Thinking Inductively

COS 326
Andrew Appel
Princeton University

slides copyright 2022 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Options

Often, we either have a thing or we don’t:

17 | “hi”

Option types are used in this situation: t option

There’s one way to build a pair, but two ways to build an optional value:

* None -- when we’ve got nothing

e Somev -- when we’ve got a value v of type t

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

\‘\

deconstruct tuple

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =
let (x1,yl) = pl in
let (x2,y2) = p2 in
let xd = x2 -. x1 1in
1f xd != 0.0 then
(y2 -. yl) /. Xd%\\\\\\\\\\\\\\\\
else avoid divide by zero

???s\\\\\\\\\\\\\\\\

what can we return?

[Slope between two points

(x1, y1)

type point = float * float (x2,y2)

let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

let xd = x2 —-. x1 1n
1f xd != 0.0 then
Farare
else we need an option

299 type as the result type

[Slope between two points

(x1, y1)
b
type point = float * float (x2, y2)
let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then
Some ((y2 -. yl) /. xd)
else
None

[Slope between two points

(x1, y1)

type point = float * float

(x2, y2)

let slope (pl:point)
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then
§y2 -. yl) /. Xd}

else K\\\\\\\\\\\\\

None

\

Can have type float option

(p2:point)

Has type float

float option =

[Slope between two points

(x1, y1)

type point = float * float

(x2, y2)

let slope (pl:point)
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then
jy2 -. yl) /. Xd}

else k\\\\\\\\\\\\\

None

\

(p2:point)

Has type float

float option =

Can have type float option %ONG: Type mismatch

[Slope between two points

(x1, y1)

type point = float * float (x2, y2)
let slope (pl:point) (p2:point) float option =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then doubly WRONG:
(y2 -. yl) /. xd result does not
else Y\ match declared result
None Has type float

10

Remember the typing rule for if

if el : bool
and e2 :tand e3 : t (for some type t)
thenif el thene2elsee3:t

Returning an optional value from an if statement:

if ... then

None : t option
else

Some (...) : t option

How do we use an option?

12

slope

: point -> point -> float option

returns a float option

How do we use an option?

13

slope : point -> point -> float option

let print slope

(pl:point)

(p2:point)

: unit

How do we use an option?

14

slope : point -> point -> float option

let print slope (pl:point) (pZ2:point) : unit =
slope pl pZ2

T

returns a float option;
to print we must discover if it is
None or Some

How do we use an option?

15

slope : point -> point -> float option

let print slope (pl:point)
match slope pl p2 with

(p2:point)

unit

How do we use an option?

16

slope : point -> point -> float option

let print slope (pl:point) (pZ:point)
match slope pl p2 with
some s —>
| None ->

There are two possibilities

unit

\

Vertical bar separates possibilities

How do we use an option?

17

slope : point -> point -> float option

let print slope (pl:point) (pZ2:point) : unit =
match slope pl p2 with
some s =—>

| None —>R\\\\\\\\\\

The "Some s" pattern includes the variable s

The object between | and -> is called a pattern

How do we use an option?

18

slope : point -> point -> float option

let print slope (pl:point) (pZ2:point) : unit =
match slope pl p2 with
| Some s ->
| e —>

You can put a “|” on the first line if you want.

It is generally considered better style to do so.

How do we use an option?

19

slope : point -> point -> float option

let print slope (pl:point) (pZ2:point) : unit =
match slope pl p2 with
some s —>
print string ("Slope: "
| None ->
print string "Vertical line.\n"

A

string of float s)

Writing Functions Over Typed Data

* Steps to writing functions over typed data:

1.

