Computability

COS 326
Andrew W. Appel
Princeton University

slides copyright 2019 Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

FUNCTIONAL PROGRAMMING AS
A MODEL OF COMPUTATION

Untyped lambda-calculus

e:= Ax.e; | x| e;e AX.e,

big-step call-by-value evaluation

Ax.e U Ax.e

el J Ax.e e2 Jv2 e[v2/x] Uv
ele2 U v

ellrecfx=e e2 Uv2 e[recfx=e/f][v2/x] U v3

ele2 U v3

means same as funx->e;

small-step general evaluation

(Ax.e1) e2 --> elle2/x]

el ->el e2 -->e2’
ele2 --> el’ e2 ele2 --> el e2’
el->el’
Ax.el --> Ax.el’

Let’s use small-step general evaluation for a while . . .

What can we program with just A ?

(a,b) (Ax.xab)

pair (Aa.Ab.Ax.xab) paira b = (a,b)
fst (Ap.p(Axy.x))
snd (Ap.p(Axy.y))

fst (pair a b)

= (Ap.p(Axy.x))((Aa.Ab.Ax.xab)ab)
--> (Ap.p(Axy.x))((Ab.Ax.xab)b)
--> (Ap.p(Axy.x))(Ax.xab)

--> (Ax.xab)(Axy.x)

--> (Axy.x)ab

--> (Ay.a)b

-->a

fst(pairab) =a
snd(pairab)=b

Booleans

Henceforth, abbreviate: Axy.E means Ax.Ay.E

true (Axy.x)
false (Axy.y)

if (Axab.xab) ftrueab

= (Axab.xab) (Axy.x) a b
--> (Aab. (Axy.x)ab) a b
--> (Ab. (Axy.x)ab) b
--> (Axy.x)ab

--> (Ay.a)b

iftrueab=a
if falseab=D>b

Lists

nil (Acn.n) nil =[]
cons (Aht.Acn.cht) cons ht=ht
match (Aacn.acn) match a ¢ n = match a with
| hiit->cht
| [1->n
(match (cons x y) with match (cons xy) fg
| consht->fht = (Aacn.acn)((Aht.Acn.cht)xy)fg
| nil -> g) --> (Aacn.acn)(Acn.cxy)fg
= fxy --> (Acn. (Acn.cxy)cn) fg
--> (An.fxy)g

--> fxy)

Lists (nil case)

nil (Acn.n) nil = []
cons (Aht.Acn.cht) consht=h:t
match (Aacn.acn) match a ¢ n = match a with
| hiit->cht
| [1->n
(match nil with match nil f g
| consht->fht = (Aacn.acn) (Acn.n) fg
| nil ->g) --> (Acn. (Acn.n) cn) fg
= 8 --> (Acn.n) fg
-->(An.n) g

->g

General inductive datatypes

typet=Aoftl |Boft2 | C|D

A Ax.Aabcd.ax
B Ay.Aabcd.by
C Aabcd.c
D Aabcd.d

match_t Auabcd.uabcd

(matchBzwithAx->ax|By->by|C->c|D->d)
= by

Integers

typeint=0 | Sof int

add = (recadd ab->matchawithO->b | Sa’->S(add a’ b))

... if only we had recursive functions!

Can we infinite loop?

e:= Ax.e; | x| e e

no recursive functions! Can we infinite-loop without loops?

Q = (Ax.xx) (Ax.xx)
(Ax.xx) (AX.xX)

--> (Ax.xx) (Ax.xx)

That doesn’t typecheck!
But who said anything about types, this is untyped lambda-calculus

Recursive functions

Y Af(AX.F(xx))(Ax.f(xx))

Yg = (Af.(Ax.f(xx))(Ax.f(xx)))g
> (Ax.g(xx))(Ax.g(xx))

> g((Ax.g(xx))(Ax.g(xx))))
= gl(Yg)

Fixed points

y=1/X

Let f(x)=1/x

Find a fixed point of f,

that is, a value z such that f(z)=z

Answer: -1

f-1) = 1/(-1)= -1

Recursive functions

Y Af(AX.F(xx))(Ax.f(xx))

Yg = (Af.(Ax.f(xx))(Ax.f(xx)))g
> (Ax.g(xx))(Ax.g(xx))

> g((Ax.g(xx))(Ax.g(xx))))
= gl(Yg)

Yg is a fixed point of g, thatis g(Yg)=Yg

Recursive add function

typeint=0 | Sof int

add = (recadd ab->matchawithO->b | Sa’->S(add a’ b))

