to the interaction 

mechanics involved, individuals with similar phenotypes will become more closely 
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associated within groups. In many fish schools individuals tend to be close to others 

similar in size (Pitcher et al., 1985; Parrish, 1989a; DeBlois and Rose, 1996; Ward et al., 

2002) or, in multi-species groups, to conspecifics (Parrish, 1989a). Couzin et al’s model 

suggests a mechanism whereby this would occur without invoking complex individual 

recognition capabilities: if size, or species, is correlated with behavioral response, then 

this could account for the assortment seen. A further property of this self-organized 

sorting is that given consistent differences among individuals, the system will re-

assemble to form the same configuration (statistically) after it has been perturbed from 

that state.  

 

Self-organized sorting may also improve our understanding of the spatial positions taken 

up by parasitized individuals within groups. For example, Krause and Godin (1994) in 

the laboratory, and Ward et al. (2002) in the field, studied the influence of parasitism on 

the positioning behavior of individuals within natural fish schools (banded killifish). 

They found that individuals parasitized by the digenean trematode Crassiphiala 

bulboglossa tended to occupy peripheral positions in the group (see also Barber and 

Huntingford, 1996, for a similar host-parasite system). It has been suggested that the 

parasite may be manipulating the behavior of the host, resulting in it modifying its 

position with respect to others within the group, to increase the chances of propagation of 

the parasite to its definitive host, the belted kingfisher, Megaceryle alcyon (Barber et al., 

2000). Investigating this behavior in the context of the type of sorting mechanisms we 

have outlined here may improve the understanding of the behavioral modifications that 

occur in such parasitized individuals. 

 

3.3 Social dominance relationships and structuring within groups 

 

Several authors have suggested that self-organized structuring may also occur within 

animal groups as a result of dominance interactions among individuals (Hogeweg and 

Hesper, 1983; Hogeweg and Hesper, 1985; Theraulaz et al., 1995; Bonabeau et al., 1996; 

Hemelrijk, 1998; Bonabeau et al., 1999a; Hemelrijk, 1999). Dominance relationships 

among individuals within a group have been recorded for many animals, such as birds 
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(Schjelderup-Ebbe, 1913, 1922), primates (Kummer, 1968; Mendoza and Barchas, 1983; 

Barchaz and Mendoza, 1984; Thierry, 1985), ungulates (Tyler, 1972; Barton et al., 1974), 

fish (Francis, 1983; Beugrand and Zayan, 1984; Hsu and Wolf, 1999) and insects (Franks 

and Scovell, 1983; Heinze, 1990; Bourke, 1988; Oliveira and Hölldobler, 1990). 

Dominance interactions are typically considered to be “pairwise”: that is, most contests 

involve just two individuals at a time. Individuals that tend to “win” such interactions 

(termed high rank individuals) are often thought to increase their access to resources 

(such as mates or food) so individuals should be expected to strive to increase their rank 

within the group (Datta and Beauchamp, 1991). However, dominance interactions with 

others are often aggressive, and thus may be energetically costly and time-consuming. 

Individuals may therefore also be expected generally to avoid conflict, instead relying on 

passive recognition mechanisms once the hierarchy has been established (Karavanich and 

Atema, 1998). When such a hierarchy (network of dominance-submission relationships) 

persists, it should therefore be expected to organize the group in such a way that the costs 

of the dominance interactions do not offset the benefits of group membership. 

 

Within the context of self-organization theory, it has been proposed that a double 

reinforcement mechanism may explain certain properties of the dominance hierarchies 

seen in natural groups. Simplistically, such a mechanism assumes that winners of 

interactions increase their probability of winning future interactions, whereas losers 

increase their future probability of losing (Chase, 1982a, b). If it is assumed that all 

individuals are initially similar with regard to their probability of winning interactions, 

then the outcome of early contests will be relatively unpredictable. However, if by chance 

an individual wins, this increases its chance of winning a future contest. Similarly, a 

losing individual is more likely (probabilistically) to lose in future. Thus, this process of 

feedback and amplification of initial stochastic events can result in progressive 

differentiation of the group. Such effects have been reported in real animal groups 

(Ginsburg and Allee, 1975; Chase, 1980, 1982a, b, 1985; Francis, 1983; Beugrand and 

Zayan, 1984). However, in reality it is likely that differences among individuals affect 

their real propensity to be successful in such contests (Slater, 1986), and the initial 

assumption that all individuals are similar in this respect merely acts to show that 
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inherent differences are not essential to explain the generation of a hierarchy. Of course, 

a model could be constructed in which individuals have different intrinsic rates of 

feedback: that is, for some individuals positive and/or negative reinforcement may be 

stronger than in others. It should be noted, however, that experimentally it may be 

difficult to differentiate from a model based on pre-existing differences, a so-called 

“correlational model” (Chase, 1980) from self-organized alternatives that either do, or do 

not, incorporate inherent heterogeneity in response to interactions. Even in cases where 

the data are relatively detailed, such as for some social insects such as Polistes wasps 

(Theraulaz et al., 1989; Theraulaz et al., 1992; Theraulaz et al., 1995), it is currently not 

possible to determine to what degree self-organized reinforcement structures dominance 

hierarchies since the empirical data can be explained by both correlational and self-

organized approaches (Bonabeau et al., 1999a). Interestingly, recent evidence suggests 

that even simple organisms such as Polistes may be able to recognize nest-mates, and that 

this ability influences the intensity of dominance interactions (Tibbetts, 2002). 

 

Hogeweg (1988) and Hemelrijk (1998, 1999) extended the self-organized models of 

hierarchy formation to investigate potential spatial effects that may emerge in populations 

of individuals that exhibit the type of feedback mechanism described above. Individuals 

exhibit a simple grouping tendency and can perform double reinforcement dominance 

interactions. It should be noted that although a centripetal force (tendency to move 

towards the group center) has not been explicitly encoded in these models, the propensity 

of individuals to approach others if they become isolated would result in a mean 

acceleration of individuals towards the group center (see Okubo, 1980, 1986). Without 

such an inward-oriented force (relative to the current group center) the group would tend 

to dissipate by randomness of motion. After a dominance interaction, both the winner and 

loser of such interactions turn a randomly determined angle of 45º either clockwise, or 

anticlockwise, and move forward. The loser is assumed to move further in a given time-

interval, simulating it being “chased” away (thus it moves more rapidly). The model 

therefore assumes that the dominance rank of an individual influences the mobility of 

individuals; more submissive individuals being more mobile. In these models this rule-set 

results in subordinate occupying peripheral positions, and dominant individuals the group 
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center. Given a physical system in which particles move at different rates, similar spatial 

structuring often results. A commonly known example of this is that more active particles 

within a liquid or gas often rise (e.g. hot air rising). In this case gravity can be considered 

analogous to the net centripetal force.  

