
Thinking Inductively

COS 326
Andrew Appel

Princeton University

slides copyright 2022 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

Options

Often, we either have a thing …. or we don’t:

2

17 “hi”

Option types are used in this situation: t option

There’s one way to build a pair, but two ways to build an optional value:

• None -- when we’ve got nothing
• Some v -- when we’ve got a value v of type t

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =

(x1, y1)

(x2, y2)

a

b
c

3

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in

(x1, y1)

(x2, y2)

a

b
c

deconstruct tuple

4

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 ???

(x1, y1)

(x2, y2)

a

b
c

what can we return?

avoid divide by zero

5

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 ???
 else
 ???

(x1, y1)

(x2, y2)

a

b
c

we need an option
type as the result type

6

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 Some ((y2 -. y1) /. xd)
 else
 None

(x1, y1)

(x2, y2)

a

b
c

7

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 None

(x1, y1)

(x2, y2)

a

b
c

Has type float

Can have type float option

8

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 None

(x1, y1)

(x2, y2)

a

b
c

Has type float

Can have type float option WRONG: Type mismatch

9

Slope between two points

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 None

(x1, y1)

(x2, y2)

a

b
c

Has type float

doubly WRONG:
result does not
match declared result

10

Remember the typing rule for if

Returning an optional value from an if statement:

if … then

 None : t option

else

 Some (…) : t option

11

if e1 : bool
and e2 : t and e3 : t (for some type t)
then if e1 then e2 else e3 : t

How do we use an option?

slope : point -> point -> float option

returns a float option

12

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

13

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 slope p1 p2

returns a float option;
to print we must discover if it is
None or Some

14

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with

15

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 Some s ->
 | None ->

There are two possibilities

Vertical bar separates possibilities

16

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 Some s ->
 | None ->

The object between | and -> is called a pattern

The "Some s" pattern includes the variable s

17

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 | Some s ->
 | None ->

You can put a “|” on the first line if you want.
It is generally considered better style to do so.

18

How do we use an option?

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 Some s ->
 print_string ("Slope: " ^ string_of_float s)
 | None ->
 print_string "Vertical line.\n"

19

Writing Functions Over Typed Data
• Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

• For option types:

match … with
 | None -> …
 | Some s -> …

when the input has type t option,
deconstruct with:

when the output has type t option,
construct with:

Some (…) None

20

MORE PATTERN MATCHING

21

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

22

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

(x2, y2) is an example of a pattern – a pattern for tuples.

So let declarations can contain patterns just like match statements

The difference is that a match allows you to consider multiple different data shapes

23

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match p1 with
 | (x1,y1) ->
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

There is only 1 possibility when matching a pair

24

Recall the Distance Function

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match p1 with
 | (x1,y1) ->
 match p2 with
 | (x2,y2) ->
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

We can nest one match expression inside another.
(We can nest any expression inside any other, if the expressions have the
right types)

25

Better Style: Complex Patterns

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match (p1, p2) with
 | ((x1,y1), (x2, y2)) ->
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

Pattern for a pair of pairs: ((variable, variable), (variable, variable))
All the variable names in the pattern must be different.

we built a pair of pairs

26

Better Style: Complex Patterns

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match (p1, p2) with
 | (p3, p4) ->
 let (x1, y1) = p3 in
 let (x2, y2) = p4 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

A pattern must be consistent with the type of the expression
in between match … with
We use (p3, p4) here instead of ((x1, y1), (x2, y2))

we built a pair of pairs

27

Pattern-matching in function parameters

type point = float * float

let distance ((x1,y1):point) ((x2,y2):point) : float =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

Function parameters are patterns too!

28

What’s the best style?

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

Either of these is reasonably clear and compact.
Code with unnecessary nested matches/lets is particularly ugly to read.
You'll be judged on code style in this class.

let distance ((x1,y1):point) ((x2,y2):point) : float =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

29

What’s the best style?

