
Simple Functional Data

COS 326
Andrew Appel

Princeton University

slides copyright 2022 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes

1

What is the single most important mathematical
concept ever developed in human history?

2

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

3

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

4

(runner up: natural numbers/induction)

Why is the mathematical variable so important?
The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

5

Why is the mathematical variable so important?
The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

What is going on here? The mathematician has separated a
definition (of x) from its use (in the polynomial).

This is the most primitive kind of abstraction (x is some integer)

Abstraction is the key to controlling complexity and without it,
modern mathematics, science, and computation would not exist.

It allows reuse of ideas, theorems ... functions and programs!

6

OCAML BASICS:
LET DECLARATIONS

7

Abstraction & Abbreviation
In OCaml, the most basic technique for factoring your code is to
use let expressions

Instead of writing this expression:

We write this one:

(2 + 3) * (2 + 3)

let x = 2 + 3 in
x * x

8

A Few More Let Expressions

let a = "a" in
let b = "b" in
let as = a ^ a ^ a in
let bs = b ^ b ^ b in
as ^ bs

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed

9

A Technical Note: The Structure of a .ml File
10

<declaration>

<declaration>

 …

Foo.ml
Every .ml file is a sequence
of declarations

These “declarations” are a little
different than “expressions”

A Technical Note: The Structure of a .ml File
11

let x = 17 + 5

let y = x + 22

Bar.ml contains two let declarations

Let declarations do not end with “in”

Let declarations have the form:

let <var> = <expression>

Bar.ml

A Technical Note: The Structure of a .ml File
12

let x =
 let z = 22 in
 z + z

let y =
 if x < 17 then
 let w = x + 1 in
 2 * w
 else
 26

Because let declarations have this form:

let <var> = <expression>

they contain expressions

... including “let expressions” which have
the form:

let <var> = <expression> in <expression>

Baz.ml

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

13

given a use of a variable, like this
one for x, work outwards and
upwards through a program to
find the closest enclosing
definition. That is the value
of this use forever and always.

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

14

given a use of a variable, like this
one for x, work outwards and
upwards through a program to
find the closest enclosing
definition. That is the value
of this use forever and always.

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

15

given a use of a variable, like this
one for x, work outwards and
upwards through a program to
find the closest enclosing
definition. That is the value
of this use forever and always.

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

It does not
matter what
I write next.
add_three
will always
add 3!

16

OCaml Variables are Immutable
Once bound to a value, a variable is never modified or changed.

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

a distinct
variable that
"happens to
be spelled the
same"

17

OCaml Variables are Immutable
A use of a variable always refers to it’s closest (in terms of
syntactic distance) enclosing declaration. Hence, we say OCaml
is a statically scoped (or lexically scoped) language

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

let add_seven (y:int) : int =
 add_three (add_four y)

we can use
add_three
without worrying
about the second
definition of x

18

OCaml Variables are Immutable
Since the two variables (both happened to be named x) are
actually different, unconnected things, we can rename them.
This is known as alpha-conversion.

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

let add_seven (y:int) : int =
 add_three (add_four y)

you can rename
 x to zzz
by replacing
the definition
and all its uses with
the new name

19

OCaml Variables are Immutable
Since the two variables (both happened to be named x) are
actually different, unconnected things, we can rename them.
This is known as alpha-conversion.

let x = 3

let add_three (y:int) : int = y + x

let zzz = 4

let add_four (y:int) : int = y + zzz

let add_seven (y:int) : int =
 add_three (add_four y)

20

you can rename
 x to zzz
by replacing
the definition
and all its uses with
the new name

How does OCaml execute a let expression?

let x = <expression1> in
<expression2>

21

In a nutshell:
• execute <expression1>, until you get a value v1
• substitute that value v1 for x in <expression2>
• execute <expression2>, until you get a value v2
• the result of the whole execution is v2

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

22

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

substitute
3 for x

23

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

-->

9

substitute
3 for x

24

How does OCaml execute a let expression?

let x = 2 + 1 in x * x

-->

let x = 3 in x * x

-->

3 * 3

-->

9

substitute
3 for x

Note: I write
e1 --> e2
when e1 evaluates
to e2 in one step

25

Meta-comment
26

let x = 2 in x + 3 --> 2 + 3

I defined the language in terms of itself:
By reduction of one OCaml expression to another

I’m trying to train you to think at a high level of
abstraction.

I didn’t have to mention low-level abstractions like

assembly code or registers or memory layout to tell you
how OCaml works.

