
Parallel Prefix Scan
and Assignment 7

Credits:
Dan Grossman, U.Wash.

Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)

COS 326

Andrew Appel

Princeton University

slides copyright 2018-20 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

The prefix-sum problem

prefix_sum : int seq -> int seq

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

The simple sequential algorithm: accumulate the sum from left to right

– Sequential algorithm: Work: O(n), Span: O(n)

– Goal: a parallel algorithm with Work: O(n), Span: O(log n)

Parallel prefix-sum

The trick: Use two passes

– Each pass has O(n) work and O(log n) span

– So in total there is O(n) work and O(log n) span

First pass builds a tree of sums bottom-up

– the “up” pass

Second pass traverses the tree top-down to compute prefixes

– the “down” pass computes the "from-left-of-me" sum

Historical note:

– Original algorithm due to R. Ladner and M. Fischer, 1977

3

Example

input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r 0,1
s
f

r 1,2
s
f

r 2,3
s
f

r 3,4
s
f

r 4,5
s
f

r 5,6
s
f

r 6,7
s
f

r 7,8
s
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76

0

0

0

0

36

10 36 666 26 52 68

10 66

36

Example

The algorithm, pass 1

1. Up: Build a binary tree where

– Root has sum of the range [x,y)

– If a node has sum of [lo,hi) and hi>lo,

• Left child has sum of [lo,middle)

• Right child has sum of [middle,hi)

• A leaf has sum of [i,i+1), i.e., nth input i

This is an easy parallel divide-and-conquer algorithm: “combine”
results by actually building a binary tree with all the range-sums

– Tree built bottom-up in parallel

Analysis: O(n) work, O(log n) span

The algorithm, pass 2

2. Down: Pass down a value fromLeft

– Root given a fromLeft of 0

– Node takes its fromLeft value and

• Passes its left child the same fromLeft

• Passes its right child its fromLeft plus its left child’s sum

– as stored in part 1

– At the leaf for sequence position i,

• nth output i == fromLeft + nth input i

This is an easy parallel divide-and-conquer algorithm:

 traverse the tree built in step 1 and produce no result

– Leaves create output

– Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span

Sequential cut-off

For performance, we need a sequential cut-off:

• Up:

– just a sum, have leaf node hold the sum of a range

• Down:

– do a sequential scan

Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common
pattern, prefix-sum illustrates a pattern that arises in many, many
problems

• Minimum, maximum of all elements to the left of i

• Is there an element to the left of i satisfying some property?

• Count of elements to the left of i satisfying some property

– This last one is perfect for an efficient parallel filter …

– Perfect for building on top of the “parallel prefix trick”

Parallel Scan

pre_scan (o) base <x0, ..., xn-1>
==
 <base, base o x0, ..., base o x0 o ... o xn-2>

scan (o) <x0, ..., xn-1>
==
 <x0, x0 o x1, ..., x0 o ... o xn-1>

sequence with o applied to all items
to the left of index in input

like a fold, except return
the folded prefix at each step

Operator o
must be associative!

base must be a unit
for operator o

Parallel Filter

Given a sequence input, produce a sequence output containing only
elements v such that (f v) is true

Example: let f x = x > 10

 filter f <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>

 == <17, 11, 13, 19, 24>

Parallelizable?

– Finding elements for the output is easy

– But getting them in the right place seems hard

Parallel prefix to the rescue

Use parallel map to compute a bit-vector for true elements:

 input <17, 4, 6, 8, 11, 5, 13, 19, 0, 24>

 bits <1, 0, 0, 0, 1, 0, 1, 1, 0, 1>

Use parallel-prefix sum on the bit-vector:

 bitsum <1, 1, 1, 1, 2, 2, 3, 4, 4, 5>

For each i, if bits[i] == 1 then write input[i] to output[bitsum[i]] to produce
the final result:

 output <17, 11, 13, 19, 24>

QUICKSORT

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n log n)

 Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

How should we parallelize this?

