Poly-HO

(Polymorphic, Higher-Order Programming)

COS 326
Andrew Appel
Princeton University

A Few More Thoughts on Types & Lists

Last Time: Java Pair Rant

Java has a paucity of types

- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs
- There is no type ...

OCaml has many more types

- use option when things may be null
- do not use option when things are not null
- OCaml types describe data structures more precisely
 - programmers have fewer cases to worry about
 - entire classes of errors just go away
 - type checking and pattern analysis help prevent programmers from ever forgetting about a case

Summary of Java Pair Rant

Java has a paucity of types

- There is no type to describe j the pairs
- There is n type to describe
- There is no hoscrib
- There is no t

OCan

SCORE: OCAML 1, JAVA 0

• type cheer for analyst help prevent programmers from ever for a gabout a case

C, C++ Rant

Java has a paucity of types

but at least when you forget something,

it throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,

- no type-check error at compile time
- no exception at run time
- it might crash right away (that would be best), or
- it might permit a buffer-overrun (or similar) vulnerability
- so the hackers pwn you!

Summary of C, C++ rant

MORE THOUGHTS ON LISTS

The (Single) List Programming Paradigm

Recall that a list is either:

```
(the empty list)
v:: vs (a value v followed by a previously constructed list vs)
```

Some examples:

Consider This Picture

- Consider the following picture. How long is the linked structure?
- Can we build a value with type int list to represent it?

Consider This Picture

- How long is it? Infinitely long?
- Can we build a value with type int list to represent it? No!
 - all values with type int list have finite length

The List Type

- Is it a good thing that the type list does not contain any infinitely long lists? Yes!
- A terminating list-processing scheme:

```
let rec f (xs : int list) : int =
  match xs with
  [] -> ... do something not recursive ...
  | hd::tail -> ... f tail ...
```

terminates because f only called recursively on smaller lists

A Loopy Program

```
let rec loop (xs : int list) : int =
  match xs with
  [] -> 0
  | hd::tail -> hd + loop (0::tail)
```

Does this program terminate?

A Loopy Program

```
let rec loop (xs : int list) : int =
  match xs with
  [] -> []
  | hd::tail -> hd + loop (0::tail)
```

Does this program terminate? No! Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.

Take-home Message

ML has a strong type system

ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is *always* shorter than the whole list

This makes it easy to write functions that terminate; it would be harder if you had to consider more cases, such as the case that the tail of a list might loop back on itself. Moreover OCaml hits you over the head to tell you what the only 2 cases are!

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. *ML is better than other languages* because it gives you *control* over the values you want to program with, via types!

Rant #2: Imperative lists

- One week from today, ask yourself: Which is easier:
 - Programming with immutable lists in ML?
 - Programming with pointers and mutable in C/Java
 - I guarantee you are going
 - there a py mor
 - so many

SCORE: OCAML 2, JAVA 0

C: why bother?

Do not believe his lies.

Poly-HO!

polymorphic, higher-order programming

Some Design & Coding Rules

Save some software-engineering effort:
 Never write the same code twice.

"Ooh, I get it! I'll write the code once, copy-paste it somewhere else . . . that way, I didn't write the same code twice"

- What's wrong with that?
 - find and fix a bug in one copy, have to fix in all of them.
 - decide to change the functionality, have to track down all of the places where it gets used.
- Instead, a better practice:
 - factor out the common bits into a reusable procedure.
 - even better: use someone else's (well-tested, well-documented, and well-maintained) procedure.

Consider these definitions:

```
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)
```

Consider these definitions:

```
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)
```

```
let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```

The code is almost identical – factor it out!

A *higher-order* function captures the recursion pattern:

A *higher-order* function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
   match xs with
   | [] -> []
   | hd::tl -> (f hd)::(map f tl)
```

Uses of the function:

```
let inc x = x+1
let inc_all xs = map inc xs
```

A *higher-order* function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
   match xs with
   | [] -> []
   | hd::tl -> (f hd)::(map f tl)
```

Writing little functions like inc

Uses of the function:

```
let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs
```

A higher-order function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
   match xs with
   | [] -> []
   | hd::tl -> (f hd)::(map f tl);;
```

Uses of the function:

We can use an anonymous function instead/

Originally, Alonzo
Church wrote this
function using
λ instead of **fun**:
(λx. x+1) or
(λx. x*x)

```
let square_all xs = map (fun y -> y * y) xs
```

let inc all xs = map (fun x -> x + 1) xs

```
let rec sum (xs:int list) : int =
   match xs with
   | [] -> 0
   | hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
   match xs with
   | [] -> 1
   | hd::tl -> hd * (prod tl)
```

Goal: Create a function called reduce that when supplied with a few arguments can implement both sum and prod.

