
A Functional Space Model

COS 326
Andrew W. Appel

Princeton University

slides copyright 2018 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

2

Space
Understanding the space complexity of functional programs

– At least two interesting components:
• the amount of live space at any instant in time
• the rate of allocation

– a function call may not change the amount of live space by
much but may allocate at a substantial rate

– because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind
» interesting fact: at the assembly level, the number of

writes by a functional program is roughly the same as the
number of writes by an imperative program

– What takes up space?
• conventional first-order data: tuples, lists, strings, datatypes
• function representations (closures)
• the call stack

3

CONVENTIONAL DATA

4

OCaml Representations for Data Structures
Type:

Representation:

type triple = int * char * int

3 'a' 17(3, 'a', 17)

OCaml Representations for Data Structures
Type:

Representation:

type mylist = int list

30

[] [3; 4; 5]

4 5 0

Type:

Representation:

Space Model

Node
0

3 left right

Leaf Node(3, left, right)

type tree = Leaf | Node of int * tree * tree

7

Node 3 left right

Actually like this in Ocaml:

Allocating space
In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

8

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

9

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

10

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t

Consider:

insert t 21

11

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

21

Consider:

insert t 21

t

12

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

15

21

Consider:

insert t 21

t

13

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

9

15

21

Consider:

insert t 21

t

14

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:

insert t 21

t

15

Allocating space
Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Total space allocated is
proportional to the
height of the tree.

~ log n, if tree with n
nodes is balanced

t

16

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

17

John McCarthy
 invented GC

 1960
(PhD Princeton 1951,

student of Alonzo Church)

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

If t is dead
(unreachable),

18

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

If t is dead (unreachable),

Then all these nodes
will be reclaimed!

19

Net space allocated
The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t

Net new space allocated:
1 node

(just like “imperative” version
 of binary search trees)

20

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

21

Net space allocated
But what if you want to keep the old tree?

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t

faddle(t)

Net new space allocated:
log(N) nodes

but note: “imperative” version
would have to copy the old tree,

space cost N new nodes!

22

Compare

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”

23

Compare

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”

allocates nothing
when arg is Some i

allocates an option
when arg is Some i

24

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

25

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

1 2

c1 c2

26

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

1 2

c1

27

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

1 2

c1

1 2

arg1

1 2

arg2

28

Compare

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

no allocation here
(1 pair allocated in cadd)

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

allocates 2 pairs here
 (unless the compiler
happens to optimize…)

29

no allocation here
(1 pair allocated in cadd)

Compare

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd c1 c1

double does not
allocate

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

extracts components: it is a read

30

FUNCTION CLOSURES

31

Closures (A reminder)
Nested functions like bar often contain free variables:

Here's bar on its own:

To implement bar, the compiler creates a closure, which is a pair of
code for the function plus an environment holding the free variables.

let foo y =
 let bar x = x + y in
 bar

32

let bar x = x + y

y is free in the
definition of bar

But what about nested, higher-order functions?
bar again:

bar's representation:

let bar x = x + y

let f2 (n, env) =
 n + env.y

{y = 1}

environmentcode

closure

33

But what about nested, higher-order functions?
To estimate the (heap) space used by a program, we often need
to estimate the (heap) space used by its closures.

Our estimate will include the cost of the pair:
• two pointers = 2 words (8 bytes each, or 4 bytes each on some machines)

• the cost of the environment (1 word in this case).
• but not: the cost of the code (because the same code is

reused in every closure of this function)

let f2 (n, env) =
 n + env.y

{y = 1}

environmentcode

34

Space Model Summary
Understanding space consumption in FP involves:

• understanding the difference between
• live space
• rate of allocation

• understanding where allocation occurs
• any time a constructor is used
• whenever closures are created

• understanding the costs of
• data types (fairly similar to Java)
• costs of closures (pair + environment)

35

WHY IT’S IMPORTANT TO PRUNE
CLOSURE ENVIRONMENTS

A remark about homework 4

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

 let f x =

 let k = List.length x in
 fun () -> k

 in

 let rec g i : (unit->int) list =

 if i=0 then [] else f (zeros n) :: g (i-1)

 in let bigdata = g n

 in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

 let f x =

 let k = List.length x in
 fun () -> k

 in

 let rec g i : (unit->int) list =

 if i=0 then [] else f (zeros n) :: g (i-1)

 in let bigdata = g n

 in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

What variables are in scope at this point ?

fun()->k

n x k
You could build a closure environment
with all the variables currently in scope.

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

 let f x =

 let k = List.length x in
 fun () -> k

 in

 let rec g i : (unit->int) list =

 if i=0 then [] else f (zeros n) :: g (i-1)

 in let bigdata = g n

 in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

fun()->k

k

What are the free variables of this function?

fun()->k

n x k

5 words of memory versus 3 words, what’s the big deal?

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

 let f x =

 let k = List.length x in
 fun () -> k

 in

 let rec g i : (unit->int) list =

 if i=0 then [] else f (zeros n) :: g (i-1)

 in let bigdata = g n

 in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Run the program to here, and what is in memory?

n

bigdata fun()->k
fun()->k

fun()->k

What variables are in scope at this point ?

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

 let f x =

 let k = List.length x in
 fun () -> k

 in

 let rec g i : (unit->int) list =

 if i=0 then [] else f (zeros n) :: g (i-1)

 in let bigdata = g n

 in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata fun()->k
fun()->k fun()->k

n x k

0 0 0

n

n closures for (fun()->k),
each is a list of length n,

total space usage n2

Pruning environments
let zeros i = if i=0 then [] else 0 :: s(i-1)

let h (n: int) : int =

 let f x =

 let k = List.length x in
 fun () -> k

 in

 let rec g i : (unit->int) list =

 if i=0 then [] else f (zeros n) :: g (i-1)

 in let bigdata = g n

 in List.fold_left (fun s u -> u()+s) 0 bigdata

let a = h 1000

bigdata fun()->k
fun()->k fun()->k

k

What are the free variables of this function?

n closures for (fun()->k),
each is just a number k,
total space usage O(n)

Therefore
Closures should represent only the free variables of a function
(not all the variables currently in scope),

otherwise the compiled program may use
asymptotically more space,

such as O(n2) instead of O(n)

