
P R I N C E T O N C O S 5 2 1 :
A DVA N C E D A L G O R I T H M
D E S I G N

1

Linear Thinking and Numerical Algorithms

According to conventional wisdom, linear thinking describes a
thought process that is logical or step-by-step (i.e., each step must be
completed before the next one is undertaken). Nonlinear thinking, on
the other hand, is the opposite of linear: creative, original, capable of
leaps of inference, etc.

From a complexity-theoretic viewpoint, conventional wisdom is
startlingly right: linear problems are generally computationally easy,
and nonlinear problems usually are not.

Example: Solving linear systems of equations is easy. Solving
quadratic systems of equations is NP-hard. (Reason: Using the
nonlinear constraint x2 = x, we can force variables to be 0/1 so
quadratic programming can encode the integer program e.g.)

Not all nonlinear problems are difficult, but the ones that turn
out to be easy are generally those that can leverage linear algebra
(eigenvalues, singular value decomposition, etc.).

In mathematics, too, linear algebra is simple and easy to under-
stand. The goal of much higher mathematics seems to be to reduce
the study of complicated (nonlinear!) objects to the study of linear
algebra.

Simplest example: Solving systems of linear equations

The following is a simple system of equations.

2x1 − 3x2 = 5

3x1 + 4x2 = 6

More generally, we represent a linear system of m equations in
n variables as Ax = b where A is an m × n coefficient matrix, x is
a vector of n variables, and b is a vector of m real numbers. In your
linear algebra course, you learnt that this system is feasible iff the
rank of A|b (i.e., the matrix where b is tacked on as a new column of
A) has rank at most n. The solution is computed via matrix inversion.
One subtlety not addressed in most linear algebra courses is whether
this procedure is polynomial time.

You may protest that they point out that the system can be solved
in O(n3) operations. Yes, but this misses a crucial point we will
address before the end of the lecture.

2

Systems of linear inequalities and linear programming

If we replace some or all of the = signs with ≥ or ≤ in a system of
linear equations, we obtain a system of linear inequalities.

Figure 1: A system of linear
inequalities and its feasible
region

The feasible region has sharp corners; it is a convex region and is
called a polytope. However, this method of graphing the inequalities
and their feasible region does not scale well with n, m. The number of
vertices of this feasible region grows roughly as mn in general.

In fact a polynomial-time method to determine feasibility of linear
inequalities was only discovered in 1979 by Khachiyan, a Soviet
mathematician.

We will discuss the core ideas of this method later in the course.
For now, we just assume polynomial-time solvability.

In Linear Programming one is trying to optimize (i.e., maximize
or minimize) a linear function over the set of feasible values. The
general form of an LP is

min cTx (1)

Ax ≥ b (2)

Here ≥ denotes component-wise "greater than."
This form is very flexible as shown in class. To express maximiza-

tion instead of minimization, just replace c by −c. To include an
inequality of the form a · x ≤ bi just write it as −a · x ≥ −bi. To
include an equation as a constraint just replace with two inequalities.

As is clear from the figure above, the optimum of the linear pro-
gram is attained at some vertex of the feasible region. Thus a trivial
but exponential-time algorithm to find the optimum is to enumerate
all vertices of the feasible region and take the one with the lowest
value of the objective. The famous simplex method is a clever method

3

to enumerate these vertices one by one, ensuring that the objective
keeps decreasing at each step.

Example 1. (Assignment Problem) Suppose n jobs have to be assigned
to n factories. Each job has its attendant requirements and raw materials.
Suppose a single number captures all of these: cij is the cost of assigning job
i to factory j. Let xij be a variable that assigns job i to factory j. We hope
this variable is either 0 or 1 but that is not expressible in the LP so we relax
this to the constraint

xij ≥ 0 andxij ≤ 1 for each i, j.

Each job must be assigned to exactly one factory so we have the con-
straint ∑j xij = 1 for each job i. Then we must ensure each factory obtains
one job, so we include the constraint ∑i xij = 1 for each factory j. Finally,
we want to minimize overall cost so the objective is

min ∑
ij

cijxij.