  

The degree to which groups are structured in this manner is related to the difference in 

motion among individuals, and hence the “steepness” of the hierarchy, with the distance 

from the group center and dominance level being increasingly negatively correlated as 

the steepness increases. Thus Hemelrijk’s model suggests that this spatial structure will 

be more defined for despotic societies (where the hierarchy gradient is steep) than for 

egalitarian societies (where the gradient is relatively shallow). Further extensions of this 

model allow investigations of other properties, including the importance of memory of 

previous interactions, and different strategies with regard to the perceived risk of 

encounters, and thus provides a useful tool with which to make predictions about 

dominance relationships in real animal groups (Hemelrijk, 2000). However, it may still 

be difficult to differentiate between different explanations for the same phenomena, as 

discussed by Bonabeau et al. (1999a).  

 

3.4 Leadership 

 

The models we have introduced above demonstrate that leadership is not a necessary 

requirement for collective organization of groups. We have also described how leadership 

may ‘emerge’ within mobile groups, as a result of the interactions among individuals. In 

some cases the behavioral properties of an individual may bias its probability of being a 

leader (Gueron et al., 1996; Couzin et al., 2002; see Krause et al., 2000a for a review of 

leadership in fish), whereas in the case of essentially identical individuals the probability 

of being a leader of a group may be largely random, or be dependent on the initial starting 

conditions. This concept of leadership is quite different from that used by early 

researchers such as Selous (1931) and Pressman (1970), who assumed a leader has 

control of all other group members. This is clearly not the case. However, individuals that 

happen to be at the front of a group, or whose behavior increases their probability of 
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occupying frontal positions, are likely to have a stronger influence on the motion of the 

group than are individuals further back, even if all individuals are identical and follow 

exactly the same rules. 

 

Consider a simplistic situation. Assume you are walking at the front of a group which is 

moving forward in a straight line. If you were to suddenly stop, this would be likely to 

impact on the motion of other group members, who must now avoid you to continue their 

journey. If a group is sufficiently fast moving and tightly packed, this can cause great 

disturbance. However, consider that you perform the same stop behavior, but instead of 

starting at the front of the group, you were to start at the back. Your behavior would have 

little, or no, effect on other group members who are not impeded by you. Similarly, 

within a herd, school, or flock an individual changing speed at the front of a group will 

have a larger influence on other group members than if it were at the rear. If an individual 

at the front performs a turn, for example, this also reduces its speed relative to the 

direction of group motion. Thus it is likely to interact with a large number of other group 

members, and its orientation is much more likely to be propagated to other group 

members than if it were in the rear of the group. 

 

Such leadership effects may be further enhanced if individuals have a tendency to interact 

more strongly with those ahead, so called “frontal bias” (Huth and Wissel, 1992), which 

has found support from empirical work on fish shoals (Bumann and Krause, 1993). This 

may be a result of having a blind area to the rear in which they cannot detect others, or 

individuals having evolved to bias their movement decisions  more heavily to those ahead 

of themselves in moving groups. This makes sense since the individuals at the front of a 

group are more likely to encounter stimuli, such as environmental obstacles, sit-and-wait 

predators or resources.  

 

4. Group size and composition 

 

In the previous sections of this chapter we have considered how the interaction dynamics 

among individuals result in the formation, internal structuring and collective behaviors of 
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vertebrate groups. In this section we consider the distribution of grouping individuals 

over larger spatial and temporal scales, and discuss how individual behaviors lead to 

population-level dynamics. At an ecological scale, the distribution of social organisms 

(such as schooling fish and herding ungulates) results from the processes of 

amalgamation (fusion) and splitting (fission) of groups (here we consider isolated 

individuals as being in a group of size 1) within the context of their environment. 

Understanding these properties is essential if we are to understand better disease 

transmission and the transfer of information among individuals (e.g. social learning). In 

section 4.1 we discuss how the timescale over which fission and fusion occurs can result 

in stationary frequency distributions of group size within a population, and how modeling 

may help determine the underlying mechanisms of such processes when only group-size 

distributions are available (as in many natural systems where the distribution of group 

sizes is easier to record than the underlying interactions among groups). In section 4.2 we 

will explore how the spatial dimension through which individuals move, and habitat 

properties such as fragmentation may affect the distribution of grouping organisms. We 

then consider how phenotypic differences among individuals may influence fission-

fusion systems in 4.3. We conclude the section by considering how the theory of optimal 

group size can be considered from a self-organization perspective, in 4.4. 

 

4.1 Fission, fusion and group size distributions 

 

The fission-fusion processes described above may often occur sufficiently rapidly 

(relative to the temporal and spatial scale over which ecological properties may change) 

that the group-size distribution is stable (stationary) (Okubo, 1986; Gueron and Levin, 

1995; Bonabeau and Dagorn, 1995; Niwa, 1998b; Bonabeau et al. 1999b; Sjöberg et al., 

2000). The type of shape of group sizes found within a population is shown in Fig. 15 for 

African buffalo. Okubo (1986) discusses some of the behavioral and ecological 

constraints which may result in the equilibrium distribution of group size being unstable 

within given intervals of time, including sudden changes in the behavior of grouping 

individuals, or of the environment (e.g. availability of resources, or visibility). We will 
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return to the influence of these variables later. However, for simplicity it is reasonable at 

the offset to assume stability in these properties. 

 

In cases where fusion is high relative to fission, then the number of groups with few 

individuals should tend to decrease (larger groups will be more likely to persist) and the 

group-size distribution would be expected to have a relatively long tail. If fusion is low 

relative to fission, however, groups tend to be unstable, and large groups are less likely to 

form. Consequently group-size distributions would be more rapidly decreasing. Several 

studies have recorded exchange rates between groups of fish. Hilborn (1991), for 

example, studied skipjack tuna, Katsuwonus pelamis, and found that 16-63% of 

individuals changed shoals within a day, although Bayliff (1988) found much more stable 

groupings in the same species. Klimley and Holloway (1999) for yellowfin tuna, Thunnus 

albacares, and Bayliff (1988) for skipjack tuna, found that cohesion of schools was high, 

and the half-life of schools was likely to be in the order of weeks. Krause (1993a) found 

in roach shoals (Rutilus rutilus) that a turn-over of more than 50% of the individuals 

occurred within 2 days. In killifish (Fundulus diaphanus) shoal encounters were observed 

very frequently (on average every 1.1 min for a given shoal) resulting in high rates of 

exchange of individuals between shoals and a complete mixing of fish in the population 

within 24 hrs (Krause et al., 2000c). A similar result was found by Seghers (1981) in 

spottail shiners (Notropis hudsonius) and Helfman (1983) reported an absence of shoal 

fidelity in the yellow perch (Perca flavescens). In summary, these data indicate that 

fission-fusion processes occur more frequently in freshwater where density of individuals 

is high and thus encounters more common than for pelagic marine species. Thus we 

would expect that the group size distributions would reflect the different fission-fusion 

dynamics of these groups. 

 

It is important to note when looking at group-size distribution data, that the pattern seen 

results from a dynamic process. Even though such a distribution can often be relatively 

stationary, it is the continuous splitting and fusion of groups that makes it so. 

