A Functional Space Model

COS 326
Andrew W. Appel
Princeton University

slides copyright 2018 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

Space

Understanding the space complexity of functional programs

— At least two interesting components:
e the amount of live space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot
» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a functional program is roughly the same as the
number of writes by an imperative program

Space

Understanding the space complexity of functional programs

— At least two interesting components:
e the amount of live space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a functional program is roughly the same as the
number of writes by an imperative program

— What takes up space?
e conventional first-order data: tuples, lists, strings, datatypes
» function representations (closures)
 the call stack

CONVENTIONAL DATA

OCaml Representations for Data Structures

Type:

type triple = int * char * int

Representation:

hN

(3,'a', 17)

OCaml Representations for Data Structures

Type:

type mylist = int list

Representation:

[] [3; 4; 5]

Space Model

Type:

type tree = Leaf | Node of int * tree * tree

Representation:

:

left

right

Leaf Node(3, left, right)
0 \
Node
N
Actually like this in Ocaml:
| Node 3 left | right }

Allocating space

In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (3j, insert left i, right)
else
Node (3j, left, insert right 1i)

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3j, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

21 e e

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

o o o o o o 15 e @

Consider:

insertt 21

15 o

21 e e

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf) Consider.
| Node (j, left, right) ->)
if 1 <= j then
Node (3j, insert left i, right) insertt 21
else
Node (j, left, insert right 1)
t
AR\
an 9
)
9 15
| \ * \

a =

o o o o o o 15 e @

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if 1 <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

Consider:

insertt 21

o o o o o o 15 e @

15 o

21 e e

Allocating space]16

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) = Tbtalsp?ce;aHocatedls
match t with proportional to the

Leaf -> Node (i, Leaf, Leaf) height ofthe tree
| Node (j, left, right) -> ’

if 1 <= j then
Node (j, insert left i, right) ~ |og n, if tree with n
else

Node (j, left, insert right i) nodes is balanced

15 o

21 e e

o o o o o o 15 e @

Net space allocated

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle (t:

insert t 21

tree)

N

John McCarthy

o o 15 e @

invented GC
1960
(PhD Princeton 1951,
student of Alonzo Church)
|
15
[J \/
21 e e

Net space allocated

]18

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle (t:

insert t 21

tree)

o o 15 e @

If t is dead
(unreachable),

21 e e

Net

space allocated

]19

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle
insert t

(t: tree) =
21

If t is dead (unreachable), }

Then all these nodes
t will be reclaimed!
\.— (\\/

21 e e

Net space allocated

]zo

The garbage collector reclaims
unreachable data structures o

the heanb.

let fiddle (t: tree) =
insert t 21

-

N

Net new space allocated:
1 node

(just like “imperative” version
of binary search trees) y

21 e e

Net space allocated

But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

faddle(t)

[/ =

21 e o

o o o o o o 15 e @

Net space allocated]22

But what if you want to keep the old tree?

let faddle (t: tree)
(t, insert t 21)

faddle(t)

/ ~~

T

/ Net new space allocated: \

_ space cost N new nodes!)

log(N) nodes

but note: “imperative” version
would have to copy the old tree,

o o 15

21 e e

Compare

let check option (o:int option)
match o with
some -> O

int option =

| None -> failwith “found none”

let check option (o:int option)
match o with
Some j -> Some

int option =

| None -> failwith “found none”

23

Compare]2“

let check option (o:int option) : int option =

match o with .
Some -> o allocates nothing

| None -> failwith “found none” when arg is Some i

let check option (o:int option) : int option =

match o with]
Some j -> Some allocates an option

| None -> failwith “found none” when arg is Some i

Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

int*int =

25

Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

cl

c?2

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

int*int =

26

Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int) : int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

let double (cl:int*int)
cadd cl cl

int*int =

let double (cl:int*int)
let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

int*int =

27

Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int) int*int =
let ¢c2 = ¢l in
cadd cl c2

let double (cl:int*int) int*int =
cadd cl cl

let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,yl)

cl argl arg2
1 1 1

28

Compare

]29

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int)
let ¢2 = ¢l in
cadd cl c2

int*int =

let double (cl:int*int)
cadd cl cl

int*int

let double
let
cadd

(cl:int*int)
(x1,yl) = cl in
(x1,y1) (x1,y1)

int*int

-

_ no allocation here

(1 pair allocated in cadd)

_ no allocation here

(1 pair allocated in cadd)

_ allocates 2 pairs here

(unless the compiler
happens to optimize...)

Compare

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in

(x1+x2, yl+y2)

let double (cl:int*int) : int*int =
let (x1,yl) = cl in double does not

cadd cl cl R\\\ allocate

extracts components: it is a read

FUNCTION CLOSURES

|

Closures (A reminder)]32

Nested functions like bar often contain free variables:

let foo y =
let bar x = x + y in
bar

Here's bar on its own:

let bar x = x + y

y is free in the
definition of bar

To implement bar, the compiler creates a closure, which is a pair of
code for the function plus an environment holding the free variables.

[But what about nested, higher-order functions?]33

bar again:

let bar x = x + y

bar's representation:

/

let f2 (n, env) = =
n + env.y

=

code - environment

closure

[But what about nested, higher-order functions?]3“

To estimate the (heap) space used by a program, we often need
to estimate the (heap) space used by its closures.

N

let £2 (n, env) = {y = 1}
n + env.y

code - environment

Our estimate will include the cost of the pair:
* fwo pointers = 2 words (8 bytes each, or 4 bytes each on some machines)
* the cost of the environment (1 word in this case).

e but not: the cost of the code (because the same code is
reused in every closure of this function)

Space Model Summary

]35

Understanding space consumption in FP involves:

e understanding the difference between
* live space
* rate of allocation

* understanding where allocation occurs
e anytime a constructor is used
* whenever closures are created

e understanding the costs of

» data types (fairly similar to Java)
» costs of closures (pair + environment)

WHY IT’S IMPORTANT TO PRUNE
CLOSURE ENVIRONMENTS

Pruning environments

let zeros 1 = 1f 1=0 then [] else 0 :: s(i-1)
let h (n: int) : int =
let £ x =
let k = List.length x in
fun () -> k
in
let rec g 1 : (unit->int) list =
1f 1=0 then [] else f (zeros n) :: g (1-1)

in let bigdata = g n
in List.fold left (fun s u -> u()+s) 0 bigdata

let a = h 1000

Pruning environments

let zeros 1 = 1f 1=0 then [] else 0 :: s(i-1)
let h int) : int =
let £ =
let (k)= List.length x in
[fun ek] What variables are in scope at this point ?
in
let rec g 1 : (unit->int) list =
1f 1=0 then [] else f (zeros n) :: g (1-1)

in let bigdata = g n
in List.fold left (fun s u -> u()+s) 0 bigdata

let a = h 1000

You could build a closure environment
\ with all the variables currently in scope.

v
>
x
~

Pruning environments

let zeros 1 = 1f 1=0 then [] else 0 :: s(i-1)
let h (n: int) : int =
let £ x =
let k = List.length x in
[fun U ke] What are the free variables of this function?
in
let rec g 1 : (unit->int) list =
1f 1=0 then [] else f (zeros n) :: g (1-1)

in let bigdata = g n
in List.fold left (fun s u -> u()+s) 0 bigdata

let a = h 1000

5 words of memory versus 3 words, what’s the big deal?

v
>
x
~

i
=

Pruning environments]

let zeros 1 = 1f 1=0 then [] else 0 :: s(i-1)
let h (n: int) : int =
let £ x =
let k = List.length x in
fun () -> k
in
let rec g 1 : (unit->int) list =
1f 1=0 then [] else f (zeros n) :: g (1-1)

in let bigdata< = 9 n___Run the program to here, and what is in memory?
in List.fold left (fun s u -> u()+s) 0 bigdata

let a = h 1000

—
v
-

/ \
bigdata \ \ EO

Pruning environments

let zeros 1 = 1f 1=0 then [] else 0 :: s(i-1)
let h (n: int) : int =
let £ x =

let k = List.length x in

[fun 0 —>k] What variables are in scope at this point ?
in

let rec g 1 : (unit->int) list =

1f 1=0 then [] else f (zeros n) :: g (1-1)

in let bigdat%:= g n
in List.fold left (fun s u -> u()+s) 0 bigdata

n closures for (fun()->k),
each is a list of length n,
total space usage n?

let a = h 1000

o

e

—
v
-

/ —t » ooo \ Ol — Q| > cco
bigdata &\ \ pd

Q-
v
>
x
~

Pruning environments

let zeros 1 = 1f 1=0 then [] else 0 :: s(i-1)
let h (n: int) : int =
let £ x =

let k = List.length x in

[fun () => k] What are the free variables of this function?
in

let rec g 1 : (unit->int) list =

1f 1=0 then [] else f (zeros n) :: g (1-1)

in let bigdat%:= g n
in List.fold left (fun s u -> u()+s) 0 bigdata

n closures for (fun()->k),
let a = h 1000 each i1s just a number k,
total space usage O (n)

—T—» Q000 \

bigdata/ \}o \ \

—
v
-

Therefore

Closures should represent only the free variables of a function
(not all the variables currently in scope),

otherwise the compiled program may use

asymptotically more space,

such as O(n?) instead of O(n)