Define sum2 and prod2 using reduce.

Goal: If you finish early, use map and reduce together to find the sum of the squares of the elements of a list.

(Try it)

(Try it)

```
let rec sum (xs:int list) : int =
   match xs with
   | [] -> b
   | hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
   match xs with
   | [] -> b
   | hd::tl -> hd * (prod tl)
```

```
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)
```

```
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)
```

A generic reducer

```
let add x y = x + y
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
   match xs with
   | [] -> b
   | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs
```

```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs
```

```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)
let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs
let sum of squares xs = sum (map (fun <math>x \rightarrow x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```

```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)
let sum xs = reduce (+) 0 xs
let prod xs = reduce ( * ) 1 xs
let sum of squares xs = sum (map (fun <math>x \rightarrow x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```

```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
  | | | -> b
  | hd::tl -> f hd (reduce f b tl)
let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs
let sum of squares xs = \frac{1}{2}um (map (fun x \rightarrow x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```

wrong

```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
  | | | -> b
   hd::tl -> f hd (reduce f b tl)
let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs
let sum of squares xs = \frac{1}{2}um (map (fun x \rightarrow x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
```

wrong -- creates a comment! ug. OCaml -0.1

what does work is: (*)

More on Anonymous Functions

Function declarations:

```
let square x = x*x
let add x y = x+y
```

are syntactic sugar for:

```
let square = (fun x \rightarrow x*x)
let add = (fun x y \rightarrow x+y)
```

In other words, *functions are values* we can bind to a variable, just like 3 or "moo" or true.

Functions are 2nd class no more!

One argument, one result

Simplifying further:

```
let add = (fun x y \rightarrow x+y)
```

is shorthand for:

```
let add = (fun x -> (fun y -> x+y))
```

That is, add is a function which:

- when given a value x, returns a function (fun y -> x+y) which:
 - when given a value y, returns x+y.

Curried Functions

curry: verb

- (1) to prepare or flavor with hot-tasting spices
- (2) to encode a multi-argument function using nested, higherorder functions.

(1)

fun x -> (fun y -> x+y) (* curried *)

fun x y -> x + y (* curried *)

fun (x,y) -> x+y (* uncurried *)

Curried Functions

Named after the logician Haskell B. Curry (1950s).

- was trying to find minimal logics that are powerful enough to encode traditional logics.
- much easier to prove something about a logic with 3 connectives than one with 20.
- the ideas translate directly to math (set & category theory) as well as to computer science.
- Actually, Moses Schönfinkel did some of this in 1924
 - thankfully, we don't have to talk about Schönfinkelled functions

Curry

Schönfinkel

What's so good about Currying?

In addition to simplifying the language, currying functions so that they only take one argument leads to two major wins:

- We can partially apply a function.
- 2. We can more easily *compose* functions.

Partial Application

```
let add = (fun x \rightarrow (fun y \rightarrow x+y))
```

Curried functions allow defs of new, partially applied functions:

```
let inc = add 1
```

Equivalent to writing:

```
let inc = (fun y \rightarrow 1+y)
```

which is equivalent to writing:

```
let inc y = 1+y
```

also:

```
let inc2 = add 2
let inc3 = add 3
```

SIMPLE REASONING ABOUT HIGHER-ORDER FUNCTIONS

Reasoning About Definitions

We can factor this program

into this program:

```
let square_all = map square
```

assuming we already have a definition of map

Reasoning About Definitions