SR A

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

Clean up by identifying repeated patterns

For option types:

when the input has type t option,
deconstruct with: construct with:

match .. with
| None -> .. some (...)
| Some s -> ..

when the output has type t option,

None

20

MORE PATTERN MATCHING

Recall the Distance Function

22

type point = float * float

let distance (pl:point) (p2:point) : float
let square x = x *. X 1n
let (x1,yl) = pl in
let (x2,y2) = p2 1n

sgqrt (square (x2 -. x1) +. square (y2 -.

v1l))

23

Recall the Distance Function

type point = float * float
let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sqj;/(square (x2 -. x1) +. square (y2 -. yl))

/

(x2, y2) is an example of a pattern — a pattern for tuples.
So let declarations can contain patterns just like match statements

The difference is that a match allows you to consider multiple different data shapes

Recall the Distance Function

24

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
match pl with
| (x1,yl) —>
let (x2,y2) = p2 1n
sgqrt (square (x2 -. x1) +. square (y2 -.

v1l))

There is only 1 possibility when matching a pair

Recall the Distance Function

25

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
match pl with
| (Xllyl) ->
match p2 with
| (x2,y2) ->
/‘Sqrt (square (x2 -. x1) +. square (y2 -. yl))

/

We can nest one match expression inside another.
(We can nest any expression inside any other, if the expressions have the
right types)

Better Style: Complex Patterns

we built a pair of pairs

26

type point = float * float
let distance (pl:pdint) (pZ2:point) : float =
let square x = *., X 1n
match (pl, p2) with
| ((x1,y1), (x2, y2)) ->
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

/

Pattern for a pair of pairs: ((variable, variable), (variable, variable))
All the variable names in the pattern must be different.

Better Style: Complex Patterns

we built a pair of pairs

type point = float * float
let distance (pl:pdint) (pZ2:point) : float =
let square x = *. X 1n
match (pl, p2) with
| (p3, p4) ->
let (x1, yl) = p3 1n
let (x2, y2) = p4 1in
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

/

A pattern must be consistent with the type of the expression
in between match ... with
We use (p3, p4) here instead of ((x1, y1), (x2, y2))

Pattern-matching in function parameters

28

type point = float * float

let distance ((x1,yl):point) ((x2,y2):point) : float
let square x = x *. X 1n
sgrt (square (x2 -. x1) +. square (y2 -. yl))

Function parameters are patterns too!

What’s the best style?

let distance (pl:point) (pZ2:point) : float =

29

let square x = xXx *. X 1n
let (x1,yl) = pl in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1) +. square (y2 -. yl))
let distance ((x1,yl):point) ((x2,y2):point) : float =
let square x = x *. X 1n
sgrt (square (x2 -. x1) +. square (y2 -. yl))

Either of these is reasonably clear and compact.
Code with unnecessary nested matches/lets is particularly ugly to read.
You'll be judged on code style in this class.

What’s the best style?

let distance (x1,vyl) (x2,y2) =
let square x = x *. X 1n
sgrt (square (x2 -. x1) +. square (y2 -. yl))

This is how I'd do it ... the types for tuples + the tuple patterns are a little
ugly/verbose ... but for now in class, use the explicit type annotations.
We will loosen things up later in the semester.

30

Combining patterns]

31

type point = float * float

(* returns a nearby point 1n the graph 1f one exists *)
nearby : graph -> point -> point option

let printer (g:graph) (p:polnt) : unit =
match nearby g p with
| None -> print string "could not find one\n"
| Some (x,y) —->
print float x;
print string ", ";
print float y;
print newline();

Other Patterns

Constant values can be used as patterns

let small prime (n:int) : bool =
match n with
| 2 => true
| 3 -> true
| 5 => true
| -> false

\ let iffy (b:bool) : int =

match b with
| true -> 0
| false -> 1

the underscore pattern
matches anything
it is the "don't care" pattern

INDUCTIVE THINKING

Inductive Programming

An inductive data type T is a data type defined by:

— base cases
e don'trefertoT
— inductive cases
* build new data of type T from pre-existing data of type T
* the pre-existing data is guaranteed to be smaller than the new values

34

Inductive Programming]

An inductive data type T is a data type defined by:
— base cases
e don'trefertoT
— inductive cases
* build new data of type T from pre-existing data of type T
* the pre-existing data is guaranteed to be smaller than the new values

Example: a tree
— base case:
* the leaf of the tree
— inductive case:

* the internal nodes of the tree
* the left- and right- subtrees are the “smaller” data

35

Inductive Programming

To program a function over inductive data:

