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Last Time
Implementing an interpreter:

Components:
• Evaluator for primitive operations
• Substitution
• Recursive evaluation function for expressions
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exception UnboundVariable of variable 

let rec eval (e:exp) : exp = 
  match e with 
  | Int_e i -> Int_e i
  | Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
  | Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
  | Var_e x -> raise (UnboundVariable x) 

Last Time:  Implementing Interpreters 3

type var = string 
type op = Plus | Minus
type exp = 
  | Int_e of int
  | Op_e  of exp * op * exp
  | Var_e of var
  | Let_e of var * exp * exp 

Represent
abstract
syntax via
data types

Evaluate
expressions



A MATHEMATICAL DEFINITION*
OF OCAML EVALUATION

* it’s a partial definition and this is a big topic; for more, see COS 510
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From Code to Abstract Specification

OCaml code can give a language semantics
– advantage:  it can be executed, so we can try it out
– advantage:  it is amazingly concise

• especially compared to what you would have written in Java
– disadvantage:  it is a little ugly to operate over concrete ML datatypes 

like “Op_e(e1,Plus,e2)” as opposed to “e1 + e2”
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– big disadvantage:   When you use language X to define the semantics 
of language Y,  you only get a precise definition of Y if you already 
fully understand the semantics of X.  So, when you use OCaml to 
define the semantics of OCaml, you get a precise definition of OCaml 
only if you already know the precise definition of OCaml.



From Code to Abstract Specification

PL researchers have developed their own standard notation for 
writing down how programs execute

– it has a mathematical “feel” that makes PL researchers feel special 
and gives us goosebumps inside

– it operates over abstract expression syntax like “e1 + e2”
– it is useful to know this notation if you want to read specifications of 

programming language semantics
• e.g.: Standard ML (of which OCaml is a descendent) has a formal 

definition given in this notation (and C, and Java; but not OCaml…)
• e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)
• Programming languages that have been formally defined this way:

– Java, Javascript, Rust, C, ML, . . .  
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Goal

Our goal is to explain how an expression e evaluates to a value v.

In other words, we want to define a mathematical relation between 
pairs of expressions and values.
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Formal Inference Rules
We define the “evaluates to” relation using a set of (inductive) rules 
that allow us to prove that a particular (expression, value) pair is 
part of the relation.

A rule looks like this:

You read a rule like this:
– “if premise 1 can be proven and premise 2 can be proven and ... 

and premise n can be proven then conclusion can be proven”

Some rules have no premises
– this means their conclusions are always true
– we call such rules “axioms”

premise 1        premise 2        ...        premise 3
                         conclusion
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An example rule

e1 ⇓ v1            e2 ⇓ v2          eval_op (v1, op, v2) == v’
                                  e1 op e2 ⇓ v’

let rec eval (e:exp) : exp = 
  match e with 
  | Op_e(e1,op,e2) -> let v1 = eval e1 in
                      let v2 = eval e2 in
     let v’ = eval_op v1 op v2 in
                      v’

“If e1 evaluates to v1 
  and e2 evaluates to v2 
  and eval_op (v1, op, v2) is equal to v’
  then
  e1 op e2 evaluates to v’

As a rule:

In English:

In code:
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An example rule

i ϵ Z
  i  ⇓ i

let rec eval (e:exp) : exp = 
  match e with 
 | Int_e i -> Int_e i
 ...

“If the expression is an integer value, it evaluates to itself.”

As a rule:

In English:

In code:

asserts i is 
an integer
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An example rule concerning evaluation

e1 ⇓ v1            e2 [v1/x] ⇓ v2
             let x = e1 in e2  ⇓  v2

let rec eval (e:exp) : exp = 
  match e with 
 | Let_e(x,e1,e2) -> let v1 = eval e1 in 
    eval (substitute v1 x e2)
 ...

“If e1 evaluates to v1 (which is a value)
  and e2 with v1 substituted for x evaluates to v2
  then let x=e1 in e2 evaluates to v2.”

As a rule:

In English:

In code:
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An example rule concerning evaluation

λx.e  ⇓  λx.e

let rec eval (e:exp) : exp = 
  match e with 
 ...
 | Fun_e (x,e) -> Fun_e (x,e)
 ...