```
let square_all ys =
   match ys with
   | [] -> []
   | hd::tl -> (square hd)::(square_all tl)

let square_all = map square
```

Goal: Rewrite definitions so my program is simpler, easier to understand, more concise, ...

Question: What are the reasoning principles for rewriting programs without breaking them? For reasoning about the behavior of programs? About the equivalence of two programs?

I want some *rules* that never fail.

Simple Equational Reasoning

Rewrite 1 (Function de-sugaring):

let
$$f x = body$$

let
$$f = (fun x \rightarrow body)$$

if arg is a value or, when executed,

Rewrite 2 (Substitution):

(fun x
$$\rightarrow$$
 ... x ...) arg

==

roughly: all occurrences of x replaced

by arg (though getting this *exactly*

will always terminate without effect and

Rewrite 3 (Eta-expansion):

$$let f = def$$

==

let
$$f x = (def) x$$

right is shockingly difficult)

if f has a function type

chose name x wisely so it does not shadow other names used in def

Using the rules

```
let square_all ys =
   match ys with
   | [] -> []
   | hd::tl -> (square hd)::(square_all tl)

let square_all = map square
```

Let's use these rules

to prove that these two functions are equivalent

Eliminating the Sugar in Map

Eliminating the Sugar in Map

```
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
let rec map =
  (fun f \rightarrow)
    (fun xs ->
        match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))
```

Consider square_all

Substitute map definition into square_all

```
let rec map =
  (fun f \rightarrow)
    (fun xs ->
         match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))
let square all =
   (fun f \rightarrow
        (fun xs ->
            match xs with
             | [] -> []
             | hd::tl -> (f hd)::(map f tl)
     square
```

Substitute map definition into square_all

```
let rec map =
  (fun f \rightarrow
    (fun xs ->
         match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))
let square all =
   (fun f ->
        (fun xs \rightarrow
            match xs with
             | [] -> []
             | hd::tl -> (f hd)::(map f tl)
     square
```

Substitute map definition into square_all

```
let rec map =
  (fun f \rightarrow)
    (fun xs \rightarrow
         match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))
let square all =
   (fun f ->
            match xs with
              hd::tl -> (f hd)::(map f tl)
     square
```

Substitute Square

```
let rec map =
  (fun f \rightarrow
    (fun xs ->
        match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))
                                      argument square substituted
let square all =
                                      for parameter f
        (fun xs ->
            match xs with
             | [] -> []
             | hd::tl -> (square hd)::(map square tl)
```

Expanding map square

```
let rec map =
  (fun f \rightarrow)
     (fun xs \rightarrow
         match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))
let square_all ys =
                                           add argument
                                           via eta-expansion
        (fun xs ->
            match xs with
             | [] -> []
             | hd::tl -> (square hd)::(map square tl)
```

Expanding map square

```
let rec map =
  (fun f \rightarrow
     (fun xs \rightarrow
         match xs with
          | [] -> []
          | hd::tl -> (f hd)::(map f tl)))
let square all ys =
                                           substitute again
                                           (argument ys for
                                            parameter xs)
             match ys with
             | [] -> []
             | hd::tl -> (square hd)::(map square tl)
```

So Far

proof by simple rewriting unrolls definition once

Next Step

proof by simple rewriting unrolls definition once

proof
by
induction
eliminates
recursive
function
map

Summary

We saw this:

Is equivalent to this:

Morals of the story:

- (1) OCaml's HOT (higher-order, typed) functions capture recursion patterns
- (2) we can figure out what is going on by equational reasoning.
- (3) ... but we typically need to do *proofs by induction* to reason about recursive (inductive) functions

POLY-HO!

Here's an annoying thing

```
let rec map (f:int->int) (xs:int list) : int list =
   match xs with
   | [] -> []
   | hd::tl -> (f hd)::(map f tl);;
```

What if I want to increment a list of floats?

Alas, I can't just call this map. It works on ints!

Here's an annoying thing

```
let rec map (f:int->int) (xs:int list) : int list =
   match xs with
   | [] -> []
   | hd::tl -> (f hd)::(map f tl);;
```

What if I want to increment a list of floats?

Alas, I can't just call this map. It works on ints!