Consequently it represents the probability distribution of a given individual being in a 

group of a certain size at any given moment of time. Considering the large scale over 
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which fission-fusion dynamics takes place, some modelers (Okubo, 1986; Gueron and 

Levin, 1995) have made the assumption that the population properties can be described 

by a non-spatial approach, where one may attempt to define the average rate of fusion or 

fission of groups. However, if we consider the mechanisms at the level of the individual 

it will become clear that both the probability of a group encountering another (and fusing) 

and the probability of a group spontaneously fragmenting (fission) will be dependent on 

the size of the group in question. For example, the range over which individuals can 

interact (and/or the strength of interaction) is likely to influence group cohesion. As 

described above (section 2.4), groups much larger than the range of individual 

interactions can form. However, as group size increases, it will be increasingly likely that 

a group will fragment (due to the inherent stochastic nature of interactions and motion). 

Such fragmentation may be exacerbated by interactions with other groups and/or the 

environment (see section 4.2 below). As group size increases other properties may also 

change, such as the velocity of the group, and the probability of a group encountering 

other groups (Flierl et al., 1999). Thus, although one can relatively easily describe a 

system in terms of a time-dependent dynamical function of the number of groups of a 

given size incorporating size-dependent fission and fusion rates (see Okubo, 1986; Flierl 

et al., 1999), defining (and verifying) realistic fission-fusion functions used can be a 

complex task. Flierl et al., (1999) use individual-based models of fish schooling to 

estimate some of these functions (e.g. fission-rates as a function of school size), and 

group-size distributions in their model tend to be very nearly exponentially distributed. 

 

Using an alternative technique involving a “maximum entropy” principle, Okubo (1986) 

also predicted that all group-size distributions should be exponentially decreasing (see 

Okubo, 1986, for a detailed mathematical description of the model), and fitted this model 

to a range of experimental data from fish species, including the spottail shiner, Notropis 

hudsonius, and ungulates including American bison, Bison bison, and Desert bighorn, 

Ovis canadensis. However Bonabeau et al. (1998, 1999b) argue that Okubo’s (1986) 

model assumes that there is a fixed average size to animal groups (and thus that there is a 

well-defined mean to such distributions), and that in reality when maximum group size is 

large, group size distributions may exhibit longer tails than predicted by a decreasing 
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exponential function. Furthermore they argue that such long-tailed distributions are likely 

to be truncated since populations are ultimately finite, and are rapidly decreasing at large 

sizes. Consequently they propose that animal group-size distributions may conform to a 

‘truncated power law’, where the number N(s) of groups of size s is proportional to s-b 

where b is the scaling exponent, up to a cut-off group size C. If group-size distributions 

do follow a power law, then Bonabeau et al. (1998, 1999b) suggest that biotic factors that 

may influence the stability of groups, such as resource availability, should be expected to 

affect the cut-off size, but not the power index, b (which corresponds to the slope of the 

function when plotted on a log-log scale) which is scale-invariant. They were able to 

show that experimental data on group-size distributions from fish schools (tuna and 

sardinella) and ungulate herds (African buffalo) exhibit long-tailed distributions 

characteristic of the truncated power law (indicating that such species form relatively 

cohesive, stable groups). Where data were available, for tuna fish, they also demonstrated 

that cut-off size does vary between years, but b appears relatively constant.  

 

If this model does indeed fit the observed data, they also suggest that this may indicate 

that the underlying aggregation mechanism may be relatively simple (at least in terms of 

the join-leave probabilities), whereas the cut-off size could be used to reflect biologically 

important properties, such as changes in individual behavior, individual density or the 

environment. The ability to determine the cut-off point, which may represent a critical, 

and biologically meaningful, aggregate size, is one of the potential strengths of applying 

the truncated power law model, as opposed to the other methods described above, to 

group-size distributions. However, the prediction that cut-off size would vary with 

density-dependent properties was not explicitly tested by Bonabeau et al. (1998, 1999b), 

presumably due to insufficient data. Sjöberg et al. (2000) demonstrated that they could fit 

truncated power laws to data from gray seals (Halichoerus grypus) aggregating on haul-

out sites (see Fig. 16), larvae of tephritid flies (Paroxyna plantaginis) clumping in flower 

heads and aphids (Aphidiodea spp.) aggregating on stems. However, they also provide 

some evidence that cut-off size does vary as a function of density-dependent effects 

(resource density and individual density) for some insects (aphids), although in their 

system the resource distribution is also likely to influence the group-size distribution. 
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They also provide evidence that for aphids and tephritid fly larvae, that the exponent of 

the power law (the slope b) may be influenced by biotic factors. Thus they conclude that 

the simple mechanistic approach to understanding aggregation phenomena proposed by 

Bonabeau et al. (1998, 1999b) may not necessarily be suitable for other biological 

systems. 

 

Niwa (1998b) modified a balance-equation model by Gueron and Levin (1995) in which 

the fission-fusion processes were shown to result in a stationary solution. Like Bonabeau 

et al. (1998, 1999b) he applied this modeling approach to understanding the group-size 

distributions, inferring (as did Flierl et al. 1999) the fission-fusion rates from models of 

schooling dynamics (see Niwa, 1994, 1996). This model was fitted to data from free-

swimming tuna (as used by Bonabeau et al., 1998, 1999b), Japanese sardine (Sardinops 

melanosticta), northern anchovy (Engraulis mordax) and flying fish (Cypselurus 

opisthopus hiraii and Cypselurus heteruu döderleini). Niwa argued that the school size 

distributions fit a truncated power law with a crossover to an exponential decay around a 

certain cut-off size. This cut-off was dependent on the total population size, and is a 

result of fission-fusion within a finite population. Thus when the cut-off size is small 

(when populations are relatively small compared to these pelagic marine examples, as 

may be the case for some freshwater species: see Seghers, 1981 and Okubo, 1986), the 

exponential decay may be the only part of the function evident. As the population size 

increases one may therefore predict that the group-size distribution would better fit a 

power law. The model of Niwa (1998b) also predicts that the exponent of the power law 

does depend on population size, and that as population size increases the exponent should 

approach 1 over a wider range of group sizes (the population exhibiting a longer tail in 

the group-size distribution).  

 

4.2 The influence of habitat structure  

 

Continuing the discussion of the truncated power law description of animal group-size 

distributions proposed by Bonabeau et al. (1998, 1999b), a further prediction was made 

that the power index, b, should vary predictably as a function of the spatial dimension of 
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the system in question (also see Takayasu, 1989). The reason b increases is because at a 

low spatial dimension the spatial constraints mean that groups have a higher probability 

of meeting and fusing, relative to that at a higher dimension (given all other properties of 

the system are constant). Thus the truncated power law model predicts that b increases 

with effective dimension, but that where the effective spatial dimension is less than 3 (as 

in all biologically reasonable cases) then b < 3/2. Specifically b = 4/3 (1.33…) for d = 1, 

b = 1.465 ± 0.003 for d = 2, b = 1.491 ± 0.007 for d = 3 (although it should be noted that 

Niwa, 1998b and Sjöberg et al. 2000 question whether b must be less than 3/2). 