... if only we had recursive functions!

add= (recfab->matchawithO->b |Sa’->S(fa’ b))
add = Aab.(recfa->matchawithO->b | Sa’->S(fa’))

add = Aab. Y(Af. Aa. matchawithO->b | Sa’->S(f a’))a

Theorem: for allb, add 2 b =S(S b)

add = Aab. Yf)\f. Aa. matchawithO->b | Sa’->S(f a’ b)))a

g

add (S(SO))b

= (Aab. Yga)(S(SO))b

= Yg(S(SO))

= g(Yg)(S(SO))

= match S(SO) with O ->b | Sa’ -> S(Yga’)
= 5(Yg(S0))

=S(match SO with O ->b | Sa’ -> S(Yga’))
=5(S(YgO))

=S(S(match O with O ->b | S a’ -> S(Yga’)))
=S(S b)

Theorem:add12=3

type int=0 | Sof int O=Axy.x S=An.Axy.yn

add (SO) (S(SO)) -->* S(S(S0))

--> (An.Axy.yn) ((An.Axy.yn)((An.Axy.yn)(Axy.x)))
--> (An.Axy.yn) ((An.Axy.yn)(Axy.y(Axy.x)))

--> (An.Axy.yn) (Axy.y(Axy.y(Axy.x)))

--> Axy.y(Axy.y(Axy.y(Axy.x)))

None of our small-step evaluation el o2 = ellez/
rules apply here, so this must be
the “answer,” also called the el->el’ e2 > e2’

ele2 --> el’ e2 ele2 > el e2?

“normal form” of add (SO) (S(SO)).

el->el’

It is our representation of 3 Ax.el > Ax.el’

Try it again: factorial

g = Af. An. if n=0 then 1 else n-f(n-1)
fact =Yg

fact 3 =Yg3

= g(Yg)3

= (Af. An. if n=0 then 1 else n-f(n-1)) (Yg) 3

= if 3=0 then 1 else 3-((Yg)(3-1))

= 3-(Yg2)

= 3-(g(Yg)2) =3-(if 2=0 then 1 else 2-(Yg(2-1)))
=3-(2-(Yg1)) = 3-(2-(g(Yg)1))

= 3-(2+(if 1=0 then 1 else 1-(Yg(1-1)))) = 3:(2-(1-YgO0))

= 3-(2:(1-if 0=0 then 1 else 0-(Yg(0-1)))) = 3:(2-(1-1)) = 6

Now we have everything!

tuples, Booleans, if-statements, lists, integers,
inductive data types, recursive functions . ..

We can implement a substitution-based interpreter.

[paste in lecture 6 here . ..]

type var = int

type exp

Fun of var*exp | Var of var | App of exp*exp

Models of computation

* Herbrand-Godel recursive functions (1935)
developed by Kleene from ideas by Herbrand and Goédel

e A-calculus (1935)
developed by Church with his students Rosser & Kleene

e Turing machine (1936)
developed by Turing

Models of computation

Theorem (1935, Kleene): any function you can implement in H-G recursive
functions, you can implement in A-calculus.
Proof: previous slides—all those data structures, numbers, recursion, etc.

Theorem (1935, Kleene): any function you can implement in A-calculus,
you can implement in Herbrand-Godel recursive functions.

Theorem (1936, Church): There’s a mathematical function not
implementable in A-calculus (the “halts” function).

“2| Theorem (1936, Turing,): There’s a mathematical function not imple-
~ mentable in Turing machines (the “halts” function). (pang! Church published first!)

Theorem (1936, Turing): any function you can implement in A-calculus, you
can implement in Turing machines.
Proof: Turing machine can simulate the substitution-based interpreter.

Theorem (1936, Turing): any function you can implement in Turing
machines, you can implement in A-calculus.
Proof: Program Turing-machine simulator in A-calculus.

[Models of computation

Theorem (1936, Turing): any function you can implement in A-calculus, you
can implement in Turing machines.
Proof: Turing machine can simulate the substitution-based interpreter.

Do you believe this proof?
You've seen the substitution-based interpreter in Ocaml;
could that be programmed to run on a von Neumann machine?

(There’s strong evidence for “yes”, it’s called “the OCam| compiler”)

(but a von Neumann machine is not a Turing machine, one has to
simulate a von Neumann machine on a Turing machine — not difficult.

[Models of computation

Theorem (1936, Turing): any function you can implement in Turing
machines, you can implement in A-calculus.
Proof: Program Turing-machine simulator in A-calculus.