```
let rec mapfloat (f:float->float) (xs:float list) :
        float list =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(mapfloat f tl);;
```

Turns out

```
let rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)

let ints = map (fun x -> x + 1) [1; 2; 3; 4]

let floats = map (fun x -> x + . 2.0) [3.1415; 2.718]

let strings = map String.uppercase ["sarah"; "joe"]
```

Type of the undecorated map?

```
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```

Type of the undecorated map?

```
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```

We often use greek letters like α or β to represent type variables.

Read as:

- for any types 'a and 'b,
- if you give map a function from 'a to 'b,
- it will return a function
 - which when given a list of 'a values
 - returns a list of 'b values.

We can say this explicitly

```
let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```

The OCaml compiler is smart enough to figure out that this is the *most general* type that you can assign to the code.

(technical term: *principal type*)

We say map is *polymorphic* in the types 'a and 'b – just a fancy way to say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added after the fact and more complicated due to subtyping)

More realistic polymorphic functions

```
let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list =
  match (xs, ys) with
  | ([], ) -> ys
  | ( ,[]) -> xs
  | (x::xst, y::yst) ->
      if lt x y then x::(merge lt xst ys)
      else v::(merge lt xs yst)
let rec split (xs:'a list) (ys:'a list) (zs:'a list) : 'a list * 'a list =
  match xs with
  | [] \rightarrow (ys, zs)
  | x::rest -> split rest zs (x::ys)
let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =
  match xs with
  | ([] | ::[]) -> xs
  -> let (first, second) = split xs [] [] in
         merge lt (mergesort lt first) (mergesort lt second)
```

More realistic polymorphic functions

```
mergesort : ('a->'a->bool) -> 'a list -> 'a list
mergesort (<) [3;2;7;1]
  == [1;2;3;7]
mergesort (>) [2; 3; 42]
  == [42; 3; 2]
mergesort (fun x y -> String.compare x y < 0) ["Hi"; "Bi"]</pre>
 == ["Bi"; "Hi"]
let int sort = mergesort (<)</pre>
let int sort down = mergesort (>)
let str sort = mergesort (fun x y -> String.compare x y < 0)</pre>
```

Another Interesting Function

```
let comp f g x = f (g x)
let mystery = comp (add 1) square
let comp = fun f \rightarrow (fun g \rightarrow (fun x \rightarrow f (g x)))
let mystery = comp (add 1) square
let mystery =
 (\text{fun f} \rightarrow (\text{fun g} \rightarrow (\text{fun x} \rightarrow \text{f (g x)}))) (add 1) square
                      fun x \rightarrow (add 1) (square x)
let mystery =
let mystery x = add 1 (square x)
```

Function composition!

```
let comp f g x = f (g x)
let mystery = comp (add 1) square
```

$$(f \circ g)(x) = f(g(x))$$

mystery =
$$(add 1) \circ square$$

$$mystery(x) = (add 1) (square (x))$$

What is the type of comp?

```
let comp f g x = f (g x)
```

Optimization

What does this program do?

```
map f (map g [x1; x2; ...; xn])
```

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

```
map f ([g x1; g x2; ...; g xn])
```

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating:

```
[f (g x1); f (g x2); ...; f (g xn)]
```

Optimization

Optimization

What does this program do?

```
map f (map g [x1; x2; ...; xn])
```

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

```
map f ([g x1; g x2; ...; g xn])
```

Then for each element of the list [g x1, g x2, g x3 ... g xn], it executes f, creating:

```
[f (g x1); f (g x2); ...; f (g xn)]
```

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)

```
map (comp f g) [x1; x2; ...; xn]
```

Deforestation

```
map f (map g [x1; x2; ...; xn])
```


This kind of optimization has a name:

deforestation

(because it eliminates intermediate lists and, um, trees...)

```
map (comp f g) [x1; x2; ...; xn]
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What's the most general

Based on the patterns, we know xs must be a ('a list) for some type 'a.

```
let rec reduce f u (xs: 'a list) =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce f u (xs: 'a list) =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What's the most general of reduce?

f is called so it must be a function of two arguments.

```
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
   match xs with
   | [] -> u
   | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
   match xs with
   | [] -> u
   | hd::tl -> f hd (reduce f u tl)
```

What's the most general type of reduce?