 

Despite the fact that some animals, such as fish, move in three-dimensional space, the 

individuals may not actually use the space available, as in the case of the schools of 

Atlantic bluefin tuna (Thynnus thynnus) discussed above (section 2.4e) which may 

predominantly occupy two-dimensional space, cruising just below the water surface 

(Partridge et al., 1983). Bonabeau et al. (1998, 1999b) tested this prediction using data 

from fish species that differ in their space use. Free swimming tuna (a mixed population 

of yellowfin tuna Thunnus albacares, skipjack tuna Katsuwonus pelamis and bigeye tuna 

T. obesus) often move in open ocean, but are still likely not to use the space available to 

them fully. For example they are more likely to be parallel to, rather than perpendicular 

to, the surface (due to the influence of gravity). Bonabeau et al (1998, 1999b) term the 

dimensionality of space actually used by the organisms as the “effective dimensionality” 

of the system. In the case of the free-swimming tuna their effective space use will be 

somewhere between 2 and 3 dimensions. Environmental structure is likely to influence 

this space use. Sardinellas (Sardinella maderensis and S. aurita), for example, tend to 

follow the coastline of West Africa, above the continental shelf (which limits water depth 

from 1 to 200m (Bonabeau et al., 1998, 1999b). Therefore the effective spatial dimension 

would be somewhere between 1 and 2. Space use may be reduced even further in some 

instances, such as when pelagic fish gather under artificial buoyant objects, known as 

‘fish aggregating devices’ (FAD). Bonabeau et al. (1998, 1999b) argue that the effective 

dimension of tuna fish schools caught in the vicinity of an FAD is less than 1 because the 

FAD is a point (relative to the large-scale spatial movements of tuna fish). It should also 
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be noted that such a device also affects the aggregation dynamics by introducing an 

attractive focus to individuals. 

 

Comparing the predictions of their model to the data from sardinella and tuna, described 

above, Bonabeau et al (1998, 1999b) demonstrated a qualitative, but not a quantitative fit 

(b = 1.49 for freely swimming tuna fish, b = 0.95 for free swimming sardinellas, and b = 

0.698 for tuna fish caught in the vicinity of an FAD). This shows that, as expected, the 

exponent b of the power law is inversely related to the spatial dimension used by the 

animal. Since these animals (as described above) use an unknown dimensionality of 

space it is perhaps not surprising that the fit to 3, 2 and 1 dimensions for the free-

swimming tuna, sardinellas and aggregated tuna is only qualitative, although Bonabeau et 

al. (1988, 1999b) argue that the lack of perfect agreement with the empirical data with 

which they tested their model may result from biases in available data. Firstly, their data 

came from schools caught by purse seine nets, and consequently a catch made may 

include only a subsection of a school (and this would be more likely as school size 

increased). Furthermore, because fishermen are not necessarily interested in small 

schools (and may use technology such as acoustic imaging to focus on larger groups) 

these are likely to be under-represented in these data. Another limitation to these data is 

that school size is based not on an actual count of the number of individuals, but an 

estimate made from the weight of each haul. As discussed above in section 3.2 

phenotypically similar individuals become associated within such groups, and this can 

result in groups, when they fragment, becoming phenotypically assorted (see section 4.3 

below). This means that in a fisheries sample (which is assessed by weight) a small group 

of large individuals would be indistinguishable from a larger group of smaller 

individuals, given that the two are of similar weight.  

 

In all grouping animals the effective space is likely to be an important consideration 

when attempting to understand their distribution in space and time. Animals are likely to 

live in heterogeneous habitats, and their behavior may often be influenced by habitat 

type. To some degree the effective dimensionality of the environment may be 

characterized as the fractal dimension of the spatial distribution of patches suitable for 
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movement. However, the situation becomes complicated in cases where there is more 

complex variation in habitat type (rather than a binary classification of merely suitable 

and unsuitable habitat). Some habitat may act to attract individuals (e.g. areas with high 

food abundance) whereas others may restrict motion (e.g. where there is structural 

complexity, as in forest). 

 

Habitat structure is also likely to affect other properties important in determining the 

fission-fusion dynamics. For example, some habitat (e.g. forest) may restrict the range 

over which individuals can respond to one another, and hence limit the interaction range. 

This is likely to have the effect of increasing the fragmentation of groups. In the case of 

animal groups that are mobile, motion around obstacles in the environment is also likely 

to increase the probability of splitting, and so one may expect the detailed nature of the 

habitat structure (such as the size and distribution of obstacles) to be an important 

influence on group size distribution. 

 

In some cases habitat structure may change very rapidly. Flierl et al. (1999), for example, 

used computer modeling to investigate the consequences of turbulent flow in aquatic 

environments on the grouping dynamics of fish. In many fluid environments changes in 

flow regime may be rapid (for example the volume of water on a given stretch of a 

freshwater waterway may change very rapidly as a result of flooding). Furthermore 

where conditions are turbulent there are likely to be rapidly changing shear and strain 

fields that will exert physical forces on animals. Under turbulent conditions one may 

expect that groups will be more likely to fragment since individuals may be expected to 

have insufficient control over their locomotion (relative to the strong physical forces 

exerted on them by the flow conditions) to maintain cohesion. At the very least it may be 

expected that even weak turbulence will act to impose largely stochastic physical forces 

which would decrease cohesion. In the model of Flierl et al. (1999), which incorporated a 

simple schooling tendency similar to that used by Grünbaum (1997, 1998), strong 

turbulence was shown to fragment groups, but where turbulence is weaker groups can 

form in temporary “refuges”. Once formed turbulence actually acts to increase the size of 

groups that form because the flow acts to increase the encounter rates between groups 
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since individuals tend to occupy the spaces in-between high turbulence areas. This 

suggests that the turbulent regime of aquatic environments is likely to have a strong 

influence on fission-fusion processes of grouping and consequently will affect the 

resulting group sizes in the population. This model also highlights the importance of 

considering physical properties of the environment that are potential pattern-forming 

processes. 

 

It is clear that there is still much debate about the processes involved in fission-fusion 

systems, yet the diverse range of mathematical techniques used has provided constructive 

and thought provoking discussion of a topic that is relevant not only to our understanding 

of collective behaviors and ecological questions, but also conservation issues where the 

models may allow a better understanding of how changes to the environment, or to the 

density of organisms, may affect group- and  population-level processes. 

 

4.3 Phenotypic assortment: active or passive? 

 

There is considerable empirical evidence that animals (most of the data come from fish 

shoals) tend to be assorted by phenotype between groups (Krause et al. 2000b). This 

includes sorting by body length, species, parasite load and body color. In section 3.2 

above, we discussed how differences among individuals within a group can lead to 

‘natural’ sorting: individuals with similar behaviors tend to become more closely 

associated as a result of the interaction mechanics. We hypothesized that, if properties 

such as body size, or species, are correlated with behavioral response, that this could 

explain the fact that fish within schools tend to be close to others of similar size (Pitcher 

et al., 1986; Parrish, 1989a; DeBlois and Rose, 1996, Ward et al., 2002) or, in multi-

species groups, to conspecifics (Parrish, 1989a). However, we did not consider the 

consequences of such self-sorting processes to population-level properties. Here we 

consider such sorting processes within the context of a fission-fusion system, and show 

how we can make some predictions about how these mechanisms are likely to influence 

group-level properties.  
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The close association of individuals with similar phenotypes within a group means that, 

when groups fragment, individuals will tend to remain with others that are more similar 

to themselves (Croft et al., in press). Thus phenotypically heterogeneous groups, when 

they fragment, will tend to do so into more homogenous groups. This phenotypic 

assortment is counteracted to some degree by the merging of groups of different 

phenotypes. To better understand how this process works at a population-level we 

construct a deliberately simplistic model of grouping. This model is similar to that 

outlined in section 2.4b (see Couzin et al., 2002, for further details), except here we 

simplify the model further: individuals have a close-range zone of repulsion that 

simulated their tendency to maintain a minimum distance between themselves, and a 

single 360º zone of perception that extends beyond this in which they can detect others. 