The assignment problem is equivalent to the maximum weighted
bipartite matching problem that you may have seen. There are com-
binatorial algorithms for the problem (Hint: the max-flow min-cut
theorem), but it turns out that the linear program above itself pro-
vides a solution.

Fact 1. The assignment LP admits an integral optimum solution. That is,
there is an optimum solution to the LP where each of the xij variables are set
to either 0 or 1.

This problem is abstractly studied as the max weight bipartite
matching problem: Given a bipartite graph G = ((A, B), E) with edge
weights w : E → R≥0 (i.e., the vertices in G can be partitioned into
sets A and B and each edge in E is of the form (a, b) for some vertex
a ∈ A and b ∈ B), the max-weight bipartite matching problem is to
find a subset of edges M ⊆ E that do not share a vertex while maxi-
mizing ∑e∈M w(e). We won’t prove it in class but the optimal value of
the following linear program returns the max-weight matching:1 1 There are (at least) two ways to see

this, which we won’t prove. But these
are some buzzwords if you want to
look it up yourself. One way is to use
the Birkhoff-Von Neumann Theorem
and to treat the fractional matching
as a doubly-stochastic matrix, and the
integral matching as a permutation
matrix. The other way is to consider
writing a flow network where the max-
flow is equal to the maximum fractional
matching, and then using the flow
integrality theorem.

Observe that the fact does not mean that every optimum solution
to the LP is integral. This is easy to see – imagine an example where
there are two different integral assignments x, x′ that are both opti-
mum. Then, notice that 1

2 x + 1
2 x′ is also an optimum assignment that

satisfies all the constraints of the LP and if x ̸= x′ then, at least some
entry of this new assignment must be fractional.

In general one doesn’t get so lucky: solutions to LPs end up being
nonintegral no matter how hard we pray for the opposite outcome.
Next lecture we will discuss what to do if that happens.□

4

In fact linear programming was invented in 1939 by Kontorovich, a
Russian mathematician, to enable efficient organization of industrial
production and other societal processes (such as the assignment
problem).

The premise of communist economic system in the 1940s and
1950s was that centralized planning —using linear programming!—
would enable optimum use of a society’s resources and help avoid
the messy “inefficiencies”of the market system! The early developers
of linear programming were awarded the Nobel prize in economics!
Alas, linear programming has not proved sufficient to ensure a
perfect economic system. Nevertheless it is extremely useful and
popular in optimizing flight schedules, trucking operations, traffic
control, manufacturing methods, etc. At one point it was estimated
that 50% of all computation in the world was devoted to LP solving.
Then youtube was invented...

Linear modeling

At the heart of mathematical modeling is the notion of a system of
variables: some variables are mathematically expressed in terms of
others. In general this mathematical expression may not be succinct
or even finite (think of the infinite processes captured in the quantum
theory of elementary particles). A linear model is a simple way to
express interrelationships that are linear.

y = 0.1x1 + 9.1x2 − 3.2x3 + 7.

Example 2. (Diet) You wish to balance meat, sugar, veggies, and grains in
your diet. You have a certain dollar budget and a certain calorie goal. You
don’t like these foodstuffs equally; you can give them a score between 1 and
10 according to how much you like them. Let lm, ls, lv, lg denote your score
for meat, sugar, veggies and grains respectively. Assuming your overall
happiness is given by

m × lm + g × lg + v × lv + s × ls,

where m, g, v, s denote your consumption of meat, grain, veggies and sugar
respectively (note: this is a modeling assumption about you) then the
problem of maximizing your happiness subject to a dollar and calorie budget
is a linear program. □

Example 3. (ℓ1 regression) This example is from Bob Vanderbei’s book
on linear programming. You are given data containing grades in different
courses for various students. You can try to come up with a model for
explaining these scores. You hypothesize that a student’s grade in a course is
determined by the student’s innate aptitude, and the difficulty of the course.

5

One could try various functional forms for how the grade is determined
by these factors, but the simplest form to try is linear. Of course, such a
simple relationship will not completely explain the data so you must allow
for some error. Denoting by Gradeij the grade of student i in course j this
linear model hypothesizes that

Gradeij = aptitudei + easinessj + ϵij, (3)

where ϵij is an error term.
Clearly, the error could be positive or negative. A good model is one that

has a low value of ∑ij |ϵij|. Thus the best model is one that minimizes this
quantity.

