
princeton university fall ’24 cos 521:Advanced Algorithms

Homework 1

Out: Nov 3 Due: Nov 17

Instructions:

• Upload your solutions (to the non-extra-credit) as a single PDF file (one PDF total)
to Gradescope. Please anonymize your submission (do not list your name in the PDF
title or in the document itself). If you forget, it’s OK.

• If you choose to do extra credit, upload your solution to the extra credits as a single
PDF file to Gradescope. Please again anonymize your submission.

• You may discuss ideas for solutions with any classmates, textbooks, the Internet, etc.
Please attach a brief “collaboration statement” listing any collaborators at the end of
your PDF. You must write up your solutions individually.

• For each problem, you should aim to keep your writeup below one page. For some
problems, this may be infeasible, and for some problems you may write significantly
less than a page. This is not a hard constraint, but part of the assignment is figuring
out how to easily convince the grader of correctness, and to do so concisely. “One
page” is just a guideline: if your solution is longer because you chose to use figures
(or large margins, display math, etc.) that’s fine.

• Each problem is worth ten points (even those with multiple subparts).

Problems:

§1 (10 points) This problem explores compressed sensing schemes that work when noise/numerical
precision is not an issue. Let q1, . . . , qn ∈ Rn be any set of distinct numbers. E.g. we
could choose [q1, . . . , qn] = [1, . . . , n]. Consider the sensing matrix A ∈ R2k×n:

A =
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
Show that, if x ∈ Rn is a k sparse vector – i.e. ‖x‖0 ≤ k – then x can be recovered
uniquely given Ax, which is a vector with length 2k. You don’t need to give an efficient
algorithm. Just argue that for any given y ∈ R2k, there is at most one k-sparse x such
that y = Ax. (Hint: Use that a non-zero degree d polynomial can’t have more than
d roots.)

§2 In this problem, we will come up with two alternate characterizations of the minimum
distance of a binary linear code. Let E : Fk

2 → Fn
2 be a linear error correcting code
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that stretches k bits into n bits. Let gi = E(ei) be the encoding of the standard
basis vectors e1, e2, . . . , ek (ei is the vector with all 0s except exactly one 1 in the i-th
coordinate) in the k dimensions. Let G be the k×n matrix with i-th row equal to gi.

(a) (2 points) Let C = Span(g1, g2, . . . , gk) be the linear subspace Fn
2 . Prove that

every element of C is an encoding of some message.

(b) (3 points) Argue that minimum distance of the code defined by E equals the
smallest number of 1s in any non-zero element of C.

(c) (5 points) Prove that if every subset of k columns of G are linearly independent,
then, E has minimum distance d ≥ n − k + 1. (Hint: use the conclusion from
part 1 and remember that if every k columns of G are lin independent then every
k × k submatrix of G must be full rank.)

§3 (10 points)

(a) Let M be the transition matrix of a ergodic random walk with mixing time t0.
Let M ′ = 1/2(I + M) be the “lazy” version of this Markov Chain. Show that
the mixing time of M ′ is at most 10t0. It’s fine to have any constant (instead of
10) in this bound.

(b) Let M be the transition matrix of a random walk on an undirected d-regular
graph G on n vertices that defines an ergodic Markov Chain with stationary
distribution π. In the class, we defined the mixing time of this Markov Chain
as the smallest integer t0 such that for every distribution x on the vertices of
G, ‖M t0x − π‖1 ≤ 1/4. Justify this definition by arguing that the distance
to stationary distribution shrinks exponentially: i.e., show that after kt0 steps,
‖Mkt0x− π‖1 ≤ 2−k.

§4 (10 points) Let M be the Markov chain of a 5-regular undirected graph that is con-
nected. Each node has self-loops with probability 1/2. We saw in class that 1 is an
eigenvalue with eigenvector ~1. Show that every other eigenvalue has magnitude at
most 1− 1/10n2. (Hint: check out the proof in the lecture for why a connected graph
canot have two eigenvalues that are equal to 1.) What does this imply about the
mixing time for a random walk on this graph from an arbitrary starting point?

§5 (Extra credit) (Sudan’s list decoding) Let (a1, b1), (a2, b2), . . . , (an, bn) ∈ F 2 where
F = GF (q) and q � n. We say that a polynomial p(x) describes k of these pairs if
p(ai) = bi for k values of i. This question concerns an algorithm that recovers p even
if k < n/2 (in other words, a majority of the values are wrong).

(a) Show that there exists a bivariate polynomial Q(z, x) of degree at most d
√
ne+1

in z and x such that Q(bi, ai) = 0 for each i = 1, . . . , n. Show also that there is
an efficient (poly(n) time) algorithm to construct such a Q.

(b) Show that if R(z, x) is a bivariate polynomial and g(x) a univariate polynomial
then z − g(x) divides R(z, x) iff R(g(x), x) is the 0 polynomial.

(c) Suppose p(x) is a degree d polynomial that describes k of the points. Show that
if d is an integer and k > (d + 1)(d

√
ne + 1) then z − p(x) divides the bivariate
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polynomial Q(z, x) described in part (a). (Aside: Note that this places an upper
bound on the number of such polynomials. Can you improve this upper bound
by other methods?)

(There is a randomized polynomial time algorithm due to Berlekamp that factors a
bivariate polynomial. Using this we can efficiently recover all the polynomials p of
the type described in (c). This completes the description of Sudan’s algorithm for list
decoding.)