As before, the zone of repulsion has highest priority, but if there are no individuals within 

this zone, individuals will align with, and be attracted to neighbors within the zone of 

perception (for simplicity these forces are assumed to have equal weighting). This 

grouping behavior is subject to slight error (stochastic effects). If no others are detected, 

individuals perform a correlated random walk. Further details of the formulation of this 

model can be found in Hoare et al., (submitted). 

 

In our model, individuals are 4cm long, move at 5cms-1, and have a maximum turning 

rate of 100º/sec, corresponding to the killifish Fundulus diaphanus. However, this model 

is generic, and the processes we describe are not dependent on the exact parameters used. 

We assume individuals have localized perception, and respond to others within two body-

lengths. Again, changing this parameter changes the results quantitatively but not 

qualitatively. Our simulated organisms move in continuous space on a two-dimensional 

plane with periodic boundary conditions. Within this model individuals form mobile 

groups that exhibit fission and fusion. To investigate how differences among individuals 

can change group composition, we assume that there are two subpopulations that may, or 

may not, differ with respect to their behavior. This may correspond, for example, to two 

species, or to two classes of individuals (such as hungry vs. satiated individuals). Clearly 

further modifications, such as simulating continuous variation in behavior, would be 
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interesting, but for simplicity here we assume just two ‘types’ of individual within the 

population. 

 

Within this model, even slight behavioral differences between the two sub-groups results 

in groups becoming phenotypically assorted (see Fig. 17). One of the strongest sorting 

influences is a difference in speed between the two groups (Fig. 17A, B). Fig 17C shows 

how individuals assort when there is a difference in the size of the zone of repulsion 

between the two sub-populations (in section 3.2 above we discussed how this property 

affects the positioning of individuals within groups). 

 

Thus if different species, or ‘types’ of conspecific, differ with respect to their behaviors 

(for example tend to move at different speeds, or tend to respond to others over different 

ranges), this may result in them becoming ‘naturally’ self-sorted within a population. One 

need not necessarily invoke complex recognition and decision-making capabilities on 

behalf of the organism, although to the human observer it may appear that individuals are 

behaving in a more complex way. For example, within our computer model a naïve 

observer watching the individuals move around on the computer screen is likely to 

assume that they have been programmed to make complex decisions about whether to 

associate with others. This misconception results from biases in our perception since we 

often tend to consider behavior from too anthropocentric a point of view. We suggest that 

natural selection may act on such local ‘rules of thumb’ to facilitate phenotypic 

assortment within groups if that confers a benefit to individuals.  

 

Our model suggests that heterogeneity within animal groups may make them more 

susceptible to fragmentation: groups of individuals that differ with respect to certain 

behaviors (e.g. speed, or desired personal space) will tend to be less ‘stable’ (and 

therefore more likely to fragment) than those in which individuals are phenotypically 

similar. Our results also suggest that the population will become more phenotypically 

assorted as the difference between the two sub-populations (behavior types) increases 

(Fig. 17B, C).  
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Typically when researchers have observed phenotypic assortment within populations they 

have assumed that individuals are making active choices with whom they group. A 

preference for conspecifics over heterospecifics is assumed to have functional 

significance. Firstly conspecifics may be more likely to be in spatial proximity after 

hatching, and thus may be expected to develop anti-predator maneuvers with conspecifics 

as opposed to with heterospecifics (Krause et al., 2000b). Furthermore, individuals are 

thought to avoid being phenotypically ‘odd’ individuals within a group since this may 

enhance their risk of predation (through the predator being more likely to ‘lock’ its 

attention on the odd individual; Landeau and Terborgh, 1986; Theodorakis, 1989). There 

is some evidence that in mixed-species shoals the less common species may leave when 

the perceived threat of predation is high (Wolf, 1985). Furthermore, Allen and Pitcher 

(1986) reported that multi-species shoals separated into their component species when 

under predation threat. A similar explanation (avoidance of oddity) has been put forward 

to explain body-length sorting in single-species groups (reviewed in Ranta et al., 1994 

and Krause et al., 2000b). It may seem from our explanation of self-sorting that we 

contradict this view by suggesting a passive sorting strategy and not an active decision-

making process. However, this is not the case. We do, however, point out that in some 

instances it may be difficult to determine whether individuals are actively sorting (i.e. 

making an active decision to leave a group), or whether this is an inevitable consequence 

of different behavior types that have evolved for another reason. However, we must stress 

that the type of self-sorting processes we describe above may result from selection to 

allow assortment of individuals for the functional benefits we describe here. Thus, just as 

we argue that this type of self-organizing mechanism may be selected to allow 

individuals to modify their position within a group without necessitating complex 

cognitive abilities (or knowledge that would be difficult or impossible to obtain), natural 

selection may also select “rules of thumb” that individuals could use to become assorted 

by phenotype.  

 

The case, described by Wolf (1985), where less-common species in mixed species groups 

leave under threat of predation is consistent with a self-sorting type of mechanism. The 

perturbed group is likely to fragment, with odd individuals being ‘shed’ as the group 
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performs avoidance maneuvers. Another interesting point is that the empirical literature 

so far appears to be contradicting itself. Landeau and Terborgh’s (1986) study clearly 

showed that individuals are at a higher risk in a group where they are phenotypically odd 

compared to one comprising phenotypically similar group members (provided both 

groups are of the same size). The higher predation risk explains why an individual should 

switch from a group where it is odd to one where it ‘fits in’ and do so particularly under 

predation threat. However, Landeau and Terborgh (1986) also convincingly demonstrated 

that, if there is no such alternative, then an odd individual does much better by staying in 

a group where it is odd then being on its own because when alone the predation is even 

higher. Furthermore, they reported that no cost due to oddity occurred, provided shoals 

were larger than about 15 fish, because the antipredator effects of grouping became so 

efficient at this group size that the predator could not make any captures regardless of 

whether the group did or did not contain an odd fish. In this context it seems very 

surprising that Allan and Pitcher (1986) and Wolf (1985) found that different species 

separated under predation threat. We should expect to see the opposite, namely different 

species merging into shoals so that all individuals benefit from a large shoal size that 

renders oddity irrelevant. We suggest that multi-species groups split into single-species 

ones in such situations because of constraints imposed by species-specific behaviors 

(including potential differences in response latency, speed of locomotion and interaction 

rules). Thus the split into single-species groups is not an adaptive behavior that lowers 

predation risk when under attack but a result of a constraint that is likely to increase risk 

but which fish cannot overcome in this situation. Interestingly, another benefit of 

phenotypic assortment may be that information transfer (in terms of changes in individual 

velocity being propagated across the group) may be more efficient in homogenous than in 

heterogeneous groups (see section 2.4d) and we encourage further research in this area. 