This is how I'd do it ... the types for tuples + the tuple patterns are a little
ugly/verbose ... but for now in class, use the explicit type annotations.
We will loosen things up later in the semester.

let distance (x1,y1) (x2,y2) =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

30

Combining patterns

type point = float * float

(* returns a nearby point in the graph if one exists *)
nearby : graph -> point -> point option

let printer (g:graph) (p:point) : unit =
 match nearby g p with
 | None -> print_string "could not find one\n"
 | Some (x,y) ->
 print_float x;
 print_string ", ";
 print_float y;
 print_newline();

31

Other Patterns
Constant values can be used as patterns

let small_prime (n:int) : bool =
 match n with
 | 2 -> true
 | 3 -> true
 | 5 -> true
 | _ -> false

let iffy (b:bool) : int =
 match b with
 | true -> 0
 | false -> 1

the underscore pattern
matches anything
it is the "don't care" pattern

32

INDUCTIVE THINKING

33

Inductive Programming
An inductive data type T is a data type defined by:

– base cases
• don’t refer to T

– inductive cases
• build new data of type T from pre-existing data of type T
• the pre-existing data is guaranteed to be smaller than the new values

34

Inductive Programming
An inductive data type T is a data type defined by:

– base cases
• don’t refer to T

– inductive cases
• build new data of type T from pre-existing data of type T
• the pre-existing data is guaranteed to be smaller than the new values

Example: a tree
– base case:

• the leaf of the tree
– inductive case:

• the internal nodes of the tree
• the left- and right- subtrees are the “smaller” data

35

Inductive Programming

To program a function over inductive data:
– think: what does my function need to do to be correct?
– solve the programming problem for the base cases

• solve them one-by-one
– solve the programming problem for inductive cases:

• solve them one-by-one
• assume your function already works correctly on smaller data values
• call your function, when necessary, on smaller data values

36

Inductive Proving

To prove a function over inductive data is correct:
– think: what is the correctness theorem for this function?
– prove the function correct for the base cases

• prove them one-by-one
– prove the function correct for the inductive cases:

• prove them one-by-one
• assume your function already works correctly on smaller data values
• use this assumption to reason about calls over smaller data values
• this assumption is called the induction hypothesis of your proof

37

Inductive Proving

To prove a function over inductive data is correct:
– think: what is the correctness theorem for this function?
– prove the function correct for the base cases

• prove them one-by-one
– prove the function correct for the inductive cases:

• prove them one-by-one
• assume your function already works correctly on smaller data values
• use this assumption to reason about calls over smaller data values
• this assumption is called the induction hypothesis of your proof

To be a good programmer, you also need to be a good prover.

38

LISTS: AN INDUCTIVE DATA TYPE

39

Lists are Inductive Data
In OCaml, a list value is:

– [] (the empty list)
– v :: vs (a value v followed by a shorter list of values vs)

40

Base Case
Inductive Case

Lists are Inductive Data
In OCaml, a list value is:

[] (the empty list)
v :: vs (a value v followed by a shorter list of values vs)

An example:
– 2 :: 3 :: 5 :: [] has type int list
– is the same as: 2 :: (3 :: (5 :: []))
– "::" is called "cons"

An alternative syntax (“syntactic sugar” for lists):
– [2; 3; 5]
– But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get

confused fall back on the 2 basic constructors, :: and []

41

Typing Lists
Typing rules for lists:

[] may have any list type, t list

if e1 : t and e2 : t list
then (e1 :: e2) : t list

(1)

(2)

42

Typing Lists
Typing rules for lists:

More examples:
(1 + 2) :: (3 + 4) :: [] : ??

(2 :: []) :: (5 :: 6 :: []) :: [] : ??

[[2]; [5; 6]] : ??

[] may have any list type t list

if e1 : t and e2 : t list
then (e1 :: e2) : t list

(1)

(2)

43

Typing Lists
Typing rules for lists:

More examples:
(1 + 2) :: (3 + 4) :: [] : int list

(2 :: []) :: (5 :: 6 :: []) :: [] : int list list

[[2]; [5; 6]] : int list list

(Remember that the 3rd example is an abbreviation for the 2nd)

[] may have any list type t list

if e1 : t and e2 : t list
then (e1 :: e2) : t list

(1)

(2)

44

Another Example

What type does this have?

 [2] :: [3]

45

Another Example

[2] :: [3];;
Error: This expression has type int but an
 expression was expected of type
 int list
#

What type does this have?

 [2] :: [3]

int list int list

46

Another Example

What type does this have?

 [2] :: [3]

Give me a simple fix that makes the expression type check?

int list int list

47

Another Example

What type does this have?

 [2] :: [3]

Give me a simple fix that makes the expression type check?

