
P R I N C E T O N C O S 5 2 1 :
A DVA N C E D A L G O R I T H M
D E S I G N



1

Dimension Reduction and the Johnson-Lindenstrauss Lemma

Very high-dimensional vectors are ubiquitous in science, engineer-
ing, and machine learning. They give a simple way of representing
data: for each object we want to study, we collect a very large set of
numerical parameters, often with no inherent order or structure. We
use these parameters to compare, analyze, and make inferences about
those objects.

High-dimensional data comes from genetic data sets, time se-
ries (e.g. audio or seismographic data), image data, etc. It is also a
common output of feature generation algorithms.

Feature generation algorithms are commonly used to pre-process
image and audio data as well. For example, Shazam and other “song
matching” services preprocess audio by computing a spectrogram,
which essentially computes many Fourier transforms of different
sections of the signal, shifted to start at different time points. More
on this example later.

What do we want to do with such high dimensional vectors? Clus-
ter them, use them in regression analysis, feed them into machine
learning algorithms. As an even more basic goal, all of these tasks
require being able to determine if one vector is similar to another.
Even this simple task becomes an unwiedly in high-dimensions.

Dimensionality Reduction

The goal of dimensionality reduction is to reduce the cost of work-
ing with high-dimensional data by representing it more compactly.
Instead of working with an entire vector, can we find a more com-
pact “fingerprint” – i.e. a shorter vector – that at least allows us to
quickly compare vectors? Or maybe the fingerprint preserves certain
properties of the original vector that allows it to be used in other
downstream tasks.

Computer scientists have developed a remarkably general purpose
toolkit of dimensionality reduction methods for constructing compact
representations that can be used effectively in a huge variety of
downstream tasks. In this section of the course, we will study some
of those methods.



2

The Johnson-Lindenstrauss Lemma

We start with a particular powerful and influential result in high-
dimensional geometry. It applies to problems involving the ℓ2 norm:

∥x∥2 =

√
m

∑
i=1

x2
i

For two vectors x and y, ∥x − y∥2 is the Euclidean distance.

Problem 1. Given n points v1, v2, ..., vn ∈ Rd, we want to find a function
f : Rd → Rm such that m is much smaller than d and for all i, j,

(1 − ϵ)∥vi − vj∥2 ≤ ∥ f (vi)− f (vj)∥2 ≤ (1 + ϵ)∥vj − vj∥2. (1)

In other words, the distance between all pairs of points in preserved.

The following main result (Lemma in their words) is by Johnson &
Lindenstrauss 1: 1

Theorem 1 (Johnson-Lindenstrauss Lemma). There is a function f
satisfying (1) that maps vectors to m = O(

log n
ϵ2 ) dimensions. In fact, f is a

linear mapping and can be applied in a computationally efficient way!

The following ideas do not work to prove this theorem: (a) take a
random sample of m coordinates out of d. (b) Partition the d coordi-
nates into m subsets of size about n/m and add up the values in each
subset to get a new coordinate.2 2 To see why these approaches fail

whp, consider the case of two vectors:
(1, 0, . . . , 0) and (0, 1, 0, . . . , 0). Then the
first approach succeeds iff we happen
to pick coordinate one or two as one of
the coordinates, which is unlikely. To
see why the second approach fails, con-
sider two vectors (1, . . . , 1, 0, . . . , 0) and
(0, . . . , 0, 1, . . . , 1). Then the second ap-
proach whp generates nearly-identical
vectors even though the initial two
vectors are far apart.

We’re going to choose f randomly. In particular, let G be a m × d
random matrix with each entry a normal random variable, Gi,j ∼
N (0, 1). Let Π = 1√

m G:

f (x) = Πx.

So each entry in u = f (v) equals v · g for some vector g filled with
scaled Gaussian random variables. Other choices for G work: for
example, we can use random signs or a random orthonormal matrix
(used in the original proof).

We’re going to prove a slightly stronger statement for this map:

Theorem 2 ((ϵ, δ)-JL property). If m = O(log(1/δ)/ϵ2), then for any
vector x,

(1 − ϵ)∥x∥2
2 ≤ ∥Πx∥2

2 ≤ (1 + ϵ)∥x∥2
2 (2)

with probability (1 − δ).

Note that, while stated with the squared Euclidean norm, (2)
immediately implies that (1 − ϵ)∥x∥2 ≤ ∥Πx∥2 ≤ (1 + ϵ)∥x∥2 (just



3

by taking a square root of all sides, and observing that this brings the
constants closer to 1). Then, to prove Theorem 1 from this stronger
statement, we use the linearity of f to see that:

∥ f (vi)− f (vj)∥2 = ∥Πvi − Πvj∥2 = ∥Π(vi − vj)∥2.

