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OCaml So Far
• We have seen a number of basic types:

– int
– float
– char
– string
– bool

• We have seen a few structured types:
– pairs
– tuples
– options
– lists

• In this lecture, we will see some more general ways to define 
our own new types and data structures
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Type Abbreviations
• We have already seen some type abbreviations:

• These abbreviations can be helpful documentation:

• But they add nothing of substance to the language
– they are equal in every way to an existing type

type point = float * float

let distance (p1:point) (p2:point) : float =
  let square x = x *. x in
  let (x1,y1) = p1 in 
  let (x2,y2) = p2 in
  sqrt (square (x2 -. x1) +. square (y2 -. y1))
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Type Abbreviations
• We have already seen some type abbreviations:

• As far as OCaml is concerned, you could have written:

• Since the types are equal, you can substitute the definition for 
the name wherever you want
– we have not added any new data structures

type point = float * float

let distance (p1:float*float) 
             (p2:float*float) : float =
  let square x = x *. x in
  let (x1,y1) = p1 in 
  let (x2,y2) = p2 in
  sqrt (square (x2 -. x1) +. square (y2 -. y1))

4



Data types
• OCaml provides a general mechanism called a data type for 

defining new data structures that consist of many alternatives 

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"
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Data types
• OCaml provides a general mechanism called a data type for 

defining new data structures that consist of many alternatives 

type my_bool = Tru | Fal

a value with type my_bool
is one of two things:
• Tru, or
• Fal

read the "|" as "or"

Tru and Fal are called
"constructors"
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Data types
• OCaml provides a general mechanism called a data type for 

defining new data structures that consist of many alternatives 

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want
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Data types
• OCaml provides a general mechanism called a data type for 

defining new data structures that consist of many alternatives 

• Creating values:

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use constructors to create values
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Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
  match c with 
  | Blue -> 
  | Yellow -> 
  | Green ->
  | Red ->

use pattern matching to
determine which color
you have; act accordingly
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Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
  match c with 
  | Blue -> print_string "blue"
  | Yellow -> print_string "yellow"
  | Green -> print_string "green"
  | Red -> print_string "red"
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Data types

• Using data type values:

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
  match c with 
  | Blue -> print_string "blue"
  | Yellow -> print_string "yellow"
  | Green -> print_string "green"
  | Red -> print_string "red"

Why not just use strings to represent colors instead of defining a new type?
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Data types

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
  match c with 
  | Blue -> print_string "blue"
  | Yellow -> print_string "yellow"
  | Red -> print_string "red"

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

   oops!:
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OCaml's datatype mechanism allow you to create types 
that contain precisely the values you want!  



Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

• Read as:  a simple_shape is either:
– a Circle, which contains a pair of a point and float, or
– a Square, which contains a pair of a point and float

type point = float * float

type simple_shape = 
  Circle of point * float
| Square of point * float

(x,y)
s (x,y)

r
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Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape = 
  Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1  : simple_shape = Circle (origin, 1.0)
let circ2  : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)
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Data Types Can Carry Additional Values
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape = 
  Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
  match s with
  | Circle (_, radius) -> 3.14 *. radius *. radius
  | Square (_, side) -> side *. side
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Compare
• Data types are more than just enumerations of constants:

type point = float * float

type simple_shape = 
  Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
  match s with
  | Circle (_, radius) -> 3.14 *. radius *. radius
  | Square (_, side) -> side *. side

type my_shape = point * float

let simple_area (s:my_shape) : float =
  (3.14 *. radius *. radius)  ?? or ??  (side *. side)
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More General Shapes

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2
v1 v3

v4v5

Polygon  [v1; ...;v5] =

type point = float * float

type shape = 
    Square of float
  | Ellipse of float * float
  | RtTriangle of float * float
  | Polygon of point list

s
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More General Shapes

type point = float * float
type radius = float
type side = float

type shape = 
    Square of side
  | Ellipse of radius * radius
  | RtTriangle of side * side
  | Polygon of point list

Type abbreviations can
aid readability

r1
r2

Square s =

Ellipse (r1, r2) =

s2
s1RtTriangle (s1, s2) =

v2
v1 v3

v4v5

RtTriangle  [v1; ...;v5] =

s
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More General Shapes

type point = float * float
type radius = float
type side = float

type shape = 
    Square of side
  | Ellipse of radius * radius
  | RtTriangle of side * side
  | Polygon of point list

let sq   : shape = Square 17.0
let ell  : shape = Ellipse (1.0, 2.0)
let rt   : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)] 

they are all shapes;
they are constructed in 
  different ways

Polygon builds a shape
from a list of points
(where each point is itself a pair)