 Either: 2 :: [3] : int list

 Or: [2] :: [[3]] : int list list

int list int list

48

Analyzing Lists
Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;
 return None, if the list is empty *)

let head (xs : int list) : int option =

49

Analyzing Lists
Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

(* return Some v, if v is the first list element;
 return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] ->
 | hd :: _ ->

we don't care about the contents of the
tail of the list so we use the underscore

50

Analyzing Lists
Just like options, there are two possibilities when deconstructing
lists. Hence we use a match with two branches

This function isn't recursive -- we only extracted a small , fixed
amount of information from the list -- the first element

(* return Some v, if v is the first list element;
 return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] -> None
 | hd :: _ -> Some hd

51

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

52

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =

53

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] ->
 | (x,y) :: tl ->

54

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl ->

55

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> ?? :: ??

the result type is int list, so we can speculate
that we should create a list

56

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??

the first element is the product

57

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??

to complete the job, we must compute
the products for the rest of the list

58

A more interesting example

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: prods tl

59

Three Parts to Constructing a Function

let rec prods (xs : (int*int) list) : int list =
 match xs with

 | [] -> ...

 | (x,y) :: tl -> ...

(1) Think about how to break down the input into cases:

let rec prods (xs : (int*int) list) : int list =
 ...
 | (x,y) :: tl -> ... prods tl ...

(2) Assume the recursive call on smaller data is correct.

(3) Use the result of the recursive call to build correct answer.

60

Another example: zip

(* Given two lists of integers,
 return None if the lists are different lengths
 otherwise stitch the lists together to create
 Some of a list of pairs

 zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
 zip [5; 3] [4] == None
 zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)

(Give it a try.)

61

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

62

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with

63

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) ->
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

64

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

65

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->

66

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

is this ok?

67

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

No! zip returns a list option, not a list!
We need to match it and decide if it is Some or None.

68

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> (x,y) :: zs)

Is this ok?

69

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))

70

Another example: zip

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))
 | (_, _) -> None

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

71

A bad list example

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl

72

A bad list example

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>

73

INSERTION SORT

74

Recall Insertion Sort

At any point during the insertion sort:
– some initial segment of the array will be sorted
– the rest of the array will be in the same (unsorted) order as it

was originally

-5 -2 3 -4 10 6 7

sorted unsorted

75

Recall Insertion Sort

At any point during the insertion sort:
– some initial segment of the array will be sorted
– the rest of the array will be in the same (unsorted) order as it

was originally

At each step, take the next item in the array and insert it in order
into the sorted portion of the list

-5 -2 3 -4 10 6 7

sorted unsorted

-5 -4 -2 3 10 6 7

sorted unsorted

76

Insertion Sort With Lists
The algorithm is similar, except instead of one array, we will
maintain two lists, a sorted list and an unsorted list

We'll factor the algorithm:
– a function to insert into a sorted list
– a sorting function that repeatedly inserts

-5 -2 3 -4 10 6 7

sorted unsorted

list 1: list 2:

77

Insert

(* insert x into sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

78

Insert

(* insert x into sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] ->
 | hd :: tl ->

a familiar pattern:
analyze the list by cases

79

Insert

(* insert x into sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl -> insert x into the

empty list

80

Insert

(* insert x into sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
 if hd < x then
 hd :: insert x tl

build a new list with:
• hd at the beginning
• the result of inserting x in to

the tail of the list afterwards

81

Insert

(* insert x into sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
 if hd < x then
 hd :: insert x tl
 else
 x :: xs

put x on the front of the list,
the rest of the list follows

82

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

83

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in

84

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in
 aux [] xs

85

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] ->
 | hd :: tl ->
 in
 aux [] xs

86

Insertion Sort

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> aux (insert hd sorted) tl
 in
 aux [] xs

87

Does Insertion Sort Terminate?
Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

88

let rec loop (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> loop (insert hd sorted) tl

Does Insertion Sort Terminate?
Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

89

let rec loop (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> loop (insert hd sorted) tl

growing! shrinking!

Does Insertion Sort Terminate?
Recall that we said: inductive functions should call themselves
recursively on smaller data items.

What about that loop in insertion sort?

Refined idea: Pick an argument up front. That argument must
contain smaller data on every recursive call.

90

let rec loop (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> loop (insert hd sorted) tl

growing! shrinking!