“A function value evaluates to itself.”

As a rule:

In English:

In code:

typical “lambda” notation
for a function with
argument x, body e
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An example rule concerning evaluation

e1 ⇓ λx.e           e2 ⇓ v2          e[v2/x] ⇓ v
                           e1 e2  ⇓  v

let rec eval (e:exp) : exp = 
  match e with 
 ..
| FunCall_e (e1,e2) -> 

      (match eval e1 with
       | Fun_e (x,e) -> eval (substitute (eval e2) x e)
       | ...)

...

“if e1 evaluates to a function with argument x and body e
  and e2 evaluates to a value v2
  and e with v2 substituted for x evaluates to v
  then e1 applied to e2 evaluates to v”

As a rule:

In English:

In code:
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An example rule concerning evaluation

e1⇓ rec f x = e        e2 ⇓ v        e[(rec f x = e)/f][v/x] ⇓ v2
                           e1 e2  ⇓  v2

let rec eval (e:exp) : exp = 
  match e with 
     ...
   | (Rec_e (f,x,e)) as f_val ->

     let v = eval e2 in
     eval (substitute f_val f (substitute v x e))

“uggh”

As a rule:

In English:

In code:
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Comparison:  Code vs. Rules

Almost isomorphic:
– one rule per pattern-matching clause
– recursive call to eval whenever there is a ⇓ premise in a rule
– what’s the main difference?

let rec eval (e:exp) : exp = 
  match e with 
  | Int_e i -> Int_e i

  | Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
  | Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
  | Var_e x -> raise (UnboundVariable x)

  | Fun_e (x,e) -> Fun_e (x,e)
  | FunCall_e (e1,e2) -> 
      (match eval e1 
       | Fun_e (x,e) -> eval (Let_e (x,e2,e))

       | _ -> raise TypeError)
  | LetRec_e (x,e1,e2) -> 

      (Rec_e (f,x,e)) as f_val ->

       let v = eval e2 in
       substitute f_val f (substitute v x e) e1 ⇓ rec f x = e          e2 ⇓ v2    e[rec f x = e/f][v2/x] ⇓ v3

                                   e1 e2  ⇓  v3

e1 ⇓ v1            e2 ⇓ v2          eval_op (v1, op, v2) == v
                                  e1 op e2  ⇓  v

i ϵ Z
  i  ⇓ i

e1 ⇓ v1            e2 [v1/x] ⇓ v2
             let x = e1 in e2  ⇓  v2

λx.e  ⇓  λx.e

e1 ⇓ λx.e           e2 ⇓ v2          e[v2/x] ⇓ v
                           e1 e2  ⇓  v

complete eval code: complete set of rules:
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Comparison:  Code vs. Rules

• There’s no formal rule for handling free variables
• No rule for evaluating function calls when a non-function in the caller position
• In general, no rule when further evaluation is impossible

– the rules express the legal evaluations and say nothing about what to do in error situations
– the code handles the error situations by raising exceptions
– type theorists prove that well-typed programs don’t run into undefined cases

e1 ⇓ v1            e2 ⇓ v2          eval_op (v1, op, v2) == v
                                  e1 op e2  ⇓  v

i ϵ Z
  i  ⇓ i

e1 ⇓ v1            e2 [v1/x] ⇓ v2
             let x = e1 in e2  ⇓  v2

λx.e  ⇓  λx.e

e1 ⇓ λx.e           e2 ⇓ v2          e[v2/x] ⇓ v
                           e1 e2  ⇓  v

complete eval code: complete set of rules:

e1 ⇓ rec f x = e          e2 ⇓ v2    e[rec f x = e/f][v2/x] ⇓ v3
                                   e1 e2  ⇓  v3

let rec eval (e:exp) : exp = 
  match e with 
  | Int_e i -> Int_e i

  | Op_e(e1,op,e2) -> eval_op (eval e1) op (eval e2)
  | Let_e(x,e1,e2) -> eval (substitute (eval e1) x e2)
  | Var_e x -> raise (UnboundVariable x)

  | Fun_e (x,e) -> Fun_e (x,e)
  | FunCall_e (e1,e2) -> 
      (match eval e1 
       | Fun_e (x,e) -> eval (Let_e (x,e2,e))

       | _ -> raise TypeError)
  | LetRec_e (x,e1,e2) -> 

      (Rec_e (f,x,e)) as f_val ->

       let v = eval e2 in
       eval (substitute f_val f (substitute v x e))
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Summary 17