Square builds a shape
from a single side

RtTriangle builds a shape
from a pair of sides
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More General Shapes

type point = float * float
type radius = float
type side = float

type shape = 
    Square of side
  | Ellipse of radius * radius
  | RtTriangle of side * side
  | Polygon of point list

let area (s : shape) : float = 
  match s with
  | Square s ->
  | Ellipse (r1, r2)->
  | RtTriangle (s1, s2) ->
  | Polygon ps -> 

a data type also defines
a pattern for matching
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More General Shapes

type point = float * float
type radius = float
type side = float

type shape = 
    Square of side
  | Ellipse of radius * radius
  | RtTriangle of side * side
  | Polygon of point list

let area (s : shape) : float = 
  match s with
  | Square s ->
  | Ellipse (r1, r2)->
  | RtTriangle (s1, s2) ->
  | Polygon ps -> 

Square carries a value
with type float so s is
a pattern for float values

RtTriangle carries a value
with type float * float
so (s1, s2) is a pattern
for that type

a data type also defines
a pattern for matching
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More General Shapes

type point = float * float
type radius = float
type side = float

type shape = 
    Square of side
  | Ellipse of radius * radius
  | RtTriangle of side * side
  | Polygon of point list

let area (s : shape) : float = 
  match s with
  | Square s -> s *. s
  | Ellipse (r1, r2)-> pi *. r1 *. r2
  | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
  | Polygon ps -> ???

a data type also defines
a pattern for matching
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Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area!  (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

v2
v1 v3

v4v5
= +

23



Computing Area
• How do we compute polygon area?
• For convex polygons:

– Case: the polygon has fewer than 3 points:
• it has 0 area!  (it is a line or a point or nothing at all)

– Case: the polygon has 3 or more points:
• Compute the area of the triangle formed by the first 3 vertices
• Delete the second vertex to form a new polygon
• Sum the area of the triangle and the new polygon

• Note:  This is a beautiful inductive algorithm:
– the area of a polygon with n points is computed in terms of a 

smaller polygon with only n-1 points!

v2
v1 v3

v4v5
= +
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Computing Area

v2
v1 v3

v4v5
=

let area (s : shape) : float = 
  match s with
  | Square s -> s *. s
  | Ellipse (r1, r2)-> r1 *. r2
  | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
  | Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =
  match ps with
  | p1 :: p2 :: p3 :: tail -> 
     tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
  | _ -> 0.
  

  = +

This pattern says the
list has at least 3 items
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Computing Area

let area (s : shape) : float = 
  match s with
  | Square s -> s *. s
  | Ellipse (r1, r2)-> pi *. r1 *. r2
  | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
  | Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =
  let a = distance p1 p2 in
  let b = distance p2 p3 in
  let c = distance p3 p1 in
  let s = 0.5 *. (a +. b +. c) in 
  sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =
  match ps with
  | p1 :: p2 :: p3 :: tail -> 
     tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
  | _ -> 0.
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INDUCTIVE DATA TYPES
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Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right subtree
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type key = string
type value = int

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types
• We can use data types to define inductive data
• A binary tree is:

– a Leaf containing no data
– a Node containing a key, a value, a left subtree and a right subtree
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type key = int
type value = string

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
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type key = int
type value = string

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
  match t with
  | Leaf -> 
  | Node (k', v', left, right) -> 

Again, the type definition 
specifies the cases you must
consider
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type key = int
type value = string

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
  match t with
  | Leaf -> Node (k, v, Leaf, Leaf)
  | Node (k', v', left, right) -> 
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type key = int
type value = string

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
  match t with
  | Leaf -> Node (k, v, Leaf, Leaf)
  | Node (k', v', left, right) -> 
      if k < k' then
        Node (k', v', insert left k v, right)
      else if k > k' then
        Node (k', v', left, insert right k v)
      else
        Node (k, v, left, right)
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type key = int
type value = string

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
  match t with
  | Leaf -> Node (k, v, Leaf, Leaf)
  | Node (k', v', left, right) -> 
      if k < k' then
        Node (k', v', insert left k v, right)
      else if k > k' then
        Node (k', v', left, insert right k v)
      else
        Node (k, v, left, right)
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type key = int
type value = string

type tree = 
  Leaf 
| Node of key * value * tree * tree 

Inductive data types

let rec insert (t:tree) (k:key) (v:value) : tree =
  match t with
  | Leaf -> Node (k, v, Leaf, Leaf)
  | Node (k', v', left, right) -> 
      if k < k' then
        Node (k', v', insert left k v, right)
      else if k > k' then
        Node (k', v', left, insert right k v)
      else
        Node (k, v, left, right)

Note on 
memory 

use
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Inductive data types:  Another Example
• Recall, we used the type "int" to represent natural numbers

– but that was kind of broken: it also contained negative numbers 
– we had to use a dynamic test to guard entry to a function:

– it would be nice if there was a way to define the natural 
numbers exactly, and use OCaml's type system to guarantee no 
client ever attempts to double a negative number

let double (n : int) : int =
  if n < 0 then 
    raise (Failure "negative input!")
  else 
    double_nat n
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Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:
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Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat 
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Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat 

let rec nat_to_int (n : nat) : int =
 match n with
   Zero -> 0
 | Succ n -> 1 + nat_to_int n
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Inductive data types
• Recall, a natural number n is either:

– zero, or
– m + 1

• We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat 

let rec nat_to_int (n : nat) : int =
 match n with
   Zero -> 0
 | Succ n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
  match n with
  | Zero -> Zero
  | Succ m -> Succ (Succ(double_nat m))
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Lists!
• Recall, a list is either:

– nil, or
– the cons  of a   head value with a tail  list

• We use a data type to represent this definition exactly:

type ’a list =  []  |  :: of ’a * ’a list 
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Summary of Part I
• OCaml data types: a powerful mechanism for defining 

complex data structures:
– They are precise 

• contain exactly the elements you want, not more elements
– They are general

• recursive, non-recursive (mutually recursive and polymorphic)
– The type checker helps you detect errors

• missing cases in your functions
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OCaml Datatypes Part II:
An Exercise in Type Design
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Example Type Design
44

IBM developed GML (Generalize Markup Language) in 1969
• http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language
• Precursor to SGML, HTML and XML

:h1.Chapter 1: Introduction
:p.GML supported hierarchical containers, such as
:ol
:li.Ordered lists (like this one),
:li.Unordered lists, and
:li.Definition lists
:eol.
as well as simple structures.
:p.Markup Minimization (later generalized and 
formalized in SGML), allowed the end-tags to be 
omitted for the “h1” and “p” elements.

http://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language


Simplified GML
45

To process a GML document, an OCaml program would:
• Read a series of characters from a text file & Parse GML structure
• Represent the information content as an OCaml data structure
• Analyze or transform the data structure
• Print/Store/Communicate results

We will focus on how to represent and transform the information 
content of a GML document.



Example Type Design
46

• A GML document consists of:
– a list of elements

• An element is either:
– a word or markup applied to an element

• Markup is either:
– italicize, bold, or a font name



Example Type Design
47

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 

• A GML document consists of:
– a list of elements

• An element is either:
– a word or markup applied to an element

• Markup is either:
– italicize, bold, or a font name



Example Data
48

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 

let d = [ Formatted (Bold, 
  Formatted (Font “Arial”, 
              Words [“Chapter”;“One”]));
          
          Words [“It”; ”was”; ”a”; ”dark”;
       ”&”; ”stormy; ”night.”; "A"];

     Formatted (Ital, Words[“shot”]); 

     Words [“rang”; ”out.”] ];;        
 



Challenge
49

• Change all of the “Arial” fonts in a document to “Courier”.
• Of course, when we program functionally, we implement 

change via a function that
– receives one data structure as input
– builds a new (different) data structure as an output



Challenge
50

• Change all of the “Arial” fonts in a document to “Courier”.

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Challenge
51

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique:  approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc = 

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Challenge
52

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique:  approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc = 
  match elts with
  | [] -> 
  | hd::tl -> 

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Challenge
53

• Change all of the “Arial” fonts in a document to “Courier”.

• Technique:  approach the problem top down, work on doc first:

let rec chfonts (elts:doc) : doc = 
  match elts with
  | [] -> []
  | hd::tl -> (chfont hd)::(chfonts tl)

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Changing fonts in an element
54

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt = 

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Changing fonts in an element
55

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt = 
  match e with
  | Words ws ->
  | Formatted(m,e) ->

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Changing fonts in an element
56

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt = 
  match e with
  | Words ws -> Words ws 
  | Formatted(m,e) ->

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Changing fonts in an element
57

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing the font of an element:

let rec chfont (e:elt) : elt = 
  match e with
  | Words ws -> Words ws 
  | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Changing fonts in an element
58

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing a markup:

let chmarkup (m:markup) : markup = 

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Changing fonts in an element
59

• Change all of the “Arial” fonts in a document to “Courier”.

• Next work on changing a markup:

let chmarkup (m:markup) : markup = 
  match m with
  | Font “Arial” -> Font “Courier”
  | _ -> m

 

type markup = Ital | Bold | Font of string

type elt = 
  Words of string list 
| Formatted of markup * elt 

type doc = elt list 



Summary:  Changing fonts in an element
60

• Change all of the “Arial” fonts in a document to “Courier”
• Lesson:  function structure follows type structure

let chmarkup (m:markup) : markup = 
  match m with
  | Font “Arial” -> Font “Courier”
  | _ -> m

let rec chfont (e:elt) : elt = 
  match e with
  | Words ws -> Words ws 
  | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

let rec chfonts (elts:doc) : doc = 
  match elts with
  | [] -> []
  | hd::tl -> (chfont hd)::(chfonts tl)



Poor Style
61

• Consider again our definition of markup and markup change:

type markup = 
  Ital | Bold | Font of string

let chmarkup (m:markup) : markup = 
  match m with
  | Font “Arial” -> Font “Courier”
  | _ -> m



Poor Style
62

• What if we make a change:

type markup = 
  Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup = 
  match m with
  | Font “Arial” -> Font “Courier”
  | _ -> m

the underscore silently catches all possible alternatives 

this may not be what we want -- perhaps there is an
Arial TT font

it is better if we are alerted of all functions
whose implementation may need to change



Better Style
63

• Original code:

type markup = 
  Ital | Bold | Font of string

let chmarkup (m:markup) : markup = 
  match m with
  | Font “Arial” -> Font “Courier”
  | Ital | Bold -> m



Better Style
64

• Updated code:

type markup = 
  Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup = 
  match m with
  | Font “Arial” -> Font “Courier”
  | Ital | Bold -> m

..match m with
    | Font "Arial" -> Font "Courier"
    | Ital | Bold -> m..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
TTFont _



Better Style
65

• Updated code, fixed:

• Lesson: use the type checker where possible to help you 
maintain your code

type markup = 
  Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup = 
  match m with
  | Font "Arial" -> Font "Courier"
  | TTFont "Arial" -> TTFont "Courier"
  | Font s -> Font s
  | TTFont s -> TTFont s
  | Ital | Bold -> m
  



A couple of practice problems
66

• Write a function that gets rid of immediately redundant 
markup in a document.  
– Formatted(Ital, Formatted(Ital,e)) can be simplified to  

Formatted(Ital,e)
– write maps and folds over markups

• Design a datatype to describe bibliography entries for 
publications.  Some publications are journal articles, others 
are books, and others are conference papers.  Journals have a 
name, number and issue; books have an ISBN number; All of 
these entries should have a title and author.
– design a sorting function
– design maps and folds over your bibliography entries



To Summarize
67

• Design recipe for writing OCaml code:
– write down English specifications

• try to break problem into obvious sub-problems
– write down some sample test cases
– write down the signature (types) for the code
– use the signature to guide construction of the code:

• tear apart inputs using pattern matching
– make sure to cover all of the cases!   (OCaml will tell you)

• handle each case, building results using data constructor
– this is where human intelligence comes into play
– the “skeleton” given by types can almost be done 

automatically!
• clean up your code

– use your sample tests (and ideally others) to ensure correctness



WHERE DID TYPE SYSTEMS COME 
FROM?
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Origins of Type Theory
69

Georg Cantor

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html



Origins of Type Theory
70

Georg Cantor

Über eine Eigenshaft des Inbegriffes 
aller reellen algebraischen Zahlen.  1874

(On a Property of the System of all the 
Real Algebraic Numbers)

“Considered the first purely theoretical
paper on set theory.” *

* http://www.math.ups.edu/~bryans/Current/Journal_Spring_1999/JEarly_232_S99.html



Origins of Type Theory
71

Bertrand Russell
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He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

Bertrand Russell
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Bertrand Russell

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

If we assume S is not in the set S, then 
by definition, it must belong to that set.
 
If we assume S is in the set S, then 
it contradicts the definition of S.

Russell’s paradox
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Bertrand Russell

He noticed that Cantor’s set theory
allows the definition of this set S:

{ A | A is a set and A ∉ A }

Russell’s solution:

Each set has a distinct type:
type 1, 2, 3, 4, 5, ...

A set of type i+1 can only have
elements of type i so it can’t
include itself.
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Ernst Zermelo Abraham Fraenkel

Developers of Zermelo-Fraenkel set theory (1921).
An alternative solution to Russell’s paradox.
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Developed the lambda calculus
(ancestor of ML / OCaml)

and "The simple theory of types"
(ancestor of ML's type system)

Alonzo Church, 1903-1995
Princeton Professor, 1929-1967