Quicksort

 Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C 2T(n/2)

Easy: Do the two recursive calls in parallel

• Work: unchanged. Total: O(n log n)

• Span: now T(n) = O(n) + 1T(n/2) = O(n)

Doing better

As with mergesort, we get a O(log n) speed-up with an infinite
number of processors. That is a bit underwhelming

– Sort 109 elements 30 times faster

(Some) Google searches suggest quicksort cannot do better
because the partition cannot be parallelized*

– The Internet has been known to be wrong ☺

– But we need auxiliary storage (no longer in place)

– In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition…

*These days, most hits get this right, and discuss parallel partition

Parallel partition (not in place)

This is just two filters!

– We know a parallel filter is O(n) work, O(log n) span

– Parallel filter elements less than pivot into left side of aux array

– Parallel filter elements greater than pivot into right size of aux array

– Put pivot between them and recursively sort

With O(log n) span for partition, the total best-case and expected-
case span for quicksort is

T(n) = O(log n) + 1T(n/2) = O(log2 n)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

Example

Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

Steps 2a and 2c (combinable): filter less than, then filter
greater than into a second array

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

Step 3: Two recursive sorts in parallel

– Can copy back into original array (like in mergesort)

More Algorithms

• To add multiprecision numbers.

• To evaluate polynomials

• To solve recurrences.

• To implement radix sort

• To delete marked elements from an array

• To dynamically allocate processors

• To perform lexical analysis. For example, to parse a program
into tokens.

• To search for regular expressions. For example, to implement
the UNIX grep program.

• To implement some tree operations. For example, to find the
depth of every vertex in a tree

• To label components in two dimensional images.

 See Guy Blelloch “Prefix Sums and Their Applications”

Summary

• Parallel prefix sums and scans have many applications

– A good algorithm to have in your toolkit!

• Key idea: An algorithm in 2 passes:

– Pass 1: build a "reduce tree" from the bottom up

– Pass 2: compute the prefix top-down, looking at the left-
subchild to help you compute the prefix for the right subchild

ASSIGNMENT #7:
PROGRAMMING WITH
PARALLEL SEQUENCES

21

Do the reading . . .

Chapter 2, “Search Engine Indexing”

(On reserve for this course, available
at canvas.princeton.edu,

select this course, then “reserves”)

(Read also Chapter 3, “Page Rank”
so you can appreciate what you were
doing in Assignment 5 . . .)

22

map-reduce API for Assignment 7

tabulate (f: int->α) (n: int) : α seq Create seq of length n, element i holds f(i) n 1

seq_of_array: α array -> α seq Create a sequence from an array 1 1

array_of_seq: α seq -> α array Create an array from a sequence 1 1

iter (f: α -> unit): α seq -> unit Applying f on each element in order. n n

length: α seq -> int Return the length of the sequence 1 1

empty: unit -> α seq Return the empty sequence 1 1

cons: α -> α seq -> α seq cons a new element on the beginning n 1

singleton: α -> α seq Return the sequence with a single element 1 1

append: α seq -> α seq -> α seq (nondestructively) concatenate two sequences m+n 1

nth: α seq -> int -> α Get the nth value in the sequence. Indexing is zero-based. 1 1

map (f: α -> β) -> α seq -> β seq Map the function f over a sequence n 1

reduce (f: α -> α -> α) (base: α):
 α seq -> α

Fold a function f over the sequence.
f must be associative, and base must be the unit for f.

n log n

mapreduce: (α->β)->(β->β->β)->
 β -> α seq -> β

Combine the map and reduce functions. n log n

flatten: α seq seq -> α seq flatten [[a0;a1]; [a2;a3]] = [a0;a1;a2;a3] n log n

repeat (x: α) (n: int) : α seq repeat x 4 = [x;x;x;x] n 1

zip: (α seq * β seq) -> (α * β) seq zip [a0;a1] [b0;b1;b2] = [(a0,b0);(a1,b1)] n 1

split: α seq -> int -> α seq * α seq split [a0;a1;a2;a3] 1= ([a0],[a1;a2;a3]) n 1

scan: (α->α->α) -> α ->
 α seq -> α seq

scan f b [a0;a1;a2;…] =
 [f b a0; f (f b a0) a1; f (f (f b a0) a1) a2; ...]

n log n

Work Span

23

NESL

These parallel-sequence operators are inspired by the NESL
language (and system) developed by Guy Blelloch.

http://www.cs.cmu.edu/~scandal/nesl.html

24

NESL is a parallel language developed at Carnegie Mellon. It integrates ideas from the

theory community (parallel algorithms), the languages community (functional languages)

and the systems community (many of the implementation techniques). The most important

new ideas behind NESL are

1. Nested data parallelism: this feature offers the benefits of data parallelism, concise

code that is easy to understand and debug, while being well suited for irregular

algorithms, such as algorithms on trees, graphs or sparse.