So, with probability (1 − δ) we preserve one distance. We have
(n

2) = O(n2) distances total. By a union bound, we preserve all of
them with probability 1 − δ as long as we reduce δ to δ/(n

2), which
means that m = O(log(n/δ)/ϵ2). This gives Theorem 1. So, we can
focus our attention on proving Theorem 2.

Proof. Let w = Gx be a scaling of our dimension reduced vector. Our
goal is to show that ∥x∥2

2 is approximated by:

∥Πx∥2
2 = ∥ 1√

m
Gx∥2

2 =
1
m

m

∑
i=1

w2
i .

Consider one term of the sum, w2
i , which is a random variable since

G is chosen randomly. We will start by showing that each term is
equal to ∥x∥2

2 in expectation. We have:

wi =
d

∑
j=1

xjgj

where each gj ∼ N (0, 1). So E[wi] = ∑d
j=1 xjE[gj] = 0 and thus

Var[wi] = E[w2
i ]. It follows that:

E[w2
i ] = Var[wi] =

d

∑
j=1

Var[xjgj] =
d

∑
j=1

x2
j Var[gj] =

d

∑
j=1

x2
j = ∥x∥2

2.

Thus E[w2
i ] = ∥x∥2

2 and our estimate is correct in expectation:

E

[
1
m

m

∑
i=1

w2
i

]
= ∥x∥2

2.

How do we know that it’s close to this expectation with high
probability? We actually know that wi is a normal random variable.

Fact 1 (Stability of Gaussian random variables). If X and Y are indepen-
dent and X ∼ N (0, a2) and Y ∼ N (0, b2), then X + Y ∼ N (0, a2 + b2).
The property that the sum of Gaussian’s remains Gaussian is known as
“stability”3. 3 There are other classes of stable dis-

tributions, but the normal distribution
is the only stable distribution with
bounded variance, which gives some
intuition for why the central limit the-
orem holds for random variables with
bounded variance.

So each wi ∼ N (0, ∥x∥2) = ∥x∥2 · N (0, 1). We can prove the
concentration via a similar approach to the proof of Chernoff bound.



4

Let t > 0 be a parameter to be determined later, we have

Pr

[
m

∑
i=1

w2
i > (1 + ε)m∥x∥2

2

]
= Pr

[
et ∑m

i=1 w2
i > et(1+ε)m∥x∥2

2

]

≤
E
[
et ∑m

i=1 w2
i

]
et(1+ε)m∥x∥2

2

=
E
[
etw2

1

]m

et(1+ε)m∥x∥2
2

.

Now note that

E
[
etw2

i

]
=
∫

R

1√
2π

e−
g2
2 · et∥x∥2

2g2
dg

=
∫

R

1√
2π

e−(1−2t∥x∥2
2)g2/2 dg

=
1

(1 − 2t∥x∥2
2)

1/2
.

Thus,

Pr

[
m

∑
i=1

w2
i > (1 + ε)m∥x∥2

2

]
≤ 1

(1 − 2t∥x∥2
2)

m/2 · et(1+ε)m∥x∥2
2

≤ ((1 − 2t∥x∥2
2)(1 + 2t(1 + ε)∥x∥2

2))
−m/2

= (1 + 2εt∥x∥2
2 − 4t2(1 + ε)∥x∥4

2)
−m/2,

setting t = ε/(4(1 + ε)∥x∥2
2) minimizes the RHS, and we obtain that

Pr

[
m

∑
i=1

w2
i > (1 + ε)m∥x∥2

2

]
≤ e−Θ(ε2m).

A similar bound on the probability that ∑m
i=1 w2

i < (1 − ε)m∥x∥2
2 can

also be proved.
So, if we set m = O(log(1/δ)/ϵ2) then ∥Πx∥2

2 = 1
m ∑m

i=1 w2
i

satisfies:

∥x∥2
2 − ϵ∥x∥2

2 ≤ ∥Πx∥2
2 ≤ ∥x∥2

2 + ϵ∥x∥2
2

with probability 1 − δ.

It’s worth noting that Theorem 1 is tight – i.e. there are point sets
that cannot be embedded into less than O(log n/ϵ2) dimensions if
we want to preserve all pairwise distances. This was proven up to
a log(1/ϵ) factor by Noga Alon in 4. The fully tight result was only 4

obtained in 2017
5. The result was proven first for linear embeddings 5

and then extended to a lower-bound for all possible functions f .



