
P R I N C E T O N C O S 5 2 1 :
A DVA N C E D A L G O R I T H M
D E S I G N



1

Introduction to Coding Theory

Computer and information systems are prone to data loss—lost
packets, crashed or corrupted hard drives, noisy transmissions, etc.—
and it is important to prevent actual loss of important information
when this happens. Today’s lecture concerns error correcting codes, a
stepping point to many other ideas, including a big research area
(usually based in EE departments) called information theory. This area
started with a landmark paper by Claude Shannon in 1948, whose
key insight was that data transmission is possible despite noise and
errors if the data is encoded in some redundant way and moreover,
that we can quantify exactly how much redundancy is required for a
given amount of noise.

Basic Setup

Our basic setup for the lecture will be as follows. We have some bit
vector b ∈ {0, 1}n that we want to store in a potentially corruptible
storage device or that we want to transmit over a noisy channel.
When we read the transmitted bits, instead of reading b1, . . . , bn, we
see corrupted bits b̃1, . . . , b̃n where for some set of bits I ⊂ 1, . . . , n,
b̃i ̸= bi for i ∈ I .

Our goal is to encode our bit string b into some larger string
E(b) ∈ {0, 1}m (m > n) which adds redundancy to the string. The
hope is that, even if some bits of this longer string are corrupted,
we’ll be able to either:

1. Detect that E(b) is corrupted, at which point we might ask who-
ever we’re communicating with to resend b. Detection is most
helpful where errors are rare.

2. Correct the corruptions in E(b) and recover b from the corrected
string. This is equivalent to not only detecting corruptions in E(b),
but being able to know at which indices they occurred (i.e. to find
I). Correction is a more reasonable goal when errors are frequent
or, as is the case in data storage, when it’s not possible to ask for a
retransmission.

Example 1 (Redundancy through repetition). The simplest way to
introduce redundancy is to simply repeat each bit, say k times. As was
discussed in class, we can do this in a few ways. For example, we could
set E(b) = [b1, . . . , bn, b1, . . . , bn, . . . , b1, . . . , bn] or we could set E(b) =

[b1, . . . , b1, b2, . . . , b2, . . . , bn, . . . , bn]. The first is more robust to “runs”
of continuous errors, which are common in practice. In either case, by
producing an encoded message of length kn, we produce a string from which
we can detect if there was an error as long as there are < k errors, not



2

matter where the errors appear. If there are ≥ k errors, all copies of b1 could
be flipped and we won’t be able to tell. We can correct an error as long as
there are < k/2 errors (take the majority bit for each position.)

Example 2 (Parity checks). Another simple method to add redundancy
is checksums. Let ⊕ denote the XOR function: 0⊕ 0 = 0, 0⊕ 1 = 1,
1⊕ 0 = 1, 1⊕ 1 = 0.

Suppose we transmit 3 bits b = [b1, b2, b3] as E(b) = [b1, b2, b3, b1 ⊕
b2 ⊕ b3]. The last bit is the parity of the first three: i.e. it’s equal to one if
there were an odd number of bits in b, or zero if there were an even number.
If one of the bits (or the parity bit itself) gets flipped, the parity will be
incorrect. However, if two bits get corrupted, the parity becomes correct
again! Thus this method can detect when a single bit has been corrupted.

More complicated checksums also allow for error correction. Consider
storing 7 bits: b1, b2, b3, b1 ⊕ b2, b1 ⊕ b3, b2 ⊕ b3, b1 ⊕ b2 ⊕ b3. It is easily
checked that, if up to three bits are flipped, we can detect that there was an
error. If one bit is flipped, we can actually find where it is an correct it. Try
to convince yourself of how to do this.

Code Distance and the Hadamard Code

The last example given above is called the Hadamard code, which is
obtained by computing the parity of all possible 2n subsets of bits in
b (really 2n − 1 since the parity of the empty set is always zero).