2. A language-based performance model: this gives a formal way to calculate

the work and depth of a program. These measures can be related to running time on

parallel machines.

N-Body Separators Support Tree Graph Connectivity

http://www.cs.cmu.edu/~scandal/nesl.html
http://www.cs.cmu.edu/
http://www.cs.cmu.edu/~scandal/cacm/node4.html
http://www.cs.cmu.edu/~scandal/cacm/node1.html
http://www.cs.cmu.edu/~scandal/alg/nbody.html
http://www.cs.cmu.edu/~scandal/alg/separator.html
http://www.cs.cmu.edu/~scandal/alg/stcg.html
http://www.cs.cmu.edu/~scandal/alg/connectivity.html

IMPLEMENTATION OF
 PARALLEL SEQUENCES

25

Data Centers: Lots of Connected Computers!

2 cpu chips
48 cores

Real Machines

27

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

Chip

Real Machines

28

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

Board

RAM

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU

“Disk”

Real Machines

29

Shelf

Rack
Server room

Real Machines

30

s: int seq
length(s) = 109

Real Machines

31

104

109

Real Machines

32

104

109
105 elements
per processor

tabulate (f: int->α) (n: int) : α seq Create seq of length n, element i holds f(i) n 1

length: α seq -> int Return the length of the sequence 1 1

empty: unit -> α seq Return the empty sequence 1 1

append: α seq -> α seq -> α seq (nondestructively) concatenate two sequences m+n 1

nth: α seq -> int -> α Get the nth value in the sequence. Indexing is zero-based. 1 1

map (f: α -> β) -> α seq -> β seq Map the function f over a sequence n 1

reduce (f: α -> α -> α) (base: α):
 α seq -> α

Fold a function f over the sequence.
f must be associative, and base must be the unit for f.

n log n

flatten: α seq seq -> α seq flatten [[a0;a1]; [a2;a3]] = [a0;a1;a2;a3] n log n

repeat (x: α) (n: int) : α seq repeat x 4 = [x;x;x;x] n 1

zip: (α seq * β seq) -> (α * β) seq zip [a0;a1] [b0;b1;b2] = [(a0,b0);(a1,b1)] n 1

split: α seq -> int -> α seq * α seq split [a0;a1;a2;a3] 1= ([a0],[a1;a2;a3]) n 1

scan: (α->α->α) -> α ->
 α seq -> α seq

scan f b [a0;a1;a2;…] =
 [f b a0; f (f b a0) a1; f (f (f b a0) a1) a2; ...]

n log n

Real Machines

33

Work Span

105 elements
per processor

API for Assignment 7
module type S = sig
 type 'a t
 val tabulate : (int -> 'a) -> int -> 'a t
 val seq_of_array : 'a array -> 'a t
 val array_of_seq : 'a t -> 'a array
 val iter: ('a -> unit) -> 'a t -> unit
 val length : 'a t -> int
 val empty : unit ->'a t
 val cons : 'a -> 'a t -> 'a t
 val singleton : 'a -> 'a t
 val append : 'a t -> 'a t -> 'a t
 val nth : 'a t -> int -> 'a
 val map : ('a -> 'b) -> 'a t -> 'b t
 val map_reduce : ('a -> 'b) -> ('b -> 'b -> 'b) -> 'b -> 'a t -> 'b
 val reduce : ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a
 val flatten : 'a t t -> 'a t
 val repeat : 'a -> int -> 'a t
 val zip : ('a t * 'b t) -> ('a * 'b) t
 val split : 'a t -> int -> 'a t * 'a t
 val scan: ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a t
end

module ArraySeq : S = struct
 type 'a t = 'a array
 let length = Array.length
 let empty () = Array.init 0 (fun _ -> raise (Invalid_argument ""))
 let singleton x = Array.make 1 x
 let append = Array.append
 let cons (x:'a) (s:'a t) = append (singleton x) s
 let tabulate f n = Array.init n f
 let nth = Array.get
 let map = Array.map
 . . .
end