 

In the case of individuals within groups being assorted by size, it would be interesting to 

determine whether this is a consequence of individuals somehow assessing the size of 

others relative to themselves (which introduces the problem of how individuals know 

their own size, and assess the size of others in the absence of stereo vision, as is the case 

over much of the field of view of most grouping animals) and choosing to associate with 
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similar individuals. An alternative possibility is that size is correlated with a behavior that 

results in groups becoming assorted by the type of mechanism we propose here. 

Similarly, groups within populations in which there are parasitized and non-parasitized 

individuals may be expected to become assorted by parasite prevalence, and/or load 

(Ward et al., 2002). However, in some instances body-length and parasite load may be 

correlated (Hoare et al., 2000) so it may be difficult to determine what causes the sorting.    

 

In reality it may also be difficult to determine whether the behavioral difference that 

results in a population being self-sorted has evolved for that purpose, or whether sorting 

is an epiphenomenon that merely does not incur a cost. Researchers should perhaps bear 

in mind that assortment may result from self-sorting processes. It should be noted that we 

are not saying that grouping individuals cannot, or do not, use more complex recognition 

and response behaviors. Rather we just aim here to introduce the possibility that complex 

phenomena at the level of the population may also be explained by alternative (and 

sometimes simpler) mechanisms. 

 

4.4 Optimal group size 

 

There are costs and benefits to individuals of being in groups (Ritz, 1997; Krause and 

Ruxton, 2002). Grouping individuals may, for example, decrease their chances of being 

consumed by a predator by positioning themselves near others (Hamilton, 1971). This is 

sometimes known as the ‘dilution effect’ because, if a predator randomly selects prey, 

then an individual having near neighbors may ‘dilute’ its chances of being consumed. As 

discussed in section 2.4d, individuals within a group may benefit from information 

exchange about the positions of predators, and perhaps the ‘confusion effect’ if 

individuals perform synchronized escape maneuvers (Partridge, 1982). A potential 

disadvantage of aggregation is that a group of individuals is more likely to be 

conspicuous to predators than a single individual. With regard to foraging behavior, 

grouping may benefit individuals by allowing transfer of information about resources 

(see section 2.4d), but costs may also result from individuals within groups competing for 

resources once they are found (Krause and Ruxton, 2002). 
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Since the costs and benefits of grouping vary as a function of group size, we may expect 

that individuals will modify their choice of group size (by joining or leaving groups) as 

ecological conditions change to maximize their fitness (Pulliam and Caraco, 1984). One 

problem with this possibility is that individuals within a group may not be able to exclude 

solitary individuals, and consequently individuals will continue to join a group exceeding 

the “optimal group size” (Sibly, 1983). Thus solitary individuals, by joining a group, may 

increase their own fitness, but decrease that of all other group members. When the costs 

of grouping become greater than the benefits individuals should be expected to leave (see 

Krause and Ruxton, 2002 for further discussion of the costs and benefits of group size). 

 

Laboratory studies involving fish have shown that individuals, when presented with a 

simple binary choice of associating with one of two stimulus shoals (within containers so 

the perceived group size can be modified experimentally) that individuals usually ‘select’ 

the larger group (Krause and Ruxton 2002). However, see van Havre and FitzGerald 

(1988) for an exception. There are several potential problems with such studies. First, test 

fish may be stressed when alone in the test compartment and second, the range of shoal 

sizes that can be presented is limited due to the confined space in the laboratory, and 

rarely comprises more than 20 individuals. In nature, however, fish can often be found in 

shoals of hundreds or thousands of individuals. Thus there is a real need for more 

fieldwork to be carried out in this area (see Hensor et al., in press).  

 

In a laboratory study where individuals could freely associate with others, Hoare et al. 

(submitted) investigated the influence of ecological factors (perceived food availability 

and predation risk) on the schooling behavior of banded killifish. Since natural group 

sizes will result from the interactions among all individuals it is important, as they point 

out, to consider what group sizes result when all individuals can make membership 

decisions. They subjected groups of 10 size-matched fish to four treatments: (i) food, (ii) 

control, (iii) food and alarm, and (iv) alarm. The food treatment involved adding food 

odor to the water (but to prevent competition for food items themselves no food particles 

were introduced), and predation risk was simulated through the use of killifish skin 
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extract (which contains chemicals that cause alarm in fish, and are naturally released 

when fish are injured or captured by predators). In the control treatment no odor was 

added, and in treatment (iii) both food and alarm odor were added to the water.  

 

Group sizes were shown to be context dependent, with individuals tending to be in the 

smallest group sizes in the presence of food odor (Fig. 18a, (i)), and the probability of 

individuals being found within larger groups increasing under control conditions (yet 

groups of five or more individuals are still very rare, Fig. 18a, (ii)). In the presence of 

alarm substance, however, the fish tended to form large groups, with individuals 

spending the majority of time in the maximum group size of 10 (Fig. 18a (iv)). When 

alarm substance and food odor were present, fish exhibited a response intermediate to 

that in the presence of food odor or alarm odor alone (Fig. 18a (iii)). 

 

This demonstrates that group size in this organism is context-dependent. Individuals 

increase their probability of being within small groups when food odor is detected since 

this may reduce intra-group competition for resources when found. When alarm odor is 

detected, however, individuals would be expected to form large groups, since by doing so 

fish may reduce per capita predation risk. In the case of both food odor and alarm odor, 

the fish seemed to have conflicting tendencies resulting in them performing an 

intermediate behavior. This is interesting, as the fish seem to be trading off foraging 

benefits and safety from predators in their movement decisions.  

 

One may initially think that these killifish regulate group size by assessing how many 

individuals they are currently schooling with, and making a decision to stay or leave (or 

approach others) based on that. However, this is a rather anthropocentric view of the 

behavior of these animals that assumes they can count the number of individuals within 

their group. Hoare et al. (submitted) suggest that we need not invoke such complexity in 

the individual decision-making process, and that group-size may be an emergent property 

resulting from fish following relatively simple “rules of thumb”. To support this 

conjecture, they develop an individual-based model of their experiment, similar to that 

we used above to examine self-sorting within animal populations (see section 3.2). In 
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their model they assumed that fish change the range over which they interact with others 

as environmental conditions change: individuals that detect food tend to respond only to 

very near neighbors, whereas those that experience alarm odor will increase the range 

over which they interact with others, so that they aggregate, thus avoiding isolation. By 

modifying this range of interaction within their model they could investigate its 

consequence on the group-size distribution at the level of the population (Fig 18b). This 

change in local response was shown to be able to account well for the shift in group-size 

distributions from small to large groups recorded experimentally (see Fig. 18a, where the 

model data are compared to experimental data). 