In particular, We define E(b) : {0, 1}n → {0, 1}2n
as follows. For

j ∈ 1, . . . , 2n let Sj ⊆ 1, . . . , n be the set of all bits equal to one in the
length n binary representation of j. We set:

[E(b)]j =
⊕
i∈Sj

bi

For n = 2, there are 22 potential values for the vector b ∈ {0, 1}2.
Below we write E(b) as the rows of a matrix with 22 columns, each
corresponding to a possible value of b:


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


The rows of this matrix are called the “codewords” in our code: a
codeword is any bit vector equal to E(b) for some input b. For n = 3,



3

our codewords are the rows in

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1


Do you recognize this matrix? If we replaced the 0s with −1s, this
is the same Hadamard matrix we saw in the ecture on Fast Johnson
Lindenstrauss transforms. If you recall from that lecture, the ±1
version of this matrix was orthogonal. This implies that any row in
the matrix, i.e. any possible code word E(b), has exactly 2n/2 bits in
common with any other row.

This is a very useful fact. It implies that, even if just under half of
the bits in a transmitted codeword are corrupted, we can detect that
there was an error. Why? Because it’s not possible that our transmit-
ted codeword looks like another valid codeword if there are < 2n/2
errors. Moreover, we can correct the codeword as long as there are
< 2n/4 errors: we just set it to equal the unique closest codeword in
our code. So, while it expands the length of our message exponen-
tially, the Hadamard code is very robust to errors.

In general, thinking about the distance between codewords is the
easiest way to think about the robustness of a code. This distance
dictates our ability to detect and correct errors.

Definition 1 (Minimum distance). The minimum distance ∆ of a code
with encoding function E : {0, 1}n → {0, 1}m is defined:

∆ = min
x,y∈{0,1}n ,x ̸=y

∥x− y∥0.

Here ∥ · ∥0 is the hamming distance – i.e. the number of non-zero entries in a
vector.

It should be clear that the following is true:

Claim 1. If a code has distance ∆ then it is possible to:

• Detect up to k errors in E(b) for any b as long as k < ∆.

• Correct up to k errors in E(b) for any b as long as k < ∆/2.

Good codes

A central question in coding is: for a given input length n and code
length m > n, how large of a distance ∆ can be achieved by the code?



4

This is a very well studied problem, but surprisingly not totally
resolved.

Here’s a famous and easy to prove limitation on constructing
codes with a given distance.

Theorem 1 (Singleton Bound). A code with input size n, code length m,
and distance ∆ must have length m > n + ∆.

Proof. Let c1, . . . , cq ∈ {0, 1}m be the codewords of our code. Consider
removing the last ∆− 1 bits from c1, . . . , cq to create new bit vectors
c̃1, . . . , c̃q ∈ {0, 1}m−∆+1. If our code has distance ∆, ∥ci − cj∥0 ≥ ∆ for
all i, j, thus c̃i ̸= c̃j for all i, j. So every vector c̃1, . . . , c̃q is unique.

But there are at most 2m−∆+1 unique bit vectors of length m− ∆ + 1,
meaning that q ≤ 2m−∆+1. If our input has length n, we need at least
2n codewords, so we conclude that n ≤ m− ∆ + 1.

This result makes some intuitive sense – somehow if we want to
tolerate ∆ lost bits, we better compensate by adding ∆ bits of informa-
tion to our code. We won’t be able to construct codes that match the
singleton bound – i.e. achieve distance ∆ with m = n + ∆ + 1, but we
will get pretty close.

Here’s a famous positive result.

Theorem 2 (Gilbert-Varshamov bound). For any input size n and distance
∆ = pm for p ∈ [0, 1], there exists a code with length m = n

1−H(p) .

Here H(p) is the famous binary entropy function appearing in
Figure 1 (which is related to the notion of entropy used in the 2nd
law of thermodynamics is closely related.) H(p) is defined:

H(p) = p log
1
p
+ (1− p)

1
1− p

Figure 1: The graph of H(X) as
a function of X.

The entropy function appears repeatedly in coding and informa-
tion theory applications

Proof sketch of Theorem 2. To prove the GV bound, we can explicitly
construct a code with the required parameters: i.e. for n length, we
give a code which has length n

1−H(p) and distance pm.
This can be done in a greedy way. Consider the following proce-

dure:



5

1. Initialize S ← {0, 1}m, and C ← ∅. C will eventually hold all the
codewords in our code.

2. While S is not empty:

(a) Chose any z ∈ S arbitrarily. Remove z from S and add it to C:
C ← C ∪ {z}.

(b) Remove any element z′ in S with ∥z− z′∥0 < pm.