34

Work/Span estimation
module type S = sig
 type 'a t
 val tabulate : (int -> 'a) -> int -> 'a t
 val seq_of_array : 'a array -> 'a t
 val array_of_seq : 'a t -> 'a array
 val iter: ('a -> unit) -> 'a t -> unit
 val length : 'a t -> int
 val empty : unit ->'a t
 val cons : 'a -> 'a t -> 'a t
 val singleton : 'a -> 'a t
 val append : 'a t -> 'a t -> 'a t
 val nth : 'a t -> int -> 'a
 val map : ('a -> 'b) -> 'a t -> 'b t
 val map_reduce : ('a -> 'b) -> ('b -> 'b -> 'b) -> 'b -> 'a t -> 'b
 val reduce : ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a
 val flatten : 'a t t -> 'a t
 val repeat : 'a -> int -> 'a t
 val zip : ('a t * 'b t) -> ('a * 'b) t
 val split : 'a t -> int -> 'a t * 'a t
 val scan: ('a -> 'a -> 'a) -> 'a -> 'a t -> 'a t
end

module Accounting (M: S) : SCount =
 struct
 let work = ref 0
 let span = ref 0
 let reporting name f x = …
 module SM = struct
 type 'a t = 'a M.t
 let tabulate f n = (cost n 1;
 let s = !span in
 let smax = ref s in
 let z = M.tabulate (fun x -> let y = f x in
 smax := max (!smax) (!span);
 span := s; y) n
 in span := !smax; z)
 let length a = (cost 1 1; M.length a)
 let append a b = (cost (M.length a + M.length b) 1;
 M.append a b)
 . . .
 end
 end 35

How to use it

Open Sequence
module A = Accounting(ArraySeq)
module M = A.SM

let s1 = M.seq_of_array [|1;2;3;4;5|]
let f (s: int M.seq) = M.map (fun i -> i+1) s
let s2 = A.reporting “test1” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: *)

test1 work=5 span=1

r : int list = [2;3;4;5;6]

36

let s1 = M.seq_of_array [|1;2;3;4;5|]
let f (s: int M.seq) = M.map (fun i -> i+1) s
let s2 = A.reporting “test1” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: nothing *)

r : int list = [2;3;4;5;6]

Discussion
How to use these operators to make an inverted index?

key: URL value: contents of web page (HTML)

 sequence of words

key: word value: sequence of (URL,position-in-seq) pairs

38

Discussion
How to use these operators to make an inverted index?

key: URL value: word seq

key: word value: (URL*int) seq

39

Discussion
How to use these operators to make an inverted index?

key: URL value: word seq

 (URL * (word seq)) seq

key: word value: (URL*int) seq

40

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

key: word value: (URL *int) seq

41

finite map: word→((URL*int)seq)

Implement by balanced binary search tree (such as 2-3 tree)
from OCaml’s Map library

Now, let’s focus on a single web page,
one element of this sequence of web pages

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

word ((URL*int)seq) Map.t

42

Discussion

(URL* (word seq))

word ((URL*int)seq) Map.t

43

(foo.com, [the;play;is;the;thing])

is ⟼ [(foo.com,2)]
play ⟼ [(foo.com,1)]
the ⟼ [(foo.com,0); (foo.com,3)]
thing⟼ [(foo.com,4)]

0 1 2 3 4

Discussion

44

(foo.com, [the;play;is;the;thing])

is ⟼ [(foo.com,2)]
play ⟼ [(foo.com,1)]
the ⟼ [(foo.com,0); (foo.com,3)]
thing⟼ [(foo.com,4)]

(bar.com, [play;the;thing])

play ⟼ [(bar.com,0)]
the ⟼ [(bar.com,1)]
thing⟼ [(bar.com,2)]

Discussion

45

(foo.com, [the;play;is;the;thing])

is ⟼ [(foo.com,2)]
play ⟼ [(foo.com,1)]
the ⟼ [(foo.com,0); (foo.com,3)]
thing⟼ [(foo.com,4)]

(bar.com, [play;the;thing])

play ⟼ [(bar.com,0)]
the ⟼ [(bar.com,1)]
thing⟼ [(bar.com,2)]

is ⟼ [(foo.com,2)]
play ⟼ [[(bar.com,0); (foo.com,1)]
the ⟼ [(bar.com,1); (foo.com,0); (foo.com,3)]
thing⟼ [[(bar.com,2); (foo.com,4)]

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

word ((URL*int)seq) Map.t

46

Reduce!

