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A Few More Thoughts on
Types & Lists



Last Time: Java Pair Rant

Java has a paucity of types
– There is no type to describe just the pairs
– There is no type to describe just the triples
– There is no type to describe the pairs of pairs
– There is no type …

OCaml has many more types
– use option when things may be null
– do not use option when things are not null
– OCaml types describe data structures more precisely

• programmers have fewer cases to worry about
• entire classes of errors just go away
• type checking and pattern analysis help prevent programmers from 

ever forgetting about a case
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Java has a paucity of types
– There is no type to describe just the pairs
– There is no type to describe just the triples
– There is no type to describe the pairs of pairs
– There is no type …

OCaml has many more types
– use option when things may be null
– do not use option when things are not null
– OCaml types describe data structures more precisely

• programmers have fewer cases to worry about
• entire classes of errors just go away
• type checking and pattern analysis help prevent programmers from 

ever forgetting about a case

Summary of Java Pair Rant

SCORE:  OCAML 1,  JAVA 0
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C, C++  Rant

Java has a paucity of types
– but at least when you forget something,
 it  throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,
– no type-check error at compile time
– no exception at run time
– it might crash right away (that would be best), or
– it might permit a buffer-overrun (or similar) vulnerability
– so the hackers pwn you!
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Java has a paucity of types
– but at least when you forget something,
 it  throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,
– no type-check error at compile time
– no exception at run time
– it might crash right away (that would be best), or
– it might permit a buffer-overrun (or similar) vulnerability
– so the hackers pwn you!

Summary of C, C++ rant

SCORE:  
OCAML 1,  JAVA 0,  C  -1
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MORE THOUGHTS ON LISTS
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The (Single) List Programming Paradigm
• Recall that a list is either:

– [ ] (the empty list)
– v :: vs (a value v followed by a previously constructed list vs)

• Some examples:

let l0 = [];;             (* length is 0 *)
let l1 = 1::l0;;          (* length is 1 *)
let l2 = 2::l1;;          (* length is 2 *)
let l3 = 3::l2;;          (* length is 3 *)
…

8



Consider This Picture
• Consider the following picture.  How long is the linked structure?
• Can we build a value with type int list to represent it?

1

2

34

9



Consider This Picture
• How long is it?  Infinitely long?
• Can we build a value with type int list to represent it?  No!

– all values with type int list have finite length

1

2

34
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The List Type

• Is it a good thing that the type list does not contain any 
infinitely long lists?  Yes!

• A terminating list-processing scheme:

let rec f (xs : int list) : int =
  match xs with
    [] -> … do something not recursive …
  | hd::tail -> …  f tail …

terminates because f only called recursively on smaller lists
11



A Loopy Program

let rec loop (xs : int list) : int =
  match xs with
    [] -> 0
  | hd::tail -> hd + loop (0::tail)

Does this program terminate?
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A Loopy Program

Does this program terminate?  No!  Why not?  We call loop recursively on (0::tail).  
This list is the same size as the original list -- not smaller.

let rec loop (xs : int list) : int =
  match xs with
    [] -> []
  | hd::tail -> hd + loop (0::tail)
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Take-home Message

ML has a strong type system
• ML types say a lot about the set of values that inhabit them 

In this case, the tail of the list is always shorter than the whole list

This makes it easy to write functions that terminate; it would be 
harder if you had to consider more cases, such as the case that the 
tail of a list might loop back on itself.  Moreover OCaml hits you over 
the head to tell you what the only 2 cases are!

Note:  Just because the list type excludes cyclic structures does not mean that an 
ML program can't build a cyclic data structure if it wants to.  ML is better than 
other languages because it gives you control over the values you want to program 
with,  via types!  14



Rant #2: Imperative lists
• One week from today, ask yourself:  Which is easier:

– Programming with immutable lists in ML?
– Programming with pointers and mutable cells in C/Java
– I guarantee you are going to say ML

• there are so many more cases to worry about in C/Java
• so many more things that can go wrong

SCORE:  OCAML 2,  JAVA 0
       C: why bother?
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Do not believe his lies.



let  rec  xs  :  int  list  
=  0::xs



let  rec  xs  :  int  list  
=  0::xsSCORE:  OCAML 1.8,  JAVA 0

       C: why bother?