 

This type of simple model demonstrates how individuals can modify their probability of 

being within a group of a certain size by changing a local behavior and, as Hoare et al. 

(submitted) point out, their aim was not to determine the exact rules used by their fish, 

but rather to show that individuals can modify their probability of being in a group of a 

certain size without making explicit decisions about membership of particular groups. 

Thus their model demonstrates the logical consistency of their argument. An individual 

fish need not know the range of possible group sizes available to it: rather the group size 

distribution can be an emergent property of local interactions. This approach is appealing 

(and plausible) for other systems where it is unlikely that individuals can assess the size 

of the group they join, such as in pelagic fish populations where group sizes may 

frequently be in the order of thousands or even hundreds of thousands, or where 

interactions must be local, as in turbid water. As this model demonstrates, the ‘decisions’ 

made by individuals may be much simpler than they may initially appear.  

 

Interestingly, in a study of African buffalo, Syncercus caffer, Sinclair (1977) found that 

the size of herds changes throughout the year. During the wet season herd sizes tend to be 

large, but in the dry season groups tend to be much smaller. Sinclair (1977) suggests that 

the groups may get larger during the rut, which begins at the start of the wet season. 

Furthermore, aggregation may act to protect the young produced in the wet season. 

However most conceptions occur at the end of the wet season in this species, so Sinclair 

also argues that changes in resource availability (productivity is greater in the wet season) 
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may also be important. Thus, the buffalo may be responding to resource availability for 

similar reasons as do the fish described above, reducing competition for resources when 

food is limited, and increasing group size when the productivity of their environment 

increases.   

 

In the study by Hoare et al. (submitted) described above, all individuals should be 

expected to have the same motivations (all individuals had the same pre-experiment 

feeding regime, and all had the same stimulus and stimulus intensity). In reality, 

however, the situation is likely to be more complex than this. Satiated individuals, for 

example, would be expected to respond less strongly (if at all) to food odor, when 

compared with hungry fish. In addition to variation in individual state, there is also likely 

to be variation in the perceived stimuli, and also in the inherent propensity of individuals 

to respond (for example, variation in general schooling tendency is known to occur 

within populations; Magurran et al., 1995). Individuals within the types of fission-fusion 

systems we have considered here would be expected, therefore, to change their 

behavioral response to others dynamically in order to increase their probability of being 

in groups of a size that approximate their current ‘optimal’ group-size. We therefore 

encourage further research into understanding whether, and how, potential self-

organizing mechanisms can result in individuals maximizing their fitness by changing 

their probability of being in groups of a certain size. Such an approach should consider 

both current experimental evidence that shows how grouping individuals can regulate 

group sizes with the properties we have discussed previously in this chapter, such as 

intra-group self-sorting processes, and the resulting group-size distributions seen at the 

level of the population.  

 

5. Summary 

 

We have looked at different taxonomic groups to reveal where self-organization theory 

can make an important contribution to explaining collective behavioral patterns. Since 

this a recently emerging field of research, and because vertebrate groups may be difficult 

to study, developing theories of self-organization for these groups (which can then be 
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tested empirically) is particularly important. Consequently we focused on how modeling 

approaches (particularly those that are individual-based) have been, and are being, used 

to help reveal the organizational principles in human crowds (2.2a and 2.3), ungulate 

herds (2.1), fish schools and bird flocks (2.4) and primate groups (3.3). The collective 

behavior of such systems is largely characterized by the interactions among individual 

components, and thus are well suited to an approach that seeks to elucidate generative 

behavioral rules. We also discussed the evolution of collective behaviors (2.4c). Here, 

theory has been important in demonstrating that different collective behaviors can exist 

for identical individual behaviors, suggesting that the evolution of collective (extended) 

phenotypes may be more complex than it may, at first, appear. 

 

Behavioral differences among individuals within a group may have an important internal 

structuring influence, and using simulation models we showed how individuals can 

modify their positions relative to other group-members (e.g. to move relative to the front 

or center of a group) without necessitating information about their current position within 

the group (3.2). This is important because it is unlikely that individuals within large 

groups (e.g. pelagic fish schools) can calculate their absolute position relative to all other 

group members; thus we argue that natural selection is likely to act on the kind of local 

rules we discussed.  

 

In section 4 we discussed how local self-organized interactions result in the distribution 

of animals at a larger spatial and temporal scale, showing how mathematical studies of 

group-size distributions are being used to make testable predictions about how individual 

behavior translates to that at the level of a population (4.1, 4.2) and how differences 

among individuals within a population may lead to phenotypically assorted groups within 

a population (4.3). We also addressed “optimal group size” concept (4.4). As an 

alternative to the view in which individuals explicitly assess the size of groups and then 

make a decision to leave or join, we showed how local ‘rules of thumb’ could be used by 

individuals to modify their probability of being within a group of a given size. We 

demonstrated that in real organisms (schooling fish) group-size distributions (and hence 

the probability of an individual being within a group of certain size) is context dependent, 
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and that this behavior is entirely consistent with a self-organized mechanism whereby 

individuals change local interactions as conditions change.  

 

In considering self-organization within vertebrate groups it is evident that the 

organization at one level (e.g. that of the group) relates to that at higher levels (e.g. that of 

the population). For example, self-sorting processes that lead to internal structuring 

within groups also result in population-level patterns when such groups fragment (e.g. 

phenotypic assortment), thus affecting the probability that an individual will be in a group 

of a given size and composition at any moment in time. These population properties then 

feed back to the individual interactions by changing the probability of encounters among 

different members of a population. Thus to fully understand collective behaviors one 

cannot necessarily consider these properties in isolation. 
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Fig. 1. Herd of wildebeest showing a wave-like herd front. (From Sinclair, 1977; used 

with permission) 

 

Fig. 2. Model of a wildebeest herd front that produces wave-like herd fronts from initially 

aligned individuals (along the x-axis). (Modified from Gueron and Levin, 1993) 

 

Fig. 3. Computer simulation of human trail systems. (A) Initially walkers will take more-

or-less direct routes between the four entry/exit points in the corners. The instantaneous 

velocities of walkers are shown as arrows. (B) After a period of time a shared trail system 

forms. (From Helbing et al., 1997b; used with permission) 

 

Fig. 4. (A) A model of trail formation from Helbing et al. 1997b (used with permission), 

and (B) natural trails made by ungulates (© 2002 Iain Couzin). 

 

Fig. 5. (A) Hypothetical scenario in which individuals move between points 1 and 2, 

around an obstacle in-between. (B) Initially individuals will randomly select a direction 

around the obstacle. However the shorter route is reinforced more quickly. (C) The 

feedback in the trail formation-following system means that the shortest route can be 

selected collectively. 

 

Fig. 6. Simulation of pedestrian dynamics showing lane formation (from Couzin, 1999). 

The successive positions (trajectories) of individuals with a desire to move to the left are 

shown in gray. The positions of those individuals intending to move to the right are 

shown in black. 

