
P R I N C E T O N C O S 5 2 1 :
A DVA N C E D A L G O R I T H M
D E S I G N

1

Semidefinite Programming and Approximating the Maximum Cut

Recall the Maximum cut problem: given a graph, find a subset of
vertices S such that the number of edges going across it, |E(S, S)| is
maximized.

Problem 1 (Maximum cut). Give an undirected, unweighted graph
G = (V, E) with |V| = n, find S ⊂ V such that |E(S, V \ S)| is maximized.
|E(S, V \ S)| denotes the number of edges between nodes in S and nodes not
in S – i.e. the size of the cut between S and V \ S.

Denote the optimal value for this problem by OPTMC = maxS |E(S, V \
S)|.

This problem is NP-hard; thus, unless P = NP, we cannot hope
to solve it exactly in polynomial time. You may recall a simple algo-
rithm that achieves a 1/2 factor approximation: return a uniformly
random cut. Until the 1990s, despite decades of effort, there was no
better algorithm. In particular, the major workhorse of approximation
algorithm design, linear programming relaxations, seemed ineffective:
every relaxation researchers came up with had an integrality gap of
2 (i.e., could not beat the trivial algorithm). The reason for this was
found a little later 1 and led to a theorem that (appropriately formal- 1

ized) says there cannot be sub-exponential size linear programs for
Max-Cut with integrality gap < 2.

Today, we will see a dramatic improvement over the 1/2 factor
approximation via a new tool: semidefinite programming.

Keeping an eye on the future, let’s first formulate the problem as a
quadratic (instead of integer linear) optimization problem:

max
u1,...,un∈{−1,1}

1
4m ∑

(i,j)∈E
(ui − uj)

2. (1)

If we set ui = 1 for all i ∈ S and −1 otherwise, then this objective
function exactly captures the size of the cut between S and V \ S:
|ui − uj|2 = 0 if i, j are on the same side of the cut and |ui − uj|2 = 4 if
they’re on different sides.

Unfortunately solving (1) is NP-hard. It’s possible to solve approx-
imately using a greedy algorithm or LP relaxation, but both obtain
objective values of just 1

2OPTMC.
Our main result today is that the maximum cut problem can be

approximated to much better accuracy using an algorithm based on
semidefinite program:

Theorem 1 (Goemans-Williamson 1994). There is a polynomial time
algorithm that, given a graph with max-cut OPT, finds a cut of size at least
αGWOPT.

2

Their algorithm is based on a new kind of convex relaxation
that can be seen as a (strict, in retrospect) generalization of linear
programming called semidefinite programming. We will present two
equivalent views of this relaxation one seen as optimization over the
space of vector-valued, as opposed to integer, assignments and the
other as optimization over certain PSD matrices.

SDP Relaxation: The Vector View

The Goemans and Williamson approach relaxes binary variables to
continuous vectors:

ui ∈ {−1, 1} =⇒ vi ∈ Rn with ∥vi∥2 = 1, ∀i

Specifically, they solve:

Problem 2 (Relaxed Maximum Cut).

max
v1,...,vn , ∥vi∥2=1 ∀i

∑
(i,j)∈E

1
4m

∥vi − vj∥2
2. (2)

Intuitively, the above formulation seeks to arrange vectors on the
unit circle so that vectors corresponding to connected nodes i, j are
placed as far apart (i.e., close to antipodal) as possible.

Figure 1: SDP solutions are
unit vectors that are arranged
so that vectors vi and vj are far
apart when nodes i and j are
connected with an edge in G.

Problem 3 is a valid relaxation of Problem 1. In particular, we
have:

Claim 1.

OPTMC ≤ OPTSDP.

Proof. Given a solution u1, . . . , un to Problem 1 we simply set vi =

ui · e1, where e1 = [1, 0, . . . , 0]T is a standard basis vector. Then (3)
exactly equals (1).

SDP Relaxation: The PSD Matrix Optimization View

We first recall some basic definitions of positive semidefinite matrices
from linear algebra.

3

A symmetric matrix A ∈ Rn×n is positive semidefinite (PSD) if

xT Ax ≥ 0 for all x ∈ Rn.

This property is equivalent to:

1. A has all non-negative eigenvalues.

2. A can be written as A = UTU for some U ∈ Rn×n, i.e., Aij = uT
i uj

where ui is the ith column of U.