— think: what does my function need to do to be correct?
— solve the programming problem for the base cases
* solve them one-by-one
— solve the programming problem for inductive cases:
* solve them one-by-one
e assume your function already works correctly on smaller data values

* call your function, when necessary, on smaller data values

36

Inductive Proving

To prove a function over inductive data is correct:
— think: what is the correctness theorem for this function?
— prove the function correct for the base cases
e prove them one-by-one
— prove the function correct for the inductive cases:

e prove them one-by-one

e assume your function already works correctly on smaller data values
* use this assumption to reason about calls over smaller data values

* this assumption is called the induction hypothesis of your proof

37

Inductive Proving

To prove a function over inductive data is correct:
— think: what is the correctness theorem for this function?
— prove the function correct for the base cases
e prove them one-by-one
— prove the function correct for the inductive cases:

e prove them one-by-one
e assume your function already works correctly on smaller data values

* use this assumption to reason about calls over smaller data values
* this assumption is called the induction hypothesis of your proof

To be a good programmer, you also need to be a good prover.

38

LISTS: AN INDUCTIVE DATA TYPE

Lists are Inductive Data

In OCaml, a list value is:

— [

— VI VS

(the empty list)
(a value v followed by a shorter list of values vs)

Inductive Case

Base Case

40

Lists are Inductive Data

In OCaml, a list value is:
[] (the empty list)
V:iVS (a value v followed by a shorter list of values vs)

An example:
— 2::3:5::[] has type int list
— isthesameas: 2::(3::(5::[]))

— "::"is called "cons"

An alternative syntax (“syntactic sugar” for lists):
— [2;3; 5]
— But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get
confused fall back on the 2 basic constructors, ::and]

41

Typing Lists

Typing rules for lists:

(1) [] may have any list type,

(2) ifel:tand e2:tlist
then (el :: e2) : t list

t list

42

Typing Lists

Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
then (el :: e2) : t list

More examples:
(1+2)::(3+4)::[] . P

(2:[]) (56 =[]) =[] :7?°

[[2]; [5; 6]] . ??

43

Typing Lists

Typing rules for lists:

(1) [] may have any list type t list

(2) ifel:tand e2:tlist
then (el :: e2) : t list

More examples:
(1+2)::(3+4)::[] :int list

(2:[]) (56 =[] =[] :intlistlist

[[2]; [5; 6]] - int list list

(Remember that the 3" example is an abbreviation for the 2"

44

Another Example

What type does this have?

[2]:[3]

45

[Another Example

What type does this have?

[2]:[3]

=

int list int list

[2] :: [31;7

Error: This expression has type int but an
expression was expected of type
int list

46

Another Example

What type does this have?

[2]:[3]

=

int list int list

Give me a simple fix that makes the expression type check?

47

Another Example

What type does this have?

[2]:[3]

—

int list int list

Give me a simple fix that makes the expression type check?
Either: 2 [3] :int list

Or: [2]:([31] . int list list

48

Analyzing Lists

Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first list element;
return None, 1f the list 1s empty *)

let head (xs : int list) : 1int option =

Analyzing Lists

Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first list element;
return None, 1f the list 1s empty *)

let head (xs : int list) : 1int option =
match xs with
| [] =>
[lael e S

we don't care about the contents of the
tail of the list so we use the underscore

50

51

Analyzing Lists]

Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, 1f v 1s the first list element;
return None, 1f the list 1s empty *)

let head (xs : int list) : 1int option =
match xs with
| [] —> None
| hd :: -> Some hd

This function isn't recursive -- we only extracted a small, fixed
amount of information from the list -- the first element

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

52

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * 1int) 1list) : int list

53

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * int) 1list) : int list

match xs with

[l =>
| (x,y) :: £l —>

54

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

<)

let rec prods (xs : (int * int) 1list) : int list

match xs with

| [] => []
| (x,y) :: £l —>

55

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

)

let rec prods (xs : (int * int) 1list) : int list

match xs with

|1 => []
| (x,y) :: tl => 272 :: 727

AN

the result type is int list, so we can speculate
that we should create a list

56

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) 1list) : int list
match xs with
| [] => []
| (x,y) ::: £l => (x * y) :: 27

