
OCaml Datatypes

COS 326
Andrew Appel

Princeton University

slides copyright 2023 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

OCaml So Far
• We have seen a number of basic types:

– int
– float
– char
– string
– bool

• We have seen a few structured types:
– pairs
– tuples
– options
– lists

• In this lecture, we will see some more general ways to define
our own new types and data structures

2

Type Abbreviations
• We have already seen some type abbreviations:

• These abbreviations can be helpful documentation:

• But they add nothing of substance to the language
– they are equal in every way to an existing type

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

3

Type Abbreviations
• We have already seen some type abbreviations:

• As far as OCaml is concerned, you could have written:

• Since the types are equal, you can substitute the definition for
the name wherever you want
– we have not added any new data structures

type point = float * float

let distance (p1:float*float)
 (p2:float*float) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

4

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

5

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

Tru and Fal are called
"constructors"

6

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want

7

Data types
• OCaml provides a general mechanism called a data type for

defining new data structures that consist of many alternatives

• Creating values:

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use constructors to create values

8

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue ->
 | Yellow ->
 | Green ->
 | Red ->

use pattern matching to
determine which color
you have; act accordingly

9

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

10

Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

Why not just use strings to represent colors instead of defining a new type?

11

Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

 oops!:

12

OCaml's datatype mechanism allow you to create types
that contain precisely the values you want!

Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

• Read as: a simple_shape is either:
– a Circle, which contains a pair of a point and float, or
– a Square, which contains a pair of a point and float

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

(x,y)
s (x,y)

r

13

Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

14

Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> 3.14 *. radius *. radius
 | Square (_, side) -> side *. side

15

Compare
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> 3.14 *. radius *. radius
 | Square (_, side) -> side *. side

type my_shape = point * float

let simple_area (s:my_shape) : float =
 (3.14 *. radius *. radius) ?? or ?? (side *. side)

16

More General Shapes

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2
v1 v3

v4v5

Polygon [v1; ...;v5] =

type point = float * float

type shape =
 Square of float
 | Ellipse of float * float
 | RtTriangle of float * float
 | Polygon of point list

s

17

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

Type abbreviations can
aid readability

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2
v1 v3

v4v5

RtTriangle [v1; ...;v5] =

s

18

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let sq : shape = Square 17.0
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they are all shapes;
they are constructed in
 different ways

Polygon builds a shape
from a list of points
(where each point is itself a pair)

Square builds a shape
from a single side

RtTriangle builds a shape
from a pair of sides

19

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

a data type also defines
a pattern for matching

20

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

Square carries a value
with type float so s is
a pattern for float values

RtTriangle carries a value
with type float * float
so (s1, s2) is a pattern
for that type

a data type also defines
a pattern for matching

21

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> ???

a data type also defines
a pattern for matching

22

Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

v2
v1 v3

v4v5
= +

23

Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area! (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

• Note: This is a beautiful inductive algorithm:
– the area of a polygon with n points is computed in terms of a

smaller polygon with only n-1 points!

v2
v1 v3

v4v5
= +

24

Computing Area

v2
v1 v3

v4v5
=

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

 = +

This pattern says the
list has at least 3 items

25

Computing Area

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =
 let a = distance p1 p2 in
 let b = distance p2 p3 in
 let c = distance p3 p1 in
 let s = 0.5 *. (a +. b +. c) in
 sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

26

INDUCTIVE DATA TYPES

27

Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right subtree

28

type key = string
type value = int

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right subtree

29

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =

30

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf ->
 | Node (k', v', left, right) ->

Again, the type definition
specifies the cases you must
consider

31

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->

32

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

33

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

34

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

Note on
memory

use

35

Inductive data types: Another Example
• Recall, we used the type "int" to represent natural numbers

– but that was kind of broken: it also contained negative numbers
– we had to use a dynamic test to guard entry to a function:

– it would be nice if there was a way to define the natural
numbers exactly, and use OCaml's type system to guarantee no
client ever attempts to double a negative number

let double (n : int) : int =
 if n < 0 then
 raise (Failure "negative input!")
 else
 double_nat n

36

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

37

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

38

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

39

Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
 match n with
 | Zero -> Zero
 | Succ m -> Succ (Succ(double_nat m))

40

Lists!
• Recall, a list is either:

– nil, or
– the cons of a head value with a tail list

• We use a data type to represent this definition exactly:

type ’a list = [] | :: of ’a * ’a list

41

Summary of Part I
• OCaml data types: a powerful mechanism for defining

complex data structures:
– They are precise

• contain exactly the elements you want, not more elements
– They are general

• recursive, non-recursive (mutually recursive and polymorphic)
– The type checker helps you detect errors

• missing cases in your functions

42

OCaml Datatypes Part II:
An Exercise in Type Design

43

Example Type Design
44

IBM developed GML (Generalize Markup Language) in 1969
• http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language
• Precursor to SGML, HTML and XML

:h1.Chapter 1: Introduction
:p.GML supported hierarchical containers, such as
:ol
:li.Ordered lists (like this one),
:li.Unordered lists, and
:li.Definition lists
:eol.
as well as simple structures.
:p.Markup Minimization (later generalized and
formalized in SGML), allowed the end-tags to be
omitted for the “h1” and “p” elements.

http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language

Simplified GML
45

To process a GML document, an OCaml program would:
• Read a series of characters from a text file & Parse GML structure
• Represent the information content as an OCaml data structure
• Analyze or transform the data structure
• Print/Store/Communicate results

We will focus on how to represent and transform the information
content of a GML document.