Do you believe this proof?
Could you write a pure functional Ocaml program that simulates a Turing

machine?

(Of course you could!)

[Summary:]

Programming
Languages

Computers

4 3 ‘L_\ ;
o = ':;_' i . £

~ PR s

-'» ')5'f,
P % :
s - £5

e Uikl
¢ ! REk, ¢ 6 &

: B it

Church Kleene Turing von Neumann

Princeton, New Jersey

Models of computation

In 1950, Turing even made the far-fetched claim
that by the year 2000,
a computer might have a billion bits of memory

and might be able to simulate human conversation.

Hey ChatGPT,
what's the
"Turing Test"?

Uncomputability:
What we can’t compute

Entscheidungsproblem (1928)

Is there a mathematical function that cannot be computed
* by a Turing machine?

* by an expression in A-calculus?

* by avon Neumann machine?

* byan OCaml program?

* by any kind of mechanical process?

Answer: Yes indeed. Let's define that function
and then show that it can't be implemented

Some meta-notation

type var = int

type exp Fun of var*exp | Var of var | App of exp*exp

We want to talk about the AST of a given term:
When e is a A-expression, [e]isits representationin exp

X;] =Var i
el e2] =App |el][e2]
AXx; el] =Fun i [el]

Datatype representation

type var = int

type exp Fun of var*exp | Var of var | App of exp*exp

This data type can also be expressed in pure A-calculus:

AvAe Aabc.ave
Av Aabc.bv
App = Ae,e, Aabc.ceqe,

Fun

var

What can we compute?

type var = int

type exp

Fun of var*exp | Var of var | App of exp*exp

1. Write a A-function interp such that

For any expression e

that evaluates in A-calculus to a normal form €’,
(thatis, e-->* e’ and e’ cannot take a step)

interp [e] -->* [€]

(Yes, this is just a version of the substitution-based interpreter
from lecture 6, and homework 4)

What will interp do on infinite loops?

Suppose e never gets to a normal form, that is,
e-->e -->e” -->e” ... forever

Then

interp [e] > ...-> ...-> .. -> . -> > L

interp [e] also does not have a normal form,

that is,

interp [e] infinite loops.

What can we compute?

type var = int

type exp

Fun of var*exp | Var of var | App of exp*exp

2. Write a quoting function such that kwoht e = [e]

Impossible:

Consider el = (Ax.x)y and e2=y

kwoht el = kwoht ((Ax.x)y) = kwoht y = kwoht e2
el] =App (Fun(i,Var i) ,Var j)

e2] =Var j

el|#[e2]

What can we compute?

type var = int

type exp

Fun of var*exp | Var of var | App of exp*exp

3. Write a quoting function such that quote [e] = [[e]]

Easy:

let rec quote e =

match e with

Fun(i,el) -> App (App Fun i) (quote el)
Vari -> App Vari

App(el,e2) -> App (App App (quote el)) (quote e2)

What can we compute?

type var = int

type exp Fun of var*exp | Var of var | App of exp*exp

4. \Write a A-function halts such that

For any expression e,

if e-->*e¢e’ and e’ cannot step, then halts [e]| = true

if e infinite loops no matter which reductions you do,
then halts [e] = false

Claim: you cannot write such a function

What can we compute?

Proof by contradiction. Suppose there exists a A-expression halts
such that for any expression e,
if e-->*e’ and e’ cannot step, then halts [e]| = true
if e infinite loops no matter which reductions you do,
then halts [e] = false

Then we can write the A-expression
f = Ax. if halts (App x (quote x)) then Q else true

Now, either f[f|] halts, or it doesn’t.
f [f] = if halts (App [f] (quote [f])) then Q else true

What can we compute?

Suppose: For any expression e,
if e-->*¢e’ and e’ cannot step, then halts [e]| = true
if e infinite loops no matter which reductions you do, then halts [e] = false

Write a quoting function such that quote [e| = [[e]]
f = Ax. if halts (App x (quote x)) then Q else true

f [f] = if halts (App [f] (quote [f])) then Q else true
App [f] (quote [f]) = quote (f[f]) =[f[f]]

If f[f] halts, then f[f] doesn’t halt.
If f[f|] doesn’t halt, then f[f] halts.

But we only made one hypothetical assumption so far: that s,
one can implement a “halts” function. That leads to a contradiction.
So therefore, the “halts” function cannot be implemented.

That's what Alonzo Church proved in 1936

(with ideas from Kleene)

Curch Kleene

Princeton, New Jersey