Furthermore, hd came from xs, so f must take an 'a value as its first argument.

```
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
   match xs with
   | [] -> u
   | hd::tl -> f hd (reduce f u tl)
```

What's the most general type of reduce?

The second argument to f must have the same type as the result of reduce.

Let's call it 'b.

```
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

What's the most general type of reduce?

The result of f must have the same type as the result of reduce overall: 'b.

```
let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

What's the most general type of reduce?

If xs is empty, then reduce returns u. So u's type must be 'b.

```
let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

What's the most general type of reduce?

reduce returns
the result of f. So
f's result type
must be 'b.

```
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

```
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

```
('a -> 'b -> 'b) -> 'a list -> 'b
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;
let mystery0 = reduce (fun x y \rightarrow 1+y) 0;;
let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl ->
     (fun x y \rightarrow 1+y) hd (reduce (fun ...) 0 tl)
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;
let mystery0 = reduce (fun x y \rightarrow 1+y) 0;;
let rec mystery0 xs =
  match xs with
  | [] -> 0
   hd::tl -
     (fun x y \rightarrow 1+y) hd (reduce (fun ...) 0 tl)
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;
let mystery0 = reduce (fun x y \rightarrow 1+y) 0;;
let rec mystery0 xs =
 match xs with
  | [] -> 0
  | hd::tl ->
     (fun y -> 1+y) (reduce (fun ...) 0 tl)
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
let mystery0 = \text{reduce} (\text{fun } x y \rightarrow 1+y) 0
let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl -> 1 + reduce (fun ...) 0 tl
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
let mystery0 = \text{reduce} (\text{fun } x y \rightarrow 1+y) 0
let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl -> 1 + mystery0 tl
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
let mystery0 = \text{reduce} (\text{fun } x y \rightarrow 1+y) 0
let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl -> 1 + mystery0 tl List Length!
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);;
let mystery1 = reduce (fun x y -> x::y) []
```

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
let mystery1 = reduce (fun x y -> x::y) []
let rec mystery1 xs =
 match xs with
  | [] -> []
  | hd::tl -> hd::(mystery1 tl) Copy!
```

And this one?

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
let mystery2 g =
   reduce (fun a b \rightarrow (g a)::b) []
```

And this one?

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
let mystery2 g =
   reduce (fun a b \rightarrow (q a)::b) []
let rec mystery2 g xs =
 match xs with
  | [] -> []
  | hd::tl -> (g hd)::(mystery2 g tl) map!
```

Map and Reduce

```
val map : ('a -> 'b) -> 'a list -> 'b list
```

```
val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b
```

We coded map in terms of reduce:

 ie: we showed we can compute map f xs using a call to reduce??? just by passing the right arguments in place of???

Can we code reduce in terms of map?

Map and Reduce

```
val map : ('a -> 'b) -> 'a list -> 'b list
```

```
val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b
```

```
let reduce f u xs = ... map (...) (...) ...
  (use only: map, f, u, xs; don't use rec )
reduce (+) 0 [1;2;3] = ... map (...) (...) ...
```

Some Other Combinators: List Module

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

```
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
```

```
val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list
List.mapi f [a0; ...; an] == [f 0 a0; ...; f n an]
```

```
val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
List.map2 f [a0; ...; an] [b0; ...; bn] == [f a0 b0; ...; f an bn]
```

```
val iter : ('a -> unit) -> 'a list -> unit
List.iter f [a0; ...; an] == f a0; ...; f an
```

Summary

- Map and reduce are two higher-order functions that capture very, very common recursion patterns
- Reduce is especially powerful:
 - related to the "visitor pattern" of OO languages like Java.
 - can implement most list-processing functions using it, including things like copy, append, filter, reverse, map, etc.
- We can write clear, terse, reusable code by exploiting:
 - higher-order functions
 - anonymous functions
 - first-class functions
 - polymorphism

Practice Problems

Using map, write a function that takes a list of pairs of integers, and produces a list of the sums of the pairs.

- e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
- Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces their quotient if it exists.

- e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
- Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters out all of the None's.

- e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
- Why can't we directly use filter? How would you generalize filter so that you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of numbers.

$$-$$
 e.g., sum_squares = [3,5,2] = 38