Poly-HO!

polymorphic,
higher-order
programming



Some Design & Coding Rules
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• Save some software-engineering effort:   
 Never write the same code twice.

“Ooh, I get it!  I’ll write the code once, copy-paste it somewhere 
else . . . that way, I didn’t write the same code twice”
– What’s wrong with that?

• Instead, a better practice:
– factor out the common bits into a reusable procedure.
– even better: use someone else’s (well-tested, well-documented, 

and well-maintained) procedure.

• find and fix a bug in one copy, have to fix in all of them.
• decide to change the functionality, have to track down all of the 

places where it gets used.   



Factoring Code in OCaml
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Consider these definitions:

let rec inc_all (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)



Factoring Code in OCaml
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Consider these definitions:

The code is almost identical – factor it out!

let rec inc_all (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)



Factoring Code in OCaml

23

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs

Writing little 
functions like inc 

just so we call 
map is a pain.



Factoring Code in OCaml
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A higher-order function captures the recursion pattern:

Uses of the function:

let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);;

let inc_all xs = map (fun x -> x + 1) xs

let square_all xs = map (fun y -> y * y) xs

We can use an 
anonymous 

function instead.
Originally, Alonzo 
Church wrote this 

function using      
l instead of fun:

(lx.  x+1) or 
(lx. x*x)



Another example
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let rec sum (xs:int list) : int = 
  match xs with 
  | [] -> 0
  | hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int = 
  match xs with 
  | [] -> 1
  | hd::tl -> hd * (prod tl)

Goal:  Create a function called reduce that
when supplied with a few arguments
can implement both sum and prod.
Define sum2 and prod2 using reduce.

(Try it)

Goal:  If you finish early, use 
map and reduce  together to 
find the sum of the squares of 
the elements of a list.

(Try it)



Another example
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let rec sum (xs:int list) : int = 
  match xs with 
  | [] -> b
  | hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int = 
  match xs with 
  | [] -> b
  | hd::tl -> hd * (prod tl)



Another example
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let rec sum (xs:int list) : int = 
  match xs with 
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int = 
  match xs with 
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)



Another example
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let rec sum (xs:int list) : int = 
  match xs with 
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int = 
  match xs with 
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)



A generic reducer
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let add x y = x + y 
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs 
let prod xs = reduce mul 1 xs 



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs 
let prod xs = reduce (fun x y -> x*y) 1 xs 



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs 
let prod xs = reduce (fun x y -> x*y) 1 xs 

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs 
let prod xs = reduce ( * ) 1 xs 

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs 
let prod xs = reduce (*) 1 xs 

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong



Using Anonymous Functions
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int = 
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs 
let prod xs = reduce (*) 1 xs 

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong  -- creates a comment!  ug.  OCaml -0.1

what does work is:   ( * )   



More on Anonymous Functions
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Function declarations:

are syntactic sugar for:

In other words, functions are values we can bind to a variable, 
    just like 3 or “moo” or true.  

Functions are 2nd class no more!

let square x = x*x 

let add x y = x+y 

let square = (fun x -> x*x) 

let add = (fun x y -> x+y) 



One argument, one result
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Simplifying further:

is shorthand for:

That is, add is a function which:
– when given a value x, returns a function (fun y -> x+y) which:

• when given a value y, returns x+y.

let add = (fun x y -> x+y)

let add = (fun x -> (fun y -> x+y))



Curried Functions
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curry: verb
(1) to prepare or flavor with hot-tasting spices
(2) to encode a multi-argument function using nested, higher-

order functions.

fun x -> (fun y -> x+y) (* curried *)

fun x y -> x + y  (* curried *)

fun (x,y) -> x+y  (* uncurried *)

(1)

(2)



Curried Functions
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Named after the logician Haskell B. Curry (1950s).
– was trying to find minimal logics that are powerful enough to 

encode traditional logics.
– much easier to prove something about a logic with 3 connectives 

than one with 20.  
– the ideas translate directly to math (set & category theory) as well 

as to computer science. 
– Actually, Moses Schönfinkel did some of this in 1924

• thankfully, we don't have to talk about Schönfinkelled functions

Curry Schönfinkel



What’s so good about Currying?
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In addition to simplifying the language, currying functions so that 
they only take one argument leads to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions. 