To denote that a matrix is PSD, we write A ⪰ 0. A ⪰ B indicates
that A − B is PSD, or equivalently that xT Ax ≥ xT Bx for all x ∈ Rn.
The symbols ⪰ and ⪯ can be used to define an ordering on matrices,
which is called the “Löwner ordering”. It’s a partial order: both
A ⪰ B and B ⪰ A can’t hold for A ̸= B; it could be that neither does.

Exercise 1. Find a simple example where A ⪰̸ B and B ⪰̸ A.

The Löwner ordering has many useful properties. For example,
A ⪰ B implies that A−1 ⪯ B−1. A ⪰ B also implies, that for all i,
σi(A) ≥ σi(B), where σi denotes the ith singular values (which is the
same as the ith eigenvalue for PSD matrices).2 2 The opposite statement is not true – it

can be that σi(A) ≥ σi(B) for all i, but
A ⪰̸ B.

You have to be careful, though. For example, A ⪰ B ⇏ A2 ⪰ B2.
PSD matrices often appear in algorithmic applications, including

some we have already seen. Graph Laplacians, Hessians of convex
functions, covariance matrices, and many other natural matrices are
always PSD.

The trace of a square matrix is simply the sum of its diagonal
elements. For a symmetric matrix A, tr(A) also equals the sum of
its eigenvalues. Given two n × n square matrices A, B, observe that
tr(AB) = ∑i,j Ai,jBi,j – that is, the inner product of the matrices seen
as n2-dimensional vectors.

We now describe a new relaxation equivalent to the vector view
discussed above (here A is the adjacency matrix of the input graph).

Problem 3 (Relaxed Maximum Cut).

max
X⪰0,Xi,i=1∀i

1/2 − 1
4m

tr(AX). (3)

This version is commonly called an SDP since it optimizes a linear
function over the space of positive semidefinite matrices (with some
additional linear constraints). Notice that this formulation takes the
quadratic relaxation that linearizes it by writing the objective function
as a linear function of a matrix X.

Why is it a relaxation? Consider x ∈ {±1}n that indicates any
cut in G. Then, setting X = xx⊤ – the outer product of x with itself
– gives a valid solution: every diagonal entry of this matrix is 1, and

4

it’s a rank 1 symmetric and thus also a PSD matrix (which definition
would you use to verify this?).

Indeed, if we were to replace the PSDness constraint in the above
program with rank 1 constraint, then it would be equivalent to the
quadratic program (and thus max-cut without any relaxation) –
verify this! PSDness can be thought of as a relaxation of the rank 1

constraint – unlike the space of rank 1 matrices, the space of PSD
matrices is closed and convex.

Finally, to see the equivalence between the two views notice that
we can go between a PSD matrix with diagonal 1 and vector assign-
ment easily. Given a X, we can write it as X = VV⊤ and notice
that the columns of V give unit vector assignment. On the other
hand, given a vector assignment v1, v2, . . . , vn, we can set X so that
X = VV⊤ for the matrix V whose columns are vis. Notice that in
this case, Xi,j = Xj,i = ⟨vi, vj⟩. Such a matrix is clearly PSD (the 3rd
property!), and further, the diagonal entries are 1 since vis are unit
vectors.

Solving SDPs

Recall that a set of points K is convex if for every two x, y ∈ K the
line joining x, y, i.e., {λx + (1 − λ)y : λ ∈ [0, 1]} lies entirely inside
K. A function f : Rn → R is convex if f (λx + (1 − λ)y) ≤ λ f (x) +
(1 − λ) f (y) for all x, y ∈ ℜn and λ ∈ [0, 1]. It is called concave if
the previous inequality goes the other way. A linear function is both
convex and concave. A convex program consists of a convex function
f and a convex body K and the goal is to minimize f (x) subject to
x ∈ K. It is a vast generalization of linear programming and like LP,
can be solved in polynomial time under fairly general conditions on
f , K. Caution, though: not all convex programs are easy, and in fact,
they can encode hard problems.

The goal of semidefinite programming is to optimize over X ∈
Rn×n where X ∈ K and:

K = {M | M ⪰ 0}.

K is a convex set: if X ⪰ 0 and Y ⪰ 0 are PSD then for all λ ∈ [0, 1],
it’s easy to see that λX + (1 − λ)Y ⪰ 0 with the right definition:

Lemma 1. The set of all n × n PSD matrices is a convex set in ℜn2
.