AN

the first element is the product

57

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) 1list) : int list
match xs with
| [] => []
| (x,y) ::: £l => (x * y) :: 27

/

/

to complete the job, we must compute
the products for the rest of the list

58

A more interesting example

(* Given a list of pairs of integers,
produce the 1list of products of the pairs

prods [(2,3); (4,7); (5,2)] == [6; 28; 10]

*)

let rec prods (xs : (int * int) 1list) : int list
match xs with
[l => 1]

| (x,y) :: tl -> (x * y) :: prods tl

59

Three Parts to Constructing a Function

(1) Think about how to break down the input into cases:

let rec prods (xs : (int*int) 1list) : 1nt list =
match xs with

| (x,y) :: tl ->

(2) Assume the recursive call on smaller data is correct.

(3) Use the result of the recursive call to build correct answer.

let rec prods (xs : (int*int) 1list) : 1nt list =

| (x,y) :: tl -> ... prods tl ...

60

Another example: zip

(* Given two lists of integers,
return None 1f the lists are different lengths
otherwise stitch the lists together to create
Some of a list of pairs

zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10, 11, 12] == None

(Give it a try.)

Another example: zip

let rec zip (xs :

(int * 1int)

int list)
list option

(ys :

int list)

62

Another example:

Zip

let rec zip (xs : 1nt 1list) (ys :

(Int * int) list option =

match (xs, ys) with

int list)

63

Another example:

Zip

let rec zip (xs : 1nt 1list) (ys :

(Int * int) list option =

match (xs, ys) with
L1, [1) >

| (L], y::ys') —->

| (x::xs', []) —->

| (x::xs', y::ys') —->

int list)

64

Another example: zip

let rec zip

(xs

(int * 1int)

match (xs,

L, I1)

ys)
—>

[1, y::ys')

|
| (x::xs',
|

[1)

int list)
list option

with
Some []
->

->

x::xs', yr:ys') ->

(ys

int list)

65

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| ([], []) —> Some []

| ([], y::ys') —> None
| (x::xs', []) —-> None
| (

x::xs', yr:ys') ->

66

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []

| ([], y::ys') —-> None

| (x::xs', []) —-> None

| (x::xs8', y::ys') -> (x, y) :: zip xs' ys'

/

is this ok?

67

Another example:

Zip

let rec zip (xs : 1nt 1list) (ys
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []

| ([], y::ys') —> None
| (x::xs', []) —-> None
|«

x::xs', y:i:ys') -> (x, V)

int list)

zlp xs'

ys'

No! zip returns a list option, not a list!

/

We need to match it and decide if it is Some or None.

68

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []
| ([], y::ys') —> None
| (x::xs', []) —-> None
| (x::xs', y::ys') —->

(match zip xs' ys' with
None -> None
| Some zs -> (X,y) :: zs)

A

/

Is this ok?

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with

| (L1, []) —-> Some []
| ([], y::ys') —> None
| (x::xs', []) —-> None
| (x::xs', y::ys') —->

(match zip xs' ys' with
None -> None
| Some zs -> Some ((x,y) :: zZS))

Another example: zip

let rec zip (xs : 1nt 1list) (ys : 1int list)
(int * int) list option =

match (xs, ys) with
| (L1, []) —-> Some []
| (x::xs', y::ys') —->
(match zip xs' ys' with
None -> None
| Some zs -> Some ((x,y) :: zZS))
| (,) —> None

AN

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

71

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

A bad list example

let rec sum (xs : int list) : int =
match xs with
| hd::tl -> hd + sum tl

Warning 8: this pattern-matching is not exhaustive.