We can solve this model for the aptitude and easiness scores using an LP.
We have the constraints in (3) for each student i and course j. Then for each
i, j we have the constraints

sij ≥ 0 and − sij ≤ ϵij ≤ sij.

Finally, the objective is min ∑ij sij.
This method of minimizing the sum of absolute values is called ℓ1-

regression because the ℓ1 norm of a vector x is ∑i |xi|. □

Just as LP is the tool of choice to squeeze out inefficiencies of
production and planning, linear modeling is the bedrock of data
analysis in science and even social science.

Example 4. (Econometric modeling) Econometrics is the branch of economics
dealing with analysis of empirical data and understanding the interrela-
tionships of the underlying economic variables —also useful in sociology,
political science etc.. It often relies upon modeling dependencies among vari-
ables using linear expressions. Usually the variables have a time dependency.
For instance it may a posit a relationship of the form

Growth(T + 1) = α · Interest rate(T) + β · Deficit(T − 1) + ϵ(T),

where Interest rate(T) denotes say the interest rate at time T, etc. Here α, β

may not be constant and may be probabilistic variables (e.g., a random
variable uniformly distributed in [0.5, 0.8]) since future growth may not be a
deterministic function of the current variables.

Often these models are solved (i.e., for α, β in this case) by regression
methods related to the previous example, or more complicated probabilistic
inference methods that we will study later in the course.□

Example 5. (Perceptrons and Support Vector Machines in machine learning)
Suppose you have a bunch of images labeled by whether or not they contain
a car. These are data points of the form (x, y) where x is n-dimensional
(n= number of pixels in the image)and yi ∈ {0, 1} where 1 denotes that
it contains a car. You are trying to train an algorithm to recognize cars in

6

other unlabeled images. There is a general method called SVM’s that allows
you to find some kind of a linear model. (Aside: such simple linear models
don’t work for finding cars in images; this is an example.) This involves
hypothesizing that there is an unknown set of coefficients α0, α1, α2, . . . , αn

such that

∑
i

αixi ≥ α0 + errorx if x is an image containing a car,

∑
i

αixi ≤ 0.5α0 + errorx if x does not contain a car,

Then finding such αi’s while minimizing the sum of the absolute values of
the error terms is a linear program. After finding these αi’s, given a new
image the program tries to predict whether it has a car by just checking
whether ∑i αixi ≥ α0 or ≤ 0.5α0. (There is nothing magical about the 0.5
gap here; one usually stipulates a gap or margin between the yes and no
cases.)

This technique is related to the so-called support vector machines in
machine learning (and an older model called perceptrons), though we’re
dropping a few technical details (ℓ2-regression, regularization etc.). Also,
in practice it could be that the linear explanation is a good fit only after
you first apply a nonlinear transformation on the x’s. For instance let z

be the vector where the ith coordinate zi = ϕ(xi) = exp(− x2
i

2). You
then find a linear predictor using the z’s. (How to choose such nonlinear
transformations is an art.) □

One reason for the popularity of linear models is that the mathe-
matics is simple, elegant, and most importantly, efficient. Thus if the
number of variables is large, a linear model is easiest to solve.

A theoretical justification for linear modeling is Taylor expansion,
according to which every “well-behaved”function is expressible as an
infinite series of terms involving the derivatives. Here is the taylor
series for an m-variate function f :

f (x1, x2, . . . , xm) = f (0, 0, .., 0)+∑
i

xi
∂ f
∂xi

(0)+∑
i1i2

xi1 xi2
∂ f

∂xi1 ∂xi2
(0)+ · · · .

If we assume the higher order terms are negligible, we obtain a linear
expression.

Whenever you see an article in the newspaper describing certain
quantitative relationships —eg, the effect of more policing on crime,
or the effect of certain economic policy on interest rates—chances are
it has probably been obtained via a linear model and ℓ1 regression (or
the related ℓ2 regression). So don’t put blind faith in those numbers;
they are necessarily rough approximations to the complex behavior
of a complex world.