Proof. The property that uT Au ≥ 0 for all u is the easiest to verify:3 3 This is also a good instance of why
characterization theorems are helpful:
one definition happened to be trivial
for this proof, whereas the others take
more work.

Note that uT(λM1 + (1 − λ)M2)u = λuT M1u + (1 − λ)uT M2u ≥
0 + 0 = 0. Therefore, λM1 + (1 − λ)M2 is PSD as well.

This realization leads to the following convex optimization prob-
lem:

5

Problem 4 (Semidefinite program – SDP). Let f be a convex function and
let ⟨M, N⟩ denote ∑i,j MijNij. We seek to find X ∈ Rn×n which solves:

min f (X) such that:

X ⪰ 0,

for i = 1, . . . , k, ⟨Ai, X⟩ ≥ bi.

Here A1, . . . , Ak and b1, . . . , bk are input constraints. It is very common to
have:

f (X) = ⟨C, X⟩

for some C. I.e. to have our objective be a linear function in X.

Problem 4 is optimizing over a convex set, since the convex PSD
constraint intersected with k linear constraints forms a convex set.
It can be viewed as a Linear Program with an infinite number of
constraints. Specifically, our constraints are equivalent to:

min f (X) such that:

∀v ∈ Rn
〈

vvT , X
〉
≥ 0,

for i = 1, . . . , k, ⟨Ai, X⟩ ≥ bi.

Note that the convex objective can be replaced by min T subject to
f (X) ≤ T and other constraints. It is not hard to verify by definition
that the constraint f (X)− T ≤ 0 induces a convex set for convex f .
Thus, this is still a convex program.

The PSD constraint gives a compact way of encoding these infinite
linear constraints. In this sense, SDPs are strictly stronger than linear
programs.

Exercise 2. Show that every LP can be written as an SDP. The idea is that a
diagonal matrix, i.e., with off-diagonal entries are 0, is PSD if and only if its
entries are non-negative.

Semidefinite programs can be solved (relatively) efficiently with
various methods, including the ellipsoid method (that we will see in
the next clas) and specially designed interior point methods. They
model a wide range of natural problems, several examples of which
are outlined in 4. 4

Rounding SDP for Max-Cut: Gaussian Rounding

To obtain a solution to Problem 1 from an optimal solution to Prob-
lem 3 we employ the following rounding strategy:

6

1. Solve the semidefinite program in Problem 3 to obtain vectors
v1, . . . , vn.

2. Choose a random vector c ∈ Rn by choosing each entry to be an
independent standard Gaussian random variable.

3. Set ũi = sign
(
cTvi

)
.

First, we informally discuss why this is a natural rounding algo-
rithm. One argument is via symmetry. Our goal is to take vectors
and convert them into ±1 while preserving the cut value as much
as possible. We will do this in two steps – one find a way to map
vectors into the real line and two, apply some well-chosen function to
convert the real numbers into signs. The second step will be a bit ad
hoc5. The first step, however, is, in some sense, the right thing to do. 5 we will simply take the sign of the

numbers here and this will suffice but
I cannot give you any good reason for
why this should be a great idea except
for the argument itself

Given a vector assignment v1, v2, . . . , vn, notice that Rv1, Rv2, . . . , Rvn

is an equally good solution since the inner products between any pair
of vectors are not altered by applying the same rotation to both and
the objective function only depends on pairwise inner products of vis.
We would thus like a mapping from vectors into real numbers that
maintains some information about the inner products while being
rotationally invariant. Such a map should not depend on individual
coordinates of vis (since these are not preserved under rotations).
Taking the inner product with a Gaussian is equivalent to choosing a
uniformly random direction and projecting vectors onto it.

The only property of Gaussian random vectors that we will use
in the analysis is rotation invariance – for a Gaussian random vector g
and any rotation matrix R, Rg, and g have the same distribution.

Claim 2.

E

 ∑
(i,j)∈E

1
4
|ũi − ũj|2

 ≥ .878 · ∑
(i,j)∈E

1
4
∥vi − vj∥2

2

It follows that our rounded solution obtains an expected cut value ≥ .878 ·
OPTSDP, which is ≥ .878 · OPTMC by Claim 1. Applying Markov’s
inequality, a few repeated trials ensures that we obtain a good approximate
max cut with high probability.