Example Type Design
46

• A GML document consists of:
– a list of elements

• An element is either:
– a word or markup applied to an element

• Markup is either:
– italicize, bold, or a font name

Example Type Design
47

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

• A GML document consists of:
– a list of elements

• An element is either:
– a word or markup applied to an element

• Markup is either:
– italicize, bold, or a font name

Example Data
48

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

let d = [Formatted (Bold,
 Formatted (Font “Arial”,
 Words [“Chapter”;“One”]));

 Words [“It”; ”was”; ”a”; ”dark”;
 ”&”; ”stormy; ”night.”; "A"];

 Formatted (Ital, Words[“shot”]);

 Words [“rang”; ”out.”]];;

Challenge
49

• Change all of the “Arial” fonts in a document to “Courier”.
• Of course, when we program functionally, we implement

change via a function that
– receives one data structure as input
– builds a new (different) data structure as an output

Challenge
50

• Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Challenge
51

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Challenge
52

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] ->
 | hd::tl ->

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Challenge
53

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique: approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] -> []
 | hd::tl -> (chfont hd)::(chfonts tl)

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element
54

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element
55

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =
 match e with
 | Words ws ->
 | Formatted(m,e) ->

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element
56

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) ->

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element
57

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element
58

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing a markup:

let chmarkup (m:markup) : markup =

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing fonts in an element
59

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing a markup:

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Summary: Changing fonts in an element
60

• Change all of the “Arial” fonts in a document to “Courier”
• Lesson: function structure follows type structure

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] -> []
 | hd::tl -> (chfont hd)::(chfonts tl)

Poor Style
61

• Consider again our definition of markup and markup change:

type markup =
 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

Poor Style
62

• What if we make a change:

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

the underscore silently catches all possible alternatives

this may not be what we want -- perhaps there is an
Arial TT font

it is better if we are alerted of all functions
whose implementation may need to change

Better Style
63

• Original code:

type markup =
 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | Ital | Bold -> m

Better Style
64

• Updated code:

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | Ital | Bold -> m

..match m with
 | Font "Arial" -> Font "Courier"
 | Ital | Bold -> m..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
TTFont _

Better Style
65

• Updated code, fixed:

• Lesson: use the type checker where possible to help you
maintain your code

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font "Arial" -> Font "Courier"
 | TTFont "Arial" -> TTFont "Courier"
 | Font s -> Font s
 | TTFont s -> TTFont s
 | Ital | Bold -> m

A couple of practice problems
66

• Write a function that gets rid of immediately redundant
markup in a document.
– Formatted(Ital, Formatted(Ital,e)) can be simplified to

Formatted(Ital,e)
– write maps and folds over markups

• Design a datatype to describe bibliography entries for
publications. Some publications are journal articles, others
are books, and others are conference papers. Journals have a
name, number and issue; books have an ISBN number; All of
these entries should have a title and author.
– design a sorting function
– design maps and folds over your bibliography entries

To Summarize
67

• Design recipe for writing OCaml code:
– write down English specifications

• try to break problem into obvious sub-problems
– write down some sample test cases
– write down the signature (types) for the code
– use the signature to guide construction of the code:

• tear apart inputs using pattern matching
– make sure to cover all of the cases! (OCaml will tell you)

• handle each case, building results using data constructor
– this is where human intelligence comes into play
– the “skeleton” given by types can almost be done

automatically!
• clean up your code

– use your sample tests (and ideally others) to ensure correctness

WHERE DID TYPE SYSTEMS COME
FROM?

68

Origins of Type Theory
69

Georg Cantor

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html

Origins of Type Theory
70

Georg Cantor

Über eine Eigenshaft des Inbegriffes
aller reellen algebraischen Zahlen. 1874

(On a Property of the System of all the
Real Algebraic Numbers)

“Considered the first purely theoretical
paper on set theory.” *

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html

Origins of Type Theory
71

Bertrand Russell

Origins of Type Theory
72

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

Bertrand Russell

Origins of Type Theory
73

Bertrand Russell

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

If we assume S is not in the set S, then
by definition, it must belong to that set.

If we assume S is in the set S, then
it contradicts the definition of S.

Russell’s paradox

Origins of Type Theory
74

Bertrand Russell

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

Russell’s solution:

Each set has a distinct type:
type 1, 2, 3, 4, 5, ...

A set of type i+1 can only have
elements of type i so it can’t
include itself.

Aside
75

Ernst Zermelo Abraham Fraenkel

Developers of Zermelo-Fraenkel set theory (1921).
An alternative solution to Russell’s paradox.

Origins of Type Theory
76

Developed the lambda calculus
(ancestor of ML / OCaml)

and "The simple theory of types"
(ancestor of ML's type system)

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