7

Meaning of polynomial-time

Of course, the goal in this course is designing polynomial-time algo-
rithms. When a problem definition involves numbers (as opposed to
combinatorial/discrete inputs we are more familiar with), the correct
definition of polynomial-time is “polynomial in the number of bits
needed to represent the input. ”

Thus the input size of an m × n system Ax = b is not mn but the
number of bits used to represent A, b, which is at most mnL where L
denotes the number of bits used to represent each entry of A, b. (We
assume that the numbers in A, b are rational, and in fact by clearing
denominators we may assume wlog they are integer.)

Let’s return to the question we raised earlier: is Gaussian elimina-
tion a polynomial-time procedure? The answer is yes. The reason this is
nontrivial is that conceivably during Gaussian elimination we may
produce a number that is too large to represent. We have to show it
runs in poly(m, n, L) time.

First, note that standard arithmetic operations +,−,× run in
polynomial time.

The reason this works out is that size of the numbers produced
during the algorithm are related to the determinant of n × n subma-
trices of A, and this determinant has value at most n!2Ln. To see this,
just recall that the formula for determinant of an n × n matrix is

det(A) = ∑
σ

sgn(σ)∏
i

Aiσ(i),

where σ ranges over all permutations of n elements.
The number of bits used to represent determinant is the log of

this, which is n log n + Ln, which is indeed polynomial. Thus doing
arithmetic operations on these numbers is also polynomial-time.

This has some consequence for linear programming as well. Recall
that the optimum of a linear program is attained at a vertex of the
polytope. The vertex is defined as the solution of all the equations
obtained from the inequalities that are tight there. We conclude
that each vertex of the polytope can be represented by n log n + Ln
bits. This at least shows that the solution can be written down in
polynomial time (a necessary precondition for being able to compute
it in polynomial time!).

A cautionary tale It is easy to lull yourself into a false sense of “ev-
erything will be alright" with numerical algorithms. After all, it did
work out for Gaussian elimination and linear programming, even if
we were a little sloppy at first. But we ought to tread carefully as the
next example shows:

8

Example 6 (The sum-of-square-roots problem). Consider the following
innocuous-looking problem: given two n-vertex polygons in the plane with
each vertex described by a pair of rational numbers, each with poly(n) bits,
decide if the first has a strictly larger perimeter than the second. Notice that
the input to this problem is of size poly(n), accounting for the number of
bits required to describe each vertex of the polygons.

There is a simple algorithm to try: for any polygon, we can estimate the
perimeter by going over each “edge" of the polygon, estimating its Euclidean
length, and adding all the n numbers obtained up. We can then compare
the two. The lengths however involve square roots of some rational numbers
that, for the natural strategy above, would require approximating the square
root by a rational number. Several methods give a strong approximation
guarantee so we seem to be in luck – you can obtain a rational estimate of
the square root within any ϵ error in time polynomial in the bit size of the
input numbers and poly log(1/ϵ). But what ϵ should we choose?

The desired accuracy dictates the choice of ϵ in estimating the perimeter.
Thus, to solve the decision problem we are interested in, we must understand
the following question: given two polygons described by poly(n)-size
rational vertices of unequal perimeter, what is the minimum possible
difference between their perimeters? If this quantity can be made arbi-
trarily small, then the natural strategy to solve the problem above clearly
fails since we cannot hope for any ϵ > 0 to work. Despite quite a bit of
effort so far, it turns out we do not know the answer to the above question.
Consequently, we do not know if the polygon comparison problem (or the
sum-of-square-roots comparison problem) has a polynomial time algorithm.

For a very related reason, the Euclidean traveling salesperson problem
(TSP but where the vertices are described as points in Rd and distances are
Euclidean) is known to be NP-hard but not known to be in NP – given a
rational c and a TSP tour, we do not know how to verify if the cost of the
TSP tour is at most c.

	Linear Thinking and Numerical Algorithms
	Simplest example: Solving systems of linear equations
	Systems of linear inequalities and linear programming
	Linear modeling
	Meaning of polynomial-time