Proof. Since c is spherically symmetric our rounding strategy corre-
sponds to choosing a random n dimensional hyperplane through the
origin. For all vectors vi placed on one side of the hyperplane, node i
belongs to S. The nodes corresponding to all vectors on the other side
of the hyperplace belong to V \ S. This approach is known as random
hyperplane rounding. It is visualized in Figure 2.

Intuitively, since vectors corresponding to connected nodes are in
general placed as far apart as possible by the SDP, it is more likely

7

Figure 2: Our SDP solution is
rounded by choosing a ran-
dom hyperplane through the
origin and assigning nodes to
each side of the cut based on
what side of the hyperplane
their corresponding vector lies
on. In this case, nodes i and j
are placed on one side of the
cut, with node k placed on
the other side. In other words,
ũi = ũj = −ũk.

that the a random hyperplane separates connected nodes, and thus
that we obtain a large cut value.

Formally, we bound the expected number of edges cut in our solu-
tion ũ1, . . . , ũn. Let θij denote the angle (in radians) between vectors
vi and vj. What is the probability that nodes i and j end up on dif-
ferent sides of the cut after random hyperplane rounding? This may
seem a difficult n-dimensional calculation, until we realize that there
is a 2-dimensional subspace defined by vi, vj, and all that matters
is the intercept of the random hyperplane with this 2-dimensional
subspace, which is a random line in this subspace.

In particular, observe that there is a two-dimensional space
spanned by vi, vj. Observe also that picking a uniformly random
hyperplane through the origin corresponds to picking a uniformly
random vector in the unit sphere, and taking the hyperplane or-
thogonal to it. When we project a uniformly random vector in the
unit sphere to this two-dimensional space, we also get a uniformly
random directly in this two-dimensional space, and therefore pro-
jecting the uniformly random hyperplane into this two-dimensional
space is also uniformly random. So, we just get a uniformly random
line through the origin in this space, and the probability that it lies

between vi and vj is exactly
θij
π . Thus by linearity of expectations,

E[Number of edges in cut defined by ũ1, . . . , ũn] = ∑
{i,j}∈E

θij

π
. (4)

How do we relate this to OPTSDP? We use the fact that ⟨vi, vj⟩ =
cos θij to rewrite the SDP objective as:

OPTSDP = ∑
{i,j}∈E

1
4
∥vi − vj∥2 = ∑

{i,j}∈E

1
4
(∥vi∥2 + ∥vj∥2 − 2⟨vi, vj⟩) = ∑

{i,j}∈E

1
2
(1− cos θij).

(5)
To compare this objective function to (4) Goemans and Williamson

observed that:

θ/π
1
2 (1 − cos θ)

=
2θ

π(1 − cos θ)
≥ 0.87856 . . . ∀θ ∈ [0, π].

This is easy to verify by plotting e.g. in MATLAB.
It follows that the expected size of our cut ≥ 0.878 · OPTSDP ≥

0.878 · OPTMC.

8

The saga of 0.878... The GW paper came on the heels of the PCP
Theorem (1992) which established that there is a constant ϵ > 0
such that (1 − ϵ)-approximation to MAX-CUT is NP-hard. In the
ensuing few years this constant was improved. Meanwhile, most
researchers hoped that the GW algorithm could not be optimal. The
most trivial relaxation, the most trivial rounding, and an approxi-
mation ratio derived by MATLAB calculation: it all just didn’t smell
right. However, in 2005 Khot et al. showed that Khot’s unique games
conjecture implies that the GW algorithm cannot be improved by any
polynomial-time algorithm. (Aside: not all experts believe the unique
games conjecture.)

Bibliography

[1] Vandenberghe, Lieven, and Stephen Boyd. Applications of
semidefinite programming. Applied Numerical Mathematics
29.3 (1999): 283-300.

[2] Goemans, Michel X., and David P. Williamson. Improved approx-
imation algorithms for maximum cut and satisfiability problems
using semidefinite programming. Journal of the ACM (JACM)
42.6 (1995): 1115-1145.

[3] Kothari, Pravesh K., Meka, Raghu, and, Raghavendra, Prasad.
Approximating Rectangles by Juntas and Weakly Exponential
Lower Bounds for LP Relaxations of CSPs. STOC 2017, Siam
Journal of Computing, 2019.

	Semidefinite Programming and Approximating the Maximum Cut
	Bibliography