At each step of this iterative procedure, we add a single codeword
to our code. We want to show that the number of steps is large. To
do so, we simply bound how many potential codewords z′ we also
remove from S at each step. This is equal to the number of remaining
bit strings in S within distance pm from z, which is only smaller than
the total number of strings in {0, 1}m within distance pm from z. This
value can be bounded by:(

m
0

)
+

(
m
1

)
+ · · ·

(
m

pm− 1

)
,

which is at most 2H(p)m. We gave a sketch of why this was the case
in class by analyzing the last term. See https://people.cs.umass.

edu/~arya/courses/690T/lecture4.pdf for a more detailed proof,
or check Wikipedia: https://en.wikipedia.org/wiki/Binomial_

coefficient#Bounds_and_asymptotic_formulas.
If we remove at most 2H(p)m elements from S in each step, it

must be that our procedure runs for at least 2m/2H(p)m = 21−H(p)m,
meaning we generate 21−H(p)m codewords with distance pm. This
proves Theorem (2), as we can assign a unique code word to each
element in {0, 1}n as long as n < 1− H(p)m.

This proof might remind you of the greedy ϵ-net construction we
discussed in Lecture 11. The construction is not efficient, nor can it
be decode efficiently, but there are constructions nearly matching the
bound which can be.

Via a very similar proof, it’s also possible to prove the following
limit on codes, which is tighter than the singleton bound:

Theorem 3 (Hamming bound, aka the “sphere packing” or “volume”
bound). A code with input size n and distance ∆ = p ·m must have code
length m = n

1−H(p/2) .

This bound is compared to Theorem 1 and Theorem 2 in Figure
2. The white region in the plot represents a gap in our knowledge
about binary codes. On one hand, it’s not known how to construct
binary codes that beat Gilbert-Varshamov bound. On the other,
we can’t prove a lower bound that matches this bound (although
improvemenst on the Hamming bound do exist). Many conjecture
that the GV bound is tight.

https://people.cs.umass.edu/~arya/courses/690T/lecture4.pdf
https://people.cs.umass.edu/~arya/courses/690T/lecture4.pdf
https://en.wikipedia.org/wiki/Binomial_coefficient#Bounds_and_asymptotic_formulas
https://en.wikipedia.org/wiki/Binomial_coefficient#Bounds_and_asymptotic_formulas


6

Figure 2: The plot above is
taken from https://courses.

cs.washington.edu/courses/

cse533/06au/lecnotes/

lecture5.pdf. δ corresponds to
our ∆ and R = n/m.

Aside on Shannon vs. Hamming

So far we have focused on codes from a worst case perspective. By
seeking codes with a certain minimum distance, we can design error
correction schemes which are robust to a certain number of errors
in worst case locations. This approach was proposed and studied by
Richard Hamming, who shared an office with Claude Shannon at
Bell Labs.

In contrast, Shannon’s famous theory studies random errors –
i.e. we assume that each bit will be flipped independently with
probability p. While closely related, there are subtle differences
between the worst-case and random error models. For example,
under Shannon’s model, it’s known that a bound of n/m ≤ 1− H(p)
(i.e. comparable to the GV bound) is tight for error rate p (which
corresponds to p ·m errors in expectation).

Finite fields and polynomials

For the rest of the lecture we shift gears from theoretical bounds and
analyze a popular practical code that allows for efficient encoding
and decoding. It is based on finite field operations, which we review
briefly.

In our case, finite field will refer to Zq, the integers modulo a prime
q. Recall that one can define +,×,÷ over these numbers, and that
x× y = 0 iff at least one of x, y is 0. A degree d polynomial p(x) has
the form

a0 + a1x + a2x2 + · · ·+ adxd.

It can be seen as a function that maps x ∈ Zq to p(x).

Lemma 1 (Polynomial Interpolation). For any set of n + 1 pairs
(x0, y0), (x1, y1), . . . , (xn, yn) where the xi’s are distinct elements of Zq,
there is a unique degree n polynomial g(x) satisfying g(xi) = yi for each i.

Proof. Let a0, a1, . . . , an be the coefficients of the desired polynomial.
Then the constraint g(xi) = yi corresponds to the following linear

https://courses.cs.washington.edu/courses/cse533/06au/lecnotes/lecture5.pdf
https://courses.cs.washington.edu/courses/cse533/06au/lecnotes/lecture5.pdf
https://courses.cs.washington.edu/courses/cse533/06au/lecnotes/lecture5.pdf
https://courses.cs.washington.edu/courses/cse533/06au/lecnotes/lecture5.pdf


7

system.

Figure 3: Linear system cor-
responding to polynomial
interpolation; matrix on left
side is Vandermonde.

This system has a unique solution iff the matrix on the left is in-
vertible, i.e., has nonzero determinant. This is nothing but the famous
Vandermonde matrix, whose determinant is ∏i≤n ∏j ̸=i(xi − xj). This
is nonzero since the xi’s are distinct. Thus the system has a solu-
tion. Actually the solution has a nice description via the Lagrange
interpolation formula:

g(x) =
n

∑
i=0

yi ∏
j ̸=i

(x− xj)

xi − xj
.

Corollary 1. If a degree d has more than d roots (i.e., points where it takes
zero value) then it is the zero polynomial.

Reed Solomon codes and their decoding

The Reed Solomon code from 1960 is ubiquitous, having been used
in a host of settings including data transmission by NASA vehicles
and the storage standard for music CDs. It is simple and inspired by
Lemma 1. The idea is to break up a message into chunks of ⌊log q⌋
bits, where each chunk is interpreted as an element of the field Zq.
If the message has (d + 1)⌊log q⌋ bits then it can be interpreted as
coefficients of a degree d polynomial p(x). The encoding consists
of evaluating this polynomial at n points u1, u2, . . . , vn ∈ Zq and
defining the encoding to be p(u1), p(u2), . . . , p(un).

Suppose the channel corrupts k of these values, where n− k ≥ d + 1.
Let v1, v2, . . . , vn denote the received values. If we knew which values
are uncorrupted, the decoder could use polynomial interpolation to
recover p. Trouble is, the decoder has no idea which received value
has been corrupted. We show how to recover p if k < n−d

2 − 1.

Lemma 2. There exists a nonzero degree k polynomial e(x) and a polynomial
c(x) of degree at most d + k such that

c(ui) = e(ui)vi for i = 1, 2, . . . , n. (1)

Proof. Let I ⊆ {1, 2, . . . , n}, with ∥I∥ = k be the subset of indices
i such that vi has been corrupted. Then (1) is satisfied by e(x) =

∏i∈I(x − ui) and c(x) = e(x)p(x) since e(ui) = 0 for each i ∈ I and
nonzero outside I.



8

The polynomial e in the previous proof is called the error locator
polynomial. Now note that if we let the coefficients of c, e be un-
knowns, then (1) is a system of n equations in d + 2k + 2 unknowns.
This system is overdetermined since the number of constraints exceeds
the number of variables. But Lemma 2 guarantees this system is
feasible, and thus can be solved in polynomial time by Gaussian
elimination.

We will need the notion of a polynomial dividing another. For
instance x2 + 2 divides x3 + x2 + 2x + 2 since x3 + x2 + 2x + 2 =

(x2 + 2)(x + 1). The algorithm to divide one polynomial by another is
the obvious analog of integer division.

Lemma 3. If n > d + 2k + 1 then any solution c(x), e(x) to the system
of Lemma 2 satisfies (i) e(x) divides c(x) as a polynomial (ii) c(x)/e(x) is
p(x).

Proof. The polynomial c(x)− e(x)p(x) has a root at ui whenever vi

is uncorrupted since p(ui) = vi. Thus this polynomial, which has
degree d + k, has n− k roots. Thus if n− k > d + k + 1 this polynomial
is identically 0.

Code concatenation

Technically speaking, the Reed-Solomon code only works if the error
rate of the channel is less than 1/ log2 q, since otherwise the channel
could corrupt one bit in every value of the polynomial.

To allow error rate Ω(1) one uses code concatenation. This means
that we encode each value of p —which is a string of t = ⌈log2 q⌉
bits—with another code that maps t bits to O(t) bits and has mini-
mum distance Ω(t). Wait a minute: you might say. If we had such
a code all along then why go to the trouble of defining the Reed-
Solomon code?

The reason is that we do have such a code by the greedy construc-
tion discussed above: but since we are only applying it on strings of
size t it can be encoded and decoded in exp(t) time, which is only
q. Thus if q is polynomial in the message size, we still get encod-
ing/decoding in polynomial time.

This technique is called code concatenation.


	Introduction to Coding Theory
	Basic Setup
	Code Distance and the Hadamard Code
	Good codes
	Finite fields and polynomials
	Reed Solomon codes and their decoding
	Code concatenation