Here i1s an example of a value that 1s not matched:
val sum : int list -> int = <fun>

73

INSERTION SORT

Recall Insertion Sort

At any point during the insertion sort:

— some initial segment of the array will be sorted

— the rest of the array will be in the same (unsorted) order as it
was originally

EEEEIEIEE
\ \ J
| |

sorted unsorted

75

Recall Insertion Sort

At any point during the insertion sort:

— some initial segment of the array will be sorted

— the rest of the array will be in the same (unsorted) order as it
was originally

EEEEIEICE
\ \ J
| |

sorted unsorted

At each step, take the next item in the array and insert it in order
into the sorted portion of the list

EEIEIEEICE
\ \ J
| |

sorted unsorted

76

Insertion Sort With Lists

The algorithm is similar, except instead of one array, we will
maintain two lists, a sorted list and an unsorted list

list 1: list 2:
406 |7
\ J (J
| |
sorted unsorted

We'll factor the algorithm:
— a function to insert into a sorted list
— a sorting function that repeatedly inserts

77

(* 1nsert x 1nto sorted list xs ¥*)

Insert

(* insert x into sorted list xs ¥*)

let rec insert (x : int) (xs : int list)
match xs with
| [] =->
| hd :: tl1 ->

a familiar pattern:

int list

analyze the list by cases

79

Insert

(* insert x into sorted list xs ¥*)

let rec insert (x : int) (xs : int list) : int 1list

match xs with

e e
| hd :: tl1l —->

insert x into the
empty list

80

Insert

(* insert x into sorted list

let rec insert
match xs with
[=> [x]
| hd tl ->
if hd < x then
hd insert x tl

\ J
|

(x int) (xs

Xs *)

int list) int list

T

build a new list with:

* hd at the beginning

e theresult of inserting x in to
the tail of the list afterwards

81

Insert

(* insert x into sorted list xs ¥*)

let rec insert (x : 1nt) (xs
match xs with
[=> [x]
| hd :: tl1 ->
if hd < x then
hd :: insert x tl
else
X :: XS

\

int list)

int list

\

put x on the front of the list,
the rest of the list follows

82

Insertion Sort

type il = int list

insert : int -> 11 -> 11l

(* insertion sort *)

let rec insert sort(xs

11)

1l

83

Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> 11l

(* insertion sort *)
let rec insert sort(xs : 11) : 1l =

let rec aux (sorted : 1l1l) (unsorted

in

11)

1l

84

Insertion Sort

type 11 = 1nt 1list

insert : int -> 11 -> il

(* insertion sort *)

let rec insert sort(xs : 11) : 1l =
let rec aux (sorted : 1l1l) (unsorted
in

aux [] xs

11)

1l

85

Insertion Sort

type 11 = 1nt 1list

insert : int -> 11 -> il

(* insertion sort *)

let rec insert sort(xs : 11) : 1l =
let rec aux (sorted : 1l1) (unsorted
match unsorted with
[=>
| hd :: tl1 ->
in

aux [] xs

11)

1l

86

Insertion Sort

type 11 = 1nt list

insert : int -> 11 -> il

(* insertion sort *)

let rec insert sort(xs : 11) : 1l =
let rec aux (sorted : 1l1l) (unsorted
match unsorted with
| [] —-> sorted
| hd :: tl -> aux (insert hd sorted)
in

aux [] xs

11)

tl

1l

87

[Does Insertion Sort Terminate?

Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

let rec loop (sorted : 1l1) (unsorted : 11) : 11 =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl

[Does Insertion Sort Terminate?

Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

let rec loop (sorted : 1l1) (unsorted : 11) : 11 =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl
7 DN

growing! shrinking!

[Does Insertion Sort Terminate?

Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

let rec loop (sorted : 1l1) (unsorted : 11) : 11 =
match unsorted with
| [] -> sorted
| hd :: tl -> loop (insert hd sorted) tl
e N
growing! shrinking!

Refined idea: Pick an argument up front. That argument must
contain smaller data on every recursive call.

Exercises

Write a function to sum the elements of a list
— sum[1;2;3]==>6
Write a function to append two lists
— append [1;2;3] [4,5,6] ==> [1,2;3;4,5,6]
Write a function to reverse a list
— rev [1;2;3] ==>[3;2;1]
Write a function to turn a list of pairs into a pair of lists
— split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
Write a function that returns all prefixes of a list
— prefixes [1;2;3] ==> [[]; [1]; [1,2]; [1,2;3]]
suffixes...