Discussion
How to use these operators to make an inverted index?

Input web pages: (URL* (word seq)) seq

word ((URL*int)seq) Map.t

47

Reduce!

This has been a brief introduction to give you a flavor of what you
have to do. More details in the homework . . . but not necessarily a
lot more – you’ll have to think for yourself.

And: There is not “one true solution” to this homework.

Don’t “hide” work and span!

Open Sequence
module A = Accounting(ArraySeq)
module M = A.SM

let rec costly (n: int) = if n=0 then 1 else costly (n-1) + costly (n-1)

let s1 = M.seq_of_array [|51;52;53;54;55|]
let f (s: int M.seq) = M.map costly s
let s2 = A.reporting “test2” f s1
let r = Array.to_list (M.array_of_seq s2)

(* Prints: *)

test2 work=5 span=1

r : int list = [2;3;4;5;6]

48

Ideally, each function
you write in OCaml
should do a small

amount of computation
(other than nested calls

to the M operators).

Parallel Benchmarking

The main.ml driver we provided for testing also provides support for
benchmarking your code locally. If you pass the flag -p, your code will be run
using a shared-memory parallel implementation of the Sequence module
(see SharedMemParallelS in sequence.ml).

$ dune exec main -- -p make_index time=0.379550

In case you don't have a 16-core computer handy, you can benchmark your
code on a computing cluster by including the string "#benchmark"
somewhere in inverted_index.ml that you upload to Tigerfile. Then, after a
few minutes, you’ll get an e-mail with speedup results – please paste that into
your signature.txt and discuss briefly.

https://github.com/cos326-f23/a7-starter-code

CONCLUSION

50

Summary

By using the Parallel Sequence operators to combine pure-
functional implementations of primitive functions, you can:

• Write highly parallel programs

• that scale to many processors

• with fault-tolerance built in

• that compute the same answer deterministically no matter
how the parallel execution goes

• while still thinking at a high level of abstraction, independent
of the gory details of your parallel machine.

51

	Slide 1: Parallel Prefix Scan and Assignment 7
	Slide 2: The prefix-sum problem
	Slide 3: Parallel prefix-sum
	Slide 4: Example
	Slide 5: Example
	Slide 6: The algorithm, pass 1
	Slide 7: The algorithm, pass 2
	Slide 8: Sequential cut-off
	Slide 9: Parallel prefix, generalized
	Slide 10: Parallel Scan
	Slide 11: Parallel Filter
	Slide 12: Parallel prefix to the rescue
	Slide 13: quicksort
	Slide 14: Quicksort review
	Slide 15: Quicksort
	Slide 16: Doing better
	Slide 17: Parallel partition (not in place)
	Slide 18: Example
	Slide 19: More Algorithms
	Slide 20: Summary
	Slide 21: Assignment #7: Programming with Parallel SEQUENCES
	Slide 22: Do the reading . . .
	Slide 23: map-reduce API for Assignment 7
	Slide 24: NESL
	Slide 25: implementation of parallel sequences
	Slide 26: Data Centers: Lots of Connected Computers!
	Slide 27: Real Machines
	Slide 28: Real Machines
	Slide 29: Real Machines
	Slide 30: Real Machines
	Slide 31: Real Machines
	Slide 32: Real Machines
	Slide 33: Real Machines
	Slide 34: API for Assignment 7
	Slide 35: Work/Span estimation
	Slide 36: How to use it
	Slide 38: Discussion
	Slide 39: Discussion
	Slide 40: Discussion
	Slide 41: Discussion
	Slide 42: Discussion
	Slide 43: Discussion
	Slide 44: Discussion
	Slide 45: Discussion
	Slide 46: Discussion
	Slide 47: Discussion
	Slide 48: Don’t “hide” work and span!
	Slide 49: Parallel Benchmarking
	Slide 50: Conclusion
	Slide 51: Summary