We can reason about OCaml programs using a substitution model.
– integers, bools, strings, chars, and functions are values
– value rule: values evaluate to themselves
– let rule:  “let x = e1 in e2” : substitute e1’s value for x into e2
– fun call rule:  “(fun x -> e2) e1”: substitute e1’s value for x into e2
– rec call rule:  “(rec x = e1) e2” : like fun call rule, but also substitute 

recursive function for name of function
• To unwind:  substitute (rec x = e1) for x in e1

We can make the evaluation model precise by building an interpreter and 
using that interpreter as a specification of the language semantics.

We can also specify the evaluation model using a set of inference rules
– more on this in COS 510



Limitations 18

The substitution model is only a model.
– it does not accurately model all of OCaml’s features

• I/O, exceptions, mutation,  concurrency, …
• we can build models of these things, but they aren’t as simple.
• even substitution is tricky to formalize! 



Limitations 19

Alonzo Church, 
1903-1995

Princeton Professor, 
1929-1967

You can say that again!  
I got it wrong the first 
time I tried, in 1932.  

Fixed the bug by 1934, 
though.

The substitution model is only a model.
– it does not accurately model all of OCaml’s features

• I/O, exceptions, mutation,  concurrency, …
• we can build models of these things, but they aren’t as simple.
• even substitution is tricky to formalize! 



Limitations 20

The substitution model is only a model.
– it does not accurately model all of OCaml’s features

• I/O, exceptions, mutation,  concurrency, …
• we can build models of these things, but they aren’t as simple.
• even substitution is tricky to formalize! 

It’s useful for reasoning about correctness of algorithms.
– we can use it to formally prove that, for instance:

• map f (map g xs) == map (comp f g) xs
• proof:  by induction on the length of the list xs, using the definitions of 

the substitution model.
– we often model complicated systems (e.g., protocols) using a small 

functional language and substitution-based evaluation.

It is not useful for reasoning about execution time or space.
– more complex models needed there



Nested Evaluation, aka, “inlining” is a common compiler 
optimization.

It is also used in theorem provers to reason about equality of 
expressions.

Reasoning about Nested Evaluation 21



Reasoning about Nested Evaluation 22

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   



Reasoning about Nested Evaluation 23

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

g 10

   



Reasoning about Nested Evaluation 24

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

g 10
--> 
      let f = fun y -> y + 10 in
      let x = 3 in 
      f x
   



Reasoning about Nested Evaluation 25

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

g 10
--> 
      let f = fun y -> y + 10 in
      let x = 3 in 
      f x
--> 
      let x = 3 in
      (fun y -> y + 10) x
   



Reasoning about Nested Evaluation 26

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

g 10
--> 
      let f = fun y -> y + 10 in
      let x = 3 in 
      f x
--> 
      let x = 3 in
      (fun y -> y + 10) x
-->
     (fun y -> y + 10) 3
   



Reasoning about Nested Evaluation 27

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

g 10
--> 
      let f = fun y -> y + 10 in
      let x = 3 in 
      f x
--> 
      let x = 3 in
      (fun y -> y + 10) x
-->
     (fun y -> y + 10) 3
--> 
     (3 + 10)
--> 
     13 



Reasoning about Nested Evaluation 28

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

let g x =

  ( let x = 3 in
    f x                ) [fun y -> y + x / f ]
   

Inline



Reasoning about Nested Evaluation 29

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

let g x =

  ( let x = 3 in
    f x                ) [fun y -> y + x / f ]
   

let g x =

     let x = 3 in
    ((fun y -> y + x) x)