91

A SHORT JAVA RANT

Definition and Use of Java Pairs

public class Pair {

public int x;
public int y;

public Pair (int a,
X = aj
y = bj

}

int b)

{

public class User {

public Pair swap
Pair p2 =
new Pair(pl.y, pl.x);

(Pair pl)

return p2;

}

{

What could go wrong?

93

A Paucity of Types

public class Pair {

public int x;
public int y;

public Pair (int a,
X = aj
y = bj

}

int b)

{

public class User {

public Pair swap
Pair p2 =
new Pair(pl.y,

(Pair pl)
pl.x);

return p2;

}
}

{

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

How many students in the class have seen an accidental null pointer
exception thrown in their Java code?

94

From Java Pairs to OCaml Pairs

In OCaml, if a pair may be null it is a pair option:

type java palir = (int * int) option

95

From Java Pairs to OCaml Pairs

In OCaml, if a pair may be null it is a pair option:

type java palir = (int * int) option

And if you write code like this:

let swap Java pair (p:java palr) : java pailr =
let (x,y) = p in
(y,x)

96

[From Java Pairs to OCaml Pairs

In OCaml, if a pair may be null it is a pair option:

type java palir = (int * int) option

And if you write code like this:

let swap Java pair (p:java palr) : java pailr =
let (x,y) = p in
(y,x)

You get a helpful error message like this:

.. Characters 91-92:
let (x,y) = p in (y,%)7;
Error: This expression has type java pair = (int * int) option
but an expression was expected of type 'a * 'b

From Java Pairs to OCaml Pairs

type java palir = (int * int) option

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the
following sleep-deprived, brain-dead statement?

let swap Java pair (p:java palr) : java pailr =
match p with
| Some (x,y) —-> Some (y,X)

From Java Pairs to OCaml Pairs

type java palir = (int * int) option

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the
following sleep-deprived, brain-dead statement?

let swap Java pair (p:java palr) : java pailr =
match p with
| Some (x,y) —-> Some (y,X)

OCaml to the rescue!

..match p with
| Some (x,y) —-> Some (y,X)
Warning 8: this pattern-matching is not exhaustive.
Here 1s an example of a value that is not matched:
None

99

100

From Java Pairs to OCaml Pairs

type java palir = (int * int) option

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the
following sleep-deprived, brain-dead statement?

let swap Java pair (p:java palr) : java pailr =
match p with
| Some (x,y) —-> Some (y,X)
An easy fix!
let swap java pair (p:java palr) : java palr =

match p with
| None -> None
| Some (x,y) —-> Some (y,X)

101

From Java Pairs to OCaml Pairs

Moreover, your pairs are probably almost never null!

Defensive programming & always checking for null is
AnNOYInG

From Java Pairs to OCaml Pairs

There just isn't always some "good thing" for a function to do when it receives a
bad input, like a null pointer

In OCaml, all these issues disappear when you use the proper type for a pair and
that type contains no "extra junk”

type palir = int * int

Once you know OCaml, it is hard to write swap incorrectly
Your bullet-proof code is much simpler than in Java.

let swap (p:pair) : pair =
let (x,y¥) = p in (y,Xx)

102

103

Summary of Java Pair Rant

Java has a paucity of types
— There is no type to describe just the pairs

— There is no type to describe just the triples
— There is no type to describe the pairs of pairs

— There is no type ...

OCaml has many more types
— use option when things may be null
— do not use option when things are not null
— OCaml types describe data structures more precisely
* programmers have fewer cases to worry about

* entire classes of errors just go away
* type checking and pattern analysis help prevent programmers from
ever forgetting about a case

104

Summary of Java Pair Rant

Java has a paucity of types

— There is n
There is i

ielp prevent programmers from

ever fc “ase

Example problems to practice

Write a function to sum the elements of a list
— sum[1;2;3]==>6
Write a function to append two lists
— append [1;2;3] [4,5;6] ==> [1;2;3,4;5;6]
Write a function to reverse a list
— rev [1;2;3] ==>[3;2;1]
Write a function to turn a list of pairs into a pair of lists
— split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
Write a function that returns all prefixes of a list
— prefixes [1;2;3] ==> [[]; [1]; [1,2]; [1,2;3]]
suffixes...

105