Partial Application
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Curried functions allow defs of new, partially applied functions:  

Equivalent to writing:

which is equivalent to writing:

also:

let add = (fun x -> (fun y -> x+y)) 

let inc = add 1

let inc = (fun y -> 1+y)

let inc y = 1+y

let inc2 = add 2
let inc3 = add 3



SIMPLE REASONING ABOUT 
HIGHER-ORDER FUNCTIONS



Reasoning About Definitions
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let square_all = map square 

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(square_all tl)

We can factor this program

into this program:

assuming we already have a definition of map



Reasoning About Definitions
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Goal:  Rewrite definitions so my program is simpler, easier to 
understand, more concise, … 

Question:  What are the reasoning principles for rewriting programs 
without breaking them?  For reasoning about the behavior of 
programs?  About the equivalence of  two programs?

I want some rules that never fail.

let square_all = map square

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(square_all tl)



Simple Equational Reasoning

(fun x -> ... x ...) arg ... arg ...

let f = def let f x = (def) x

chose name x wisely so it does not
shadow other names used in def

if arg is a value or, when executed,
will always terminate without effect and 
produce a value

Rewrite 2 (Substitution):

Rewrite 3 (Eta-expansion):

if f has a function type

let f x = body let f = (fun x -> body)

Rewrite 1 (Function de-sugaring):

==

==

==

roughly:  all occurrences of x replaced 
by arg (though getting this exactly
right is shockingly difficult)



Using the rules
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Let’s use these rules 
to prove that these two functions are equivalent

let square_all = map square

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(square_all tl)



Eliminating the Sugar in Map
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let rec map f xs = 
  match xs with 
  | [] -> []

  | hd::tl -> (f hd)::(map f tl)



Eliminating the Sugar in Map

51

let rec map f xs = 
  match xs with 
  | [] -> []

  | hd::tl -> (f hd)::(map f tl)

let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))



Consider square_all
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let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all =
   map square 



Substitute map definition into square_all
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let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all =
   (fun f ->

       (fun xs -> 

       match xs with
       | [] -> []
       | hd::tl -> (f hd)::(map f tl)
       )

   ) square 



Substitute map definition into square_all

54

let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all =
   (fun f ->

       (fun xs -> 

       match xs with
       | [] -> []
       | hd::tl -> (f hd)::(map f tl)
       )

   ) square 



Substitute map definition into square_all

55

let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all =
   (fun f ->

       (fun xs -> 

       match xs with
       | [] -> []
       | hd::tl -> (f hd)::(map f tl)
       )

   ) square 



Substitute Square
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let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all =
   (

       (fun xs -> 

       match xs with
       | [] -> []
       | hd::tl -> (square hd)::(map square tl)
       )

  

argument square substituted
for parameter f



Expanding map square
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let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all ys =
   

       (fun xs -> 

       match xs with
       | [] -> []
       | hd::tl -> (square hd)::(map square tl)
       ) ys

   

add argument
via eta-expansion



Expanding map square
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let rec map = 
  (fun f -> 
    (fun xs -> 
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)))

let square_all ys =
   

       

       match ys with
       | [] -> []
       | hd::tl -> (square hd)::(map square tl)
       

   

substitute again 
(argument ys for 
 parameter xs)



So Far
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let rec map f xs = 
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl)

proof by
simple
rewriting
unrolls
definition
once



Next Step
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let rec map f xs = 
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl)
;;

let rec square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(square_all tl)

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl)

proof
by
induction
eliminates
recursive
function
map

proof by
simple
rewriting
unrolls
definition
once



Summary

61

We saw this:

Is equivalent to this:

Morals of the story:
(1) OCaml’s HOT (higher-order, typed) functions capture recursion patterns
(2) we can figure out what is going on by equational reasoning.
(3) ... but we typically need to do proofs by induction to reason about recursive 
(inductive) functions

let rec map f xs = 
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl);;

let square_all = map square

let square_all ys =
  match ys with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl)



POLY-HO!