Inline

Substitute



Reasoning about Nested Evaluation 30

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

let g x =

  ( let x = 3 in
    f x                ) [fun y -> y + x / f ]
   

let g x =

     let x = 3 in
    ((fun y -> y + x) x)

Inline

Substitute
let g x =

     let x = 3 in
     x + xEval



Reasoning about Nested Evaluation 31

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

Inline

let g x =
     let x = 3 in
     x + x



Reasoning about Nested Evaluation 32

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

Inline

let g x =
     let x = 3 in
     x + x

g 10 -->* 13



Reasoning about Nested Evaluation 33

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

Inline

let g x =
     let x = 3 in
     x + x

g 10
-->
let x = 3 in
x + x

g 10 -->* 13



Reasoning about Nested Evaluation 34

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

Inline

let g x =
     let x = 3 in
     x + x

g 10
-->
let x = 3 in
x + x
-->
3 + 3
-->
6

g 10 -->* 13



Reasoning about Nested Evaluation 35

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

Inline

let g x =
     let x = 3 in
     x + x

g 10
-->
let x = 3 in
x + x
-->
3 + 3
-->
6

g 10 -->* 13

Our goal in inlining is to make
the computation more efficient
but to get the same answer!

The transformation is incorrect.



Reasoning about Nested Evaluation 36

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

let g x =

  ( let x = 3 in
    f x                ) [fun y -> y + x / f ]
   

let g x =

     let x = 3 in
    ((fun y -> y + x) x)

Inline

Substitute WRONG!
The x inside the function f
was “captured” by the
enclosing let.  Substitution
should be “capture-avoiding”



Solution 37

let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

let g x =

  ( let x = 3 in
    f x                ) [fun y -> y + x / f ]
   

Inline

let g x =

  ( let z = 3 in
    f z                ) [fun y -> y + x / f ]
   

alpha-convert
to avoid capture

let g x =
     let z = 3 in
     (fun y -> y + x) z



Solution:  More Generally 38

(let x = e1 in e2) [e/y]      =     let x = e1’ in e2’ 

where 
   e1’ = e1 [e/y]

   e2’ = e2            if y = x

   e2’ = e2 [e/y]  if the free variables of e do not include x
                                and if y != x

  and otherwise, choose an unused variable z and
          alpha-convert let x = ... in ... to let z = ... in ...
                                 



Solution:  More Generally 39

(let x = e1 in e2) [e/y]      =     let x = e1’ in e2’ 

where 
   e1’ = e1 [e/y]

   e2’ = e2            if y = x

   e2’ = e2 [e/y]  if the free variables of e do not include x
                                and if y != x

  and otherwise, choose an unused variable z and
          alpha-convert let x = ... in ... to let z = ... in ...
                                 



ASSIGNMENT #4
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Two Parts
Part 1:  Build your own interpreter

– More features:  booleans, pairs, lists, match
– Different model:  environment-based vs substitution-based

• The abstract syntax tree Fun_e(_,_) is no longer a value
– a Fun_e is not a result of a computation

• There is one more computation step to do:
– creation of a closure from a Fun_e expression

Part 2:  Prove facts about programs using equational reasoning
– we have already seen a bit of equational reasoning

• if e1 --> e2 then e1 == e2
– more in precept and next week
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AN ENVIRONMENT MODEL
FOR PROGRAM EXECUTION

42



Substitution
Consider the following program:

let choose (arg:bool * int * int) : int -> int =
  let (b, x, y) = arg in
  if b then
    (fun n -> n + x)
  else
    (fun n -> n + y)

choose (true, 1, 2)
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Substitution
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
  let (b, x, y) = arg in
  if b then
    (fun n -> n + x)
  else
    (fun n -> n + y)

choose (true, 1, 2)
      

choose (true, 1, 2)
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Substitution
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
  let (b, x, y) = arg in
  if b then
    (fun n -> n + x)
  else
    (fun n -> n + y)

choose (true, 1, 2)
      

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
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Substitution
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
  let (b, x, y) = arg in
  if b then
    (fun n -> n + x)
  else
    (fun n -> n + y)

choose (true, 1, 2)
      

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
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Substitution
Consider the following program:

Its execution behavior according to the substitution model:

let choose (arg:bool * int * int) : int -> int =
  let (b, x, y) = arg in
  if b then
    (fun n -> n + x)
  else
    (fun n -> n + y)

choose (true, 1, 2)
      

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
-->
    (fun n -> n + 1)
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Substitution
How much work does the interpreter have to do?

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
-->
    (fun n -> n + 1)
      

48

traverse the
entire function
body, making
a new copy with
substituted values



Substitution
How much work does the interpreter have to do?

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
-->
    (fun n -> n + 1)
      

49

traverse the
entire function
body, making
a new copy with
substituted values

traverse the
entire function
body, making
a new copy with
substituted values



Substitution
How much work does the interpreter have to do?

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
-->
    (fun n -> n + 1)
      

50

traverse the
entire function
body, making
a new copy with
substituted values

traverse the
entire function
body, making
a new copy with
substituted values



Substitution
How much work does the interpreter have to do?

choose (true, 1, 2)
-->
    let (b, x, y) = (true, 1, 2) in
    if b then (fun n -> n + x)
    else (fun n -> n + y)
-->
    if true then (fun n -> n + 1)
    else (fun n -> n + 2)
-->
    (fun n -> n + 1)
      

51

traverse the
entire function
body, making
a new copy with
substituted values

traverse the
entire function
body, making
a new copy with
substituted values

Every step takes time proportional
to the size of the program.

We had to traverse the “else” branch
of the if twice, even though we never executed it!



The Substitution Model is Expensive
The substitution model of evaluation is just a model.  It says that 
we generate new code at each step of a computation.  We don’t 
do that in reality.  Too expensive!

The substitution model is good for reasoning about the input-
output behavior of a function but doesn’t tell us much about the 
resources used along the way. 

Efficient interpreters use environments rather than substitution.

You can think of an environment as delaying substitution until it 
is needed.
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Environment Models
An environment is a key-value store where the keys are variables 
and the values are ... programming language values.

Example:

[x -> 1; b -> true; y -> 2]

53

this environment:
• binds 1 to x
• binds true to b
• binds 2 to y



Execution with Environment Models
Execution with substitution:

54

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

e1 --> e2

Form of the semantic relation:



Execution with Environment Models
Execution with substitution:

55

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

([], let x = 3 in
      let b = true in
      if b then x else 0)

e1 --> e2

Form of the semantic relation:

(env1, e1) --> (env2, e2)

Form of the semantic relation:

Execution with environments:



Execution with Environment Models
Execution with substitution:

56

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

([], let x = 3 in
      let b = true in
      if b then x else 0)
-->
([x->3], let b = true in
              if b then x else 0

Execution with environments:



Execution with Environment Models
Execution with substitution:

57

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

([], let x = 3 in
      let b = true in
      if b then x else 0)
-->
([x->3], let b = true in
              if b then x else 0
-->
([x->3;b->true], if b then x else 0)

Execution with environments:



Execution with Environment Models
Execution with substitution:

58

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

([], let x = 3 in
      let b = true in
      if b then x else 0)
-->
([x->3], let b = true in
              if b then x else 0
-->
([x->3;b->true], if b then x else 0)
-->
([x->3;b->true], if true then x else 0)

Execution with environments:



Execution with Environment Models
Execution with substitution:

59

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

([], let x = 3 in
      let b = true in
      if b then x else 0)
-->
([x->3], let b = true in
              if b then x else 0
-->
([x->3;b->true], if b then x else 0)
-->
([x->3;b->true], if true then x else 0)
-->
([x->3;b->true], x)

Execution with environments:



Execution with Environment Models
Execution with substitution:

60

let x = 3 in
let b = true in
if b then x else 0
-->
let b = true in
if b then 3 else 0
-->
if true then 3 else 0
-->
3

([], let x = 3 in
      let b = true in
      if b then x else 0)
-->
([x->3], let b = true in
              if b then x else 0
-->
([x->3;b->true], if b then x else 0)
-->
([x->3;b->true], if true then x else 0)
-->
([x->3;b->true], x)
-->
([x->3;b->true], 3)

Execution with environments:



Another Example 61

([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

-->

-->



Another Example 64

([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

([x -> 3; f -> fun y -> y + x],
  f x )

-->

-->

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

([x -> 3; f -> fun y -> y + x],
  f x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) x )

-->

-->

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

([x -> 3; f -> fun y -> y + x],
  f x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) 3 )

-->

-->

-->

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

([x -> 3; f -> fun y -> y + x],
  f x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) 3 )

([x -> 3; f -> fun y -> y + x; y -> 3],
  y + x )

-->

-->

-->

-->

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

([x -> 3; f -> fun y -> y + x],
  f x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) 3 )

([x -> 3; f -> fun y -> y + x; y -> 3],
  y + x )

([x -> 3; f -> fun y -> y + x; y -> 3],
  3 + 3 )

([x -> 3; f -> fun y -> y + x; y -> 3],
  6 )

-->

-->

-->

-->

-->

-->

-->
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let g x =
  let f = fun y -> y + x in
  let x = 3 in
  f x
   

Incorrect
Inlining

let g x =
     let x = 3 in
     x + x

g 10 -->* 6g 10 -->* 13

([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([], ...)  -->* 
([...], 6)Incorrect

Execution
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> fun y -> y + x],
  let x = 3 in
  f x )

([x -> 3; f -> fun y -> y + x],
  f x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) x )

([x -> 3; f -> fun y -> y + x],
  (fun y -> y + x) 3 )

([x -> 3; f -> fun y -> y + x; y -> 3],
  y + x )

([x -> 3; f -> fun y -> y + x; y -> 3],
  3 + 3 )

([x -> 3; f -> fun y -> y + x; y -> 3],
  6 )

-->

-->

-->

-->

-->

-->

-->



Solution

Functions must carry with them the appropriate environment

71

A closure is a pair of code and environment

In the environment model, function definitions evaluate to function closures

let f2 n = 
  n + y

{y = 1}

environmentcode

closure
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> closure [x->10] y = y + x],
  let x = 3 in
  f x )

-->

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> closure [x->10] fun y -> y = y + x],
  let x = 3 in
  f x )

([x -> 3; f -> closure [x->10] fun y -> y = y + x],],
  f x )

-->

-->

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> closure [x->10] fun y -> y = y + x],
  let x = 3 in
  f x )

([x -> 3; f -> closure [x->10] fun y -> y = y + x],],
  f x )

-->

-->

-->

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] y = y + x) x )
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> closure [x->10] y = y + x],
  let x = 3 in
  f x )

([x -> 3; f -> closure [x->10] y = y + x],],
  f x )

-->

-->

-->

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] y = y + x) x )

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] fun y -> y = y + x) 3 )

-->
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([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> closure [x->10] y = y + x],
  let x = 3 in
  f x )

([x -> 3; f -> closure [x->10] y = y + x],],
  f x )

-->

-->

-->

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] y = y + x) x )

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] y = y + x) 3 )

([x -> 10; y -> 3],
  y + x )

-->

-->

When you call a closure,
replace the current
environment with the
closure’s environment,
and bind the parameter
to the argument



Another Example 79

([], 
 (fun x ->
      let f = fun y -> y + x in
      let x = 3 in
      f x) 10 )

([x -> 10],
  let f = fun y -> y + x in
  let x = 3 in
  f x )

([x -> 10; f -> closure [x->10] y = y + x],
  let x = 3 in
  f x )

([x -> 3; f -> closure [x->10] y = y + x],],
  f x )

-->

-->

-->

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] y = y + x) x )

([x -> 3; f -> closure [x->10] y = y + x],
  (closure [x->10] y = y + x) 3 )

([x -> 10; y -> 3],
  y + x )

([x -> 10; y -> 3],
  3 + 10 )

([x -> 10; y -> 3],
  13 )

-->

-->

-->

-->



Summary:  Environment Models
In environment-based interpreter, values are drawn from an 
environment.  This is more efficient than using substitution.

To implement nested, higher-order functions, pair functions with 
the environment in play when the function is defined.

Pairs of function code & environment are called closures.

You have two weeks for assignment #4
– Recommendation:  Don't wait until next week to start!

80