OCaml expression OCaml expression

Another Example

let x = 2 in
let y = x + x in
y * x

27

Another Example

let x = 2 in
let y = x + x in
y * x

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

28

Another Example

let x = 2 in
let y = x + x in
y * x

-->

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

29

Another Example

let x = 2 in
let y = x + x in
y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

4 * 2

substitute
4 for y

30

Another Example

let x = 2 in
let y = x + x in
y * x

-->

-->

-->

substitute
2 for x

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

4 * 2

-->
8

substitute
4 for y

Moral: Let
operates by
substituting

computed values
for variables

31

OCAML BASICS:
TYPE CHECKING AGAIN

32

Back to Let Expressions ... Typing

let x = e1 in

e2

overall expression
takes on the type of e2

x granted type of e1 for use in e2

33

Back to Let Expressions ... Typing

let x = e1 in

e2

x granted type of e1 for use in e2

let x = 3 + 4 in

string_of_int x

overall expression
takes on the type of e2

x has type int
for use inside the
let body

overall expression
has type string

34

Let Expressions Really Are Expressions

2 + 3

35

an expression

Let Expressions Really Are Expressions

2 + 3

36

let x = 2 + 3 in
x + x

an expression

an expression

Let Expressions Really Are Expressions

2 + 3

let x = let y = 2 + 3 in y + 5 in
1 + x

37

let x = 2 + 3 in
x + x

an expression

an expression

an expression

let expressions can
appear anywhere
other expressions
can appear. they can
be nested

Exercise

let x =
 let y = 2 + 3 in y
in
 let x = "1" in
x + x

38

let x =
 let y = "2" ^ "3" in y
in
 let x = 1 in
x + x

Which of (a) or (b) type check? Explain why.

(a) (b)

On a piece of paper (or in your favorite editor), show the step-by-step
evaluation of the example that type checks.

Critique the programming style used in these examples.

OCAML BASICS:
FUNCTIONS

39

let add_one (x:int) : int = 1 + x

Defining functions
40

let add_one (x:int) : int = 1 + x

Defining functions

function name

argument name

type of argument

type of result expression
that computes
value produced
by function

let keyword

Note: recursive functions with begin with "let rec"

41

Defining functions
Nonrecursive functions:

let add_one (x:int) : int = 1 + x

let add_two (x:int) : int = add_one (add_one x)

definition of add_one
must come before use

42

Defining functions
Nonrecursive functions:

With a local definition:

let add_one (x:int) : int = 1 + x

let add_two (x:int) : int = add_one (add_one x)

local function definition
hidden from clients

I left off the types.
OCaml figures them out

Good style: types on
top-level definitions

let add_two' (x:int) : int =
 let add_one x = 1 + x in
 add_one (add_one x)

43

Types for Functions
Some functions:

Types for functions:

let add_one (x:int) : int = 1 + x

let add_two (x:int) : int = add_one (add_one x)

let add (x:int) (y:int) : int = x + y

add_one : int -> int

add_two : int -> int

add : int -> int -> int

function with two arguments

44

Rule for type-checking functions

add_one : int -> int

3 + 4 : int

add_one (3 + 4) : int

If a function f : T1 → T2
and an argument e : T1
then f e : T2

General Rule:

Example:

45

Rule for type-checking functions
Recall the type of add:

let add (x:int) (y:int) : int =
 x + y

Definition:

add : int -> int -> int

Type:

46

Rule for type-checking functions
Recall the type of add:

let add (x:int) (y:int) : int =
 x + y

Definition:

add : int -> int -> int

Type:

add : int -> (int -> int)

Same as:

47

Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : ???

General Rule:

Example:

48

A → B → C

same as:

A → (B → C)

If a function f : T1 → T2
and an argument e : T1
then f e : T2

Rule for type-checking functions

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) :

General Rule:

Example:

49

A -> B -> C

same as:

A -> (B -> C)

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

Rule for type-checking functions

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) : int -> int

General Rule:

Example:

50

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

A -> B -> C

same as:

A -> (B -> C)

Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

(add (3 + 4)) 7 : int

General Rule:

Example:

51

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

A -> B -> C

same as:

A -> (B -> C)

Rule for type-checking functions

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

add (3 + 4) 7 : int

General Rule:

Example:

52

If a function f : T1 -> T2
and an argument e : T1
then f e : T2

A -> B -> C

same as:

A -> (B -> C)

extra parens
not necessary

One key thing to remember
• If you have a function f with a type like this:

• Then each time you add an argument, you can get the type of
the result by knocking off the first type in the series

A → B → C → D → E → F

f a1 : B → C → D → E → F (if a1 : A)

f a1 a2 : C → D → E → F (if a2 : B)

f a1 a2 a3 : D → E → F (if a3 : C)

f a1 a2 a3 a4 a5 : F (if a4 : D and a5 : E)

53

TYPE ERRORS

Type Checking Rules
Type errors for if statements can be confusing sometimes. Recall:

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

55

Type Checking Rules
Type errors for if statements can be confusing sometimes. Recall:

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

Error: This expression has type int but an
expression was expected of type string

ocaml might point to (concatn s (n-1)) and says:

56

Type errors for if statements can be confusing sometimes. Recall:

Type Checking Rules

Error: This expression has type int but an
expression was expected of type string

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

Error: This expression has type string but an
expression was expected of type int

ocaml might say:

or ocaml might point to the expression (s ^ (concatn …)) and say:

57

Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

Type Checking Rules

Error: This expression has type int but an
expression was expected of type string

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

Error: This expression has type string but an
expression was expected of type int

58

Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

Type Checking Rules

Error: This expression has type int but an
expression was expected of type string

let rec concatn s n =
 if n <= 0 then
 0
 else
 s ^ (concatn s (n-1))

Error: This expression has type string but an
expression was expected of type int

they don't
agree!

59

Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

Type Checking Rules

let rec concatn s n =
 if n <= 0 then
 0
 else
 s ^ (concatn s (n-1))

The type checker points to some place where there is disagreement.

Moral: Sometimes you need to look in an earlier branch for the error
even though the type checker points to a later branch.
The type checker doesn't know what the user wants.

they don't
agree!

60

A Tactic: Add Typing Annotations
61

let rec concatn (s:string) (n:int) : string =
 if n <= 0 then
 0
 else
 s ^ (concatn s (n-1))

Error: This expression has type int but an
expression was expected of type string

Exercise

let munge b x =
 if not b then
 string_of_int x
 else
 "hello"

let y = 17

munge : ??

munge (y > 17) : ??

munge true (f (munge false 3)) : ??

munge true (g munge) : ??

62

Given the following code:

What are the types of the following expressions?
(And what must the types of f and g be?)

DATA STRUCTURES:
THE TUPLE

* it is really our second complex data structure since functions
are data structures too!

63

A tuple is a fixed, finite, ordered collection of values

Some examples with their types:

Tuples

(1, 2) : int * int

("hello", 7 + 3, true) : string * int * bool

('a', ("hello", "goodbye")) : char * (string * string)

64

To use a tuple, we extract its components
General case:

An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y

65

To use a tuple, we extract its components
General case:

An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y
--> 2 + 2 + 4

substitute!

66

To use a tuple, we extract its components
General case:

An example:

Tuples

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y
--> 2 + 2 + 4
--> 8

67

Rules for Typing Tuples
68

if e1 : t1 and e2 : t2
then (e1, e2) : t1 * t2

Rules for Typing Tuples

let (x1,x2) = e1 in

e2

if e1 : t1 * t2 then
x1 : t1 and x2 : t2
inside the expression e2

overall expression
takes on the type of e2

69

if e1 : t1 and e2 : t2
then (e1, e2) : t1 * t2

Distance between two points

c2 = a2 + b2
(x1, y1)

(x2, y2)

a

b
c

Problem:
• A point is represented as a pair of floating point values.
• Write a function that takes in two points as arguments and returns
the distance between them as a floating point number

70

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)

71

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it

72

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it
6. Clean up by identifying repeated patterns

• define and reuse helper functions
• your code should be elegant and easy to read

73

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures

• the argument types suggests how to do it
5. Build new output values

• the result type suggests how you do it
6. Clean up by identifying repeated patterns

• define and reuse helper functions
• your code should be elegant and easy to read

Types help structure your thinking about how to write programs.

74

Distance between two points

type point = float * float

a type abbreviation (x1, y1)

(x2, y2)

a

b
c

75

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

write down function name
argument names and types

(x1, y1)

(x2, y2)

a

b
c

76

Distance between two points

type point = float * float

(* distance (0.0,0.0) (0.0,1.0) == 1.0
 * distance (0.0,0.0) (1.0,1.0) == sqrt(1.0 + 1.0)
 *
 * from the picture:
 * distance (x1,y1) (x2,y2) == sqrt(a^2 + b^2)
 *)

let distance (p1:point) (p2:point) : float =

(x1, y1)

(x2, y2)

a

b
cexamples

77

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 ...

deconstruct
function inputs

(x1, y1)

(x2, y2)

a

b
c

78

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt ((x2 -. x1) *. (x2 -. x1) +.
 (y2 -. y1) *. (y2 -. y1))

compute
function
results

notice operators on
floats have a "." in them

(x1, y1)

(x2, y2)

a

b
c

79

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1)) +.
 square (y2 -. y1))

define helper functions to
avoid repeated code

(x1, y1)

(x2, y2)

a

b
c

80

Distance between two points

type point = float * float

let distance (x1,y1) (x2,y2) =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

use tuple patterns
in function arguments
if you’d like

(x1, y1)

(x2, y2)

a

b
c

81

Distance between two points

type point = float * float

let distance ((