5

Faster running time

Given a vector x, for a random matrix Π, it takes O(md) time to
compute the matrix vector product Πx. This could potentially be
very slow. There are two strategies to speed up this computation.

• The first is to use a sparse matrix Π (called sparse JL);

• the second is to use a structured matrix Π that allows fast matrix
vector multiplication (called fast JL).

It turns out that for generic vectors x, the second approach usually
has a better running time. However, when the input vector x itself is
also sparse, sparse JL can utilize both the sparsity of Π and x, and
may be more efficient.

Sparse JL

We will sample random Π such that

• every column of Π has exactly s non-zero entries,

• every non-zero entry is a random ±1/
√

s.

It was shown that we can set s = O(εm).

Theorem 3. ∃c1, c2 > 0, we can set m = c1ε−2 log(1/δ) and s = c2 · εm
such that ∀x ∈ Rd,

(1 − ε)∥x∥2
2 ≤ ∥Πx∥2

2 ≤ (1 + ε)∥x∥2
2

with probability ≥ 1 − δ.

Remark 1. Unlike standard JL, we cannot use 1/
√

s · N (0, 1) in every
nonzero entry.

We skip the proofs.

Fast JL

We will use Π that has the form Π = 1√
m S · H · D, where S is m × d,

and H, D are d × d 6. 6

S is a random matrix such that Sx samples m random coordinates
of x. Note that which entry of x goes to which entry of Sx, S is linear.
As we mentioned above, S itself is not a good matrix for dimension-
ality reduction, as x may have very few entries contributing to most
of its norm. However, when x has small ∥x∥∞, i.e., no entry has very
large value, S turns out to be effective. Thus, we can view HD as
a preprocessing step that maps x to some x′ with small ℓ∞-norm.
Formally, one can prove that



6

Lemma 1. If ∥x∥∞ ≤ T√
d
· ∥x∥2, then ∥ 1√

m Sx∥2 = (1 ± ε)∥x∥2 with

probability 1 − δ for m = O(T4ε−2 log(1/δ)).

Next, H is the (deterministic) d × d Hadamard matrix (we assume d
is a power of two without loss of generality). The 2k × 2k Hadamard
matrices H2k can be defined recursively.(

H2k−1 H2k−1

H2k−1 −H2k−1

)

and H20 = (1). Due to the recursive structure of H, although H is a
dense d × d matrix, it is not hard to verify that Hx can be computed in
O(d log d) time using recursion.

Finally, D is a random ±1 diagonal matrix: each diagonal entry is
a random ±1, and all other entries are zeroes.

Since each entry of H is ±1, each entry of HDx is (marginally) an
inner product between x and a random ±1 vector. One can prove the
following lemma using concentration inequalities (and union bound).

Lemma 2. The probability that ∥HDx∥∞ >
√

2 ln d/δ · ∥x∥2 is at most
O(δ).

We skip the proofs of the lemmas. Combining the lemmas, we ob-
tain that one can set the output dimension m to O(ε−2 log2(d/δ) log(1/δ)),
which is close to optimal. Applying another round of optimal JL
transform gives us the optimal m. Note that multiplying a vector
with H is the bottleneck in computation, which takes O(d log d) time.
The final round of JL is also efficient (O(ε−4 log2(d/δ) log2(1/δ))), as
we already begin with a low-dimensional vector.



Bibliography

[1] William B. Johnson and Joram Lindenstrauss. Extensions of Lips-
chitz mappings into a Hilbert space. Contemporary Mathematics,
1984.

[2] Noga Alon. Problems and results in extremal combinatorics-I.
Discrete Mathematics, 273(1-3):31-53, 2003.

[3] Kasper Green Larsen and Jelani Nelson. Optimality of the
Johnson-Lindenstrauss lemma. FOCS, 2017.

[4] Daniel M. Kane, Jelani Nelson. Sparser Johnson-Lindenstrauss
Transforms. J. ACM 61(1): 4:1-4:23, 2014.

[5] Nir Ailon, Bernard Chazelle. The Fast Johnson-Lindenstrauss
Transform and Approximate Nearest Neighbors. SIAM J. Com-
put. 39(1): 302-322, 2009.


	Dimension Reduction and the Johnson-Lindenstrauss Lemma
	Dimensionality Reduction
	The Johnson-Lindenstrauss Lemma
	Faster running time
	Bibliography