Here’s an annoying thing

63

What if I want to increment a list of floats?
Alas, I can’t just call this map.  It works on ints!

let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);;



Here’s an annoying thing

64

What if I want to increment a list of floats?
Alas, I can’t just call this map.  It works on ints!

let rec map (f:int->int) (xs:int list) : int list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);;

let rec mapfloat (f:float->float) (xs:float list) : 
           float list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(mapfloat f tl);;



Turns out
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let rec map f xs = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

let ints = map (fun x -> x + 1) [1; 2; 3; 4] 

let floats = map (fun x -> x +. 2.0) [3.1415; 2.718] 

let strings = map String.uppercase [“sarah”; “joe”] 



Type of the undecorated map?
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let rec map f xs = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list



Type of the undecorated map?
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Read as:  
• for any types 'a and 'b, 
• if you give map a function from 'a to 'b, 
• it will return a function
– which when given a list of 'a values
– returns a list of 'b values.

let rec map f xs = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
We often use 
greek letters 
like a or b to 

represent type 
variables.



We can say this explicitly
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The OCaml compiler is smart enough to figure out that this is              
the most general type that you can assign to the code. 

      (technical term:  principal type) 

We say map is polymorphic in the types 'a and 'b – just a fancy way to 
say map can be used on any types 'a and 'b. 

Java generics derived from ML-style polymorphism (but added after 
the fact and more complicated due to subtyping)

let rec map (f:'a -> 'b) (xs:'a list) : 'b list = 
  match xs with 
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list



More realistic polymorphic functions
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let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list = 
  match (xs,ys) with 
  | ([],_) -> ys

  | (_,[]) -> xs

  | (x::xst, y::yst) -> 
    if lt x y then x::(merge lt xst ys)
      else y::(merge lt xs yst) 

let rec split (xs:'a list)(ys:'a list)(zs:'a list) : 'a list * 'a list =
  match xs with 

  | [] -> (ys, zs)
  | x::rest -> split rest zs (x::ys) 

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list = 
  match xs with 
  | ([] | _::[]) -> xs

  | _ -> let (first,second) = split xs [] [] in
         merge lt (mergesort lt first) (mergesort lt second) 



More realistic polymorphic functions

70

mergesort : ('a->'a->bool) -> 'a list -> 'a list  

mergesort (<) [3;2;7;1] 

  == [1;2;3;7]

mergesort (>) [2; 3; 42] 

  == [42 ; 3; 2]

mergesort (fun x y -> String.compare x y < 0) [“Hi”; “Bi”] 
  == [“Bi”; “Hi”] 

let int_sort = mergesort (<) 
let int_sort_down = mergesort (>) 
let str_sort = mergesort (fun x y -> String.compare x y < 0)



let mystery =         fun x -> (add 1) (square x) 

Another Interesting Function

71

let comp f g x = f (g x) 

let mystery = comp (add 1) square 

let comp = fun f -> (fun g -> (fun x -> f (g x))) 

let mystery = comp (add 1) square 

let mystery = 
 (fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square 

let mystery x = add 1 (square x) 



Function composition!

72

let comp f g x = f (g x) 

let mystery = comp (add 1) square 

mystery  =  (add 1)  ◦  square

mystery(x)  =  (add 1)  (square (x))

(f◦g)(x)  =  f (g(x))



What is the type of comp?

73

comp : ('b -> 'c) -> 
       ('a -> 'b) -> 
       ('a -> 'c)

let comp f g x = f (g x) 

let comp (f: 'b->'c) (g: 'a->'b) (x: 'a) : 'c
   = f (g x) 



Optimization

74

map f (map g [x1; x2; …; xn]) 

What does this program do?

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

map f ([g x1; g x2; …; g xn]) 

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating:

[f (g x1); f (g x2); …; f (g xn)] 



Optimization

75

map f (map g   ) 

What does this program do? x1 x2 xn

fgx1 fgx2 fgxn

map f

gx1 gx2 gxn

reclaimed by
garbage collector



Optimization
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map f (map g [x1; x2; …; xn]) 

What does this program do?

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

map f ([g x1; g x2; …; g xn]) 

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating:

[f (g x1); f (g x2); …; f (g xn)] 

Is there a faster way? Yes!  (And query optimizers for SQL do it for you.)

map (comp f g) [x1; x2; ...; xn] 



Deforestation
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map f (map g [x1; x2; …; xn]) 

map (comp f g) [x1; x2; ...; xn] 

This kind of optimization has a name:

 deforestation

(because it eliminates intermediate
lists and, um, trees…)



How about reduce?

78

let rec reduce f u xs = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce f u xs = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
Based on the 
patterns, we 

know xs must be 
a ('a list) for 

some type 'a.



How about reduce?
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let rec reduce f u (xs: 'a list)  = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce f u (xs: 'a list)  = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

f is called so it 
must be a 

function of two 
arguments.



How about reduce?
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let rec reduce (f:? -> ? -> ?) u (xs: 'a list)  = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce (f:? -> ? -> ?) u (xs: 'a list)  = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

Furthermore, hd 
came from xs, so 
f must take an 'a 
value as its first 

argument.



How about reduce?
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let rec reduce (f:'a -> ? -> ?) u (xs: 'a list)  = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce (f:'a -> ? -> ?) u (xs: 'a list)  = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The second 
argument to f 
must have the 

same type as the 
result of reduce.  

Let’s call it 'b.



How about reduce?
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let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The result of f 
must have the 

same type as the 
result of reduce 

overall: 'b.



How about reduce?
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let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

If xs is empty, 
then reduce 

returns u.  So u’s 
type must be 'b.



How about reduce?
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let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

reduce returns 
the result of f.  So 

f’s result type 
must be 'b.



How about reduce?
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let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?



How about reduce?
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let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b = 
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

 ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b 



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs = 
  match xs with
  | [] -> 0
  | hd::tl -> 
     (fun x y -> 1+y) hd (reduce (fun ...) 0 tl)



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs = 
  match xs with
  | [] -> 0
  | hd::tl -> 
     (fun x y -> 1+y) hd (reduce (fun ...) 0 tl)



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs = 
  match xs with
  | [] -> 0
  | hd::tl -> 
     (fun y -> 1+y) (reduce (fun ...) 0 tl)



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs = 
  match xs with
  | [] -> 0
  | hd::tl -> 1 + reduce (fun ...) 0 tl



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs = 
  match xs with
  | [] -> 0
  | hd::tl -> 1 + mystery0 tl



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs = 
  match xs with
  | [] -> 0
  | hd::tl -> 1 + mystery0 tl  List Length!



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;

let mystery1 = reduce (fun x y -> x::y) []



What does this do?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery1 = reduce (fun x y -> x::y) []

let rec mystery1 xs = 
  match xs with
  | [] -> []
  | hd::tl -> hd::(mystery1 tl)  Copy!



And this one?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery2 g = 
   reduce (fun a b -> (g a)::b) []



And this one?
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let rec reduce f u xs =
 match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery2 g = 
   reduce (fun a b -> (g a)::b) []

let rec mystery2 g xs = 
  match xs with
  | [] -> []
  | hd::tl -> (g hd)::(mystery2 g tl) map! 



Map and Reduce

We coded map in terms of reduce:
• ie: we showed we can compute map f xs using a call to   

reduce ? ? ? just by passing the right arguments in place of ? ? ?

Can we code reduce in terms of map?

val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b ->  'a list -> 'b



Map and Reduce

let reduce f u xs  =   … map (…)  (…) …
    (use only:   map, f, u, xs;  don’t use  rec   )

val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b ->  'a list -> 'b

reduce (+) 0 [1;2;3] =  … map  (…) (…) …



Some Other Combinators:  List Module

val iter : ('a -> unit) -> 'a list -> unit

List.iter f [a0; ...; an] == f a0; … ; f an

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list

List.mapi f [a0; ...; an] == [f 0 a0; … ; f n an]

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list

List.map2 f [a0; ...; an] [b0; ...; bn] == [f a0 b0 ; … ; f an bn]

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html


Summary

107

• Map and reduce are two higher-order functions that capture 
very, very common recursion patterns

• Reduce is especially powerful:
– related to the “visitor pattern” of OO languages like Java.
– can implement most list-processing functions using it, including 

things like copy, append, filter, reverse, map, etc.

• We can write clear, terse, reusable code by exploiting:
– higher-order functions
– anonymous functions
– first-class functions
– polymorphism



Practice Problems
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Using map, write a function that takes a list of pairs of integers, and produces 
a list of the sums of the pairs.  

– e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
– Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces 
their quotient if it exists.

– e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
– Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters 
out all of the None’s.

– e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
– Why can’t we directly use filter?  How would you generalize filter so that 

you can compute filter_none?  Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of 
numbers.

– e.g., sum_squares = [3,5,2] = 38