Exercises
• Write a function to sum the elements of a list

– sum [1; 2; 3] ==> 6
• Write a function to append two lists

– append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]
• Write a function to reverse a list

– rev [1;2;3] ==> [3;2;1]
• Write a function to turn a list of pairs into a pair of lists

– split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
• Write a function that returns all prefixes of a list

– prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]
• suffixes…

91

A SHORT JAVA RANT

92

Definition and Use of Java Pairs

What could go wrong?

public class Pair {

 public int x;
 public int y;

 public Pair (int a, int b) {
 x = a;
 y = b;
 }
}

public class User {

 public Pair swap (Pair p1) {
 Pair p2 =
 new Pair(p1.y, p1.x);

 return p2;
 }
}

93

A Paucity of Types

The input p1 to swap may be null and we forgot to check.
Java has no way to define a pair data structure that is just a pair.

public class Pair {

 public int x;
 public int y;

 public Pair (int a, int b) {
 x = a;
 y = b;
 }
}

public class User {

 public Pair swap (Pair p1) {
 Pair p2 =
 new Pair(p1.y, p1.x);

 return p2;
 }
}

94

How many students in the class have seen an accidental null pointer
exception thrown in their Java code?

From Java Pairs to OCaml Pairs

type java_pair = (int * int) option

In OCaml, if a pair may be null it is a pair option:

95

From Java Pairs to OCaml Pairs

let swap_java_pair (p:java_pair) : java_pair =
 let (x,y) = p in
 (y,x)

type java_pair = (int * int) option

In OCaml, if a pair may be null it is a pair option:

And if you write code like this:

96

From Java Pairs to OCaml Pairs

let swap_java_pair (p:java_pair) : java_pair =
 let (x,y) = p in
 (y,x)

type java_pair = (int * int) option

In OCaml, if a pair may be null it is a pair option:

And if you write code like this:

… Characters 91-92:
 let (x,y) = p in (y,x);;
 ^
Error: This expression has type java_pair = (int * int) option
 but an expression was expected of type 'a * 'b

You get a helpful error message like this:

97

From Java Pairs to OCaml Pairs

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | Some (x,y) -> Some (y,x)

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the

following sleep-deprived, brain-dead statement?

98

From Java Pairs to OCaml Pairs

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | Some (x,y) -> Some (y,x)

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the

following sleep-deprived, brain-dead statement?

..match p with
 | Some (x,y) -> Some (y,x)
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
None

OCaml to the rescue!

99

From Java Pairs to OCaml Pairs

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | Some (x,y) -> Some (y,x)

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the

following sleep-deprived, brain-dead statement?

An easy fix!

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | None -> None
 | Some (x,y) -> Some (y,x)

100

From Java Pairs to OCaml Pairs

Moreover, your pairs are probably almost never null!

Defensive programming & always checking for null is

101

From Java Pairs to OCaml Pairs

There just isn't always some "good thing" for a function to do when it receives a
bad input, like a null pointer

In OCaml, all these issues disappear when you use the proper type for a pair and
that type contains no "extra junk”

Once you know OCaml, it is hard to write swap incorrectly
Your bullet-proof code is much simpler than in Java.

type pair = int * int

let swap (p:pair) : pair =
 let (x,y) = p in (y,x)

102

Summary of Java Pair Rant

Java has a paucity of types
– There is no type to describe just the pairs
– There is no type to describe just the triples
– There is no type to describe the pairs of pairs
– There is no type …

OCaml has many more types
– use option when things may be null
– do not use option when things are not null
– OCaml types describe data structures more precisely

• programmers have fewer cases to worry about
• entire classes of errors just go away
• type checking and pattern analysis help prevent programmers from

ever forgetting about a case

103

Summary of Java Pair Rant

Java has a paucity of types
– There is no type to describe just the pairs
– There is no type to describe just the triples
– There is no type to describe the pairs of pairs
– There is no type …

OCaml has many more types
– use option when things may be null
– do not use option when things are not null
– ocaml types describe data structures more precisely

• programmers have fewer cases to worry about
• entire classes of errors just go away
• type checking and pattern analysis help prevent programmers from

ever forgetting about a case

SCORE: OCAML 1, JAVA 0

104

Example problems to practice
• Write a function to sum the elements of a list

– sum [1; 2; 3] ==> 6
• Write a function to append two lists

– append [1;2;3] [4;5;6] ==> [1;2;3;4;5;6]
• Write a function to reverse a list

– rev [1;2;3] ==> [3;2;1]
• Write a function to turn a list of pairs into a pair of lists

– split [(1,2); (3,4); (5,6)] ==> ([1;3;5], [2;4;6])
• Write a function that returns all prefixes of a list

– prefixes [1;2;3] ==> [[]; [1]; [1;2]; [1;2;3]]
• suffixes…

105