 

Fig. 7. Simulation of pedestrians attempting to move across a crosswalk. Gray = 

individuals intending to move left. Black = individuals attempting to move right. (A) 

Where individuals just exhibit repulsion from others flow is less smooth than when, (B) 

they exhibit repulsion but also attraction towards others that have a similar desired 

direction. 
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Fig. 8. Simulation of pedestrians at a doorway exhibiting oscillations of flow. Here 

individuals moving to the left have temporarily monopolized the doorway. The decrease 

in “pressure” to the right of the door, caused by this exodus, will shortly allow those 

standing to the left of the doorway to block, and then to temporarily monopolize the 

doorway, and so on. Image modified from that available from the simulation at 

http://www.helbing.org/Pedestrians/Door.html  

 

Fig. 9. Representation of an individual in the model of grouping in three-dimensional 

space, centered at the origin and pointing in the direction of travel. zor = zone of 

repulsion, zoo = zone of orientation, zoa = zone of attraction. The possible ‘blind 

volume’ behind an individual is also shown. α = the field of perception. (From Couzin et 

al., 2002) 

 

Fig. 10. The collective behaviors exhibited by the model: (A) swarm, (B) torus, (C) 

dynamic parallel group, (D) highly parallel group. Also shown are the group polarization 

pgroup (E) and angular momentum mgroup (F) as a function of changes in the size of the 

zone of orientation ∆ro and zone of attraction ∆ra.  The areas denoted as (a-d), correspond 

to the area of parameter space in which the collective behaviors (A-D), respectively, are 

found. Area (e) corresponds to the region in parameter space where groups have a greater 

than 50% chance of fragmenting. (From Couzin et al., 2002) 

 

Fig. 11. The change in group polarization pgroup (A) and angular momentum mgroup (B) as 

individuals within a group increase (bold line) or decrease (dotted line) the size of the 

zone of orientation ro. The group patterns that form depend on the previous history of the 

group (hysteresis). (From Couzin et al., 2002) 

 

Fig. 12. Computer simulation of 1000 grouping individuals (white) responding to attack 

by a predator (red). (a-h) show a successive snapshots of the simulation as the predator 

attacks. 
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Fig. 13. Theoretical influence of the size of the zone in which individuals respond to 

others. The predator is shown in red, individuals that directly perceive the predator in 

blue, and all others in black. (a) one individual detects the predator, but the small size of 

the behavioral zones does not allow other individuals to respond to its change in 

orientation. (b) only two individuals detect the predator directly, but the behavioral zones 

are sufficiently large to allow group cohesion and the spread of relevant information 

about the location of the predator (the change in direction of blue individuals) to other 

individuals nearby. (c) if behavioral zones are too large, individuals are swamped with 

information from both near and distant sources. This reduces the ability of individuals to 

respond to local perturbation.   

 

Fig. 14. Sorting as a function of variation in (A) speed s, (B) turning rate θ , (C) zone of 

repulsion rr, and (D) zone of orientation ro. A typical group sorted by rr is shown in (E). 

Sorting is measured as the Spearman rank correlation coefficient (rho) of individuals 

calculated from the front (solid line) or center (dotted line) of the group. (From Couzin et 

al., 2002) 

 

Fig. 15. Frequency distribution of group sizes of African buffalo, Syncercus caffer (From 

Sinclair, 1977 used with permission). 

 

Fig. 16. Frequency distribution of group sizes of gray seals, Halichoerus grypus, resting 

on an island. The fit shows a truncated power law with a cut-off at group size 21 (whole 

model: b1 (slope of line from group size 1 – 21) = -0.35, b2 (group size > 21) = -0.93, R2 

= 0.91, P < 0.001). (From Sjöberg et al., 2000; used with permission). 

 

Fig. 17. Simulation model demonstrating how self-organized sorting can result in 

phenotypic assortment within groups in a population. (A) Typical snapshot of the 

simulation at dynamic equilibrium: Total number of individuals = 300, with the two 

‘types’ of individual (150 of each) shown in black (moving at 5cms-1) and gray (moving 

at 7cms-1); the domain size is 5m x 5m with completely periodic boundaries. The mean 

degree of assortment (where 1 = all individuals identical) within groups consisting of 3 or 
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more individuals as a function of (B) the difference in speed between the two ‘types’ 

(kept constant at 5cms-1 in one ‘type’ and increased in the other), and (C) the difference 

in the size of the zone of repulsion (kept constant at 4cm, 1BL, in one group and 

decreased in the other). 

 

Fig. 18. Percent frequency distribution of median group sizes. (a) Model results 

demonstrating that increasing the range of interaction produces changes in group size 

distribution. These are similar to those obtained experimentally (b). (b) Experimental data 

compared with the results of the model 

(i) Interaction radius = 1.2 BL; Food treatment 

(ii) Interaction radius = 1.5 BL; Control treatment 

(iii) Interaction radius = 1.6 BL; Food + alarm treatment 

(iv) Interaction radius = 2.9 BL; Alarm treatment 



 92

Fig. 1 

A

B

A

B



 93

Fig. 2 

0

140

70

0 1000200 400 600 800Pr
op

ag
at

in
g 

di
re

ct
io

n

Location along the line

0

140

70

0 1000200 400 600 800Pr
op

ag
at

in
g 

di
re

ct
io

n

Location along the line



 94

Fig. 3 

A BA B



 95

Fig. 4 

A B



 96

Fig. 5 

1 2

1 2

1 2

A

B

C



 97

Fig. 6 

A

B

A

B

A

B

A

B



 98

Fig. 7 

A BA B



 99

Fig. 8 



 100

Fig. 9 

 

z
x

y

zoa

zor

zoo

ααααº

(360 - αααα)º



 101

Fig. 10 

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

mgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

mgroup

 A B

C D

0
0.4
0.6
0.8
1

pgroup

0
0

0
1

mgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

E F
0

2
4

6
8

10
12

14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

mgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

mgroup

0
0.2
0.4
0.6
0.8
1

mgroup

a

a

b

b

c

c

d

d

B

D

E

F

mgroup

 A B

C D

0
0.4
0.6
0.8
1

pgroup

0
0

0
1

mgroup

 A B

C D

0
0.4
0.6
0.8
1

pgroup

0
0

0
1

mgroup

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

0
2

4
6

8
10

12
14

∆∆∆∆ra

0
2

4
6

8
10

12
14

∆∆∆∆ro

0
0.2
0.4
0.6
0.8
1

pgroup

0
0.2
0.4
0.6
0.8
1

pgroup

0 6
0.8
1

0.8
1

ab

b

c
d

E

F

E F



 102

Fig. 11 

  

increasing decreasing

0

0.1
0.2
0.3
0.4

0.5
0.6
0.7

0.8
0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A

p g
ro
up

ro

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B

m
gr
ou
p

ro

 

increasing decreasing

0

0.1
0.2
0.3
0.4

0.5
0.6
0.7

0.8
0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A

p g
ro
up

ro

0
0.1
0.2

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B

m
gr
ou
p

ro



 103

Fig. 12 
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Fig. 13 
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Fig. 14 
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Fig. 15 
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Fig. 16 
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Fig. 17 
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Fig. 18 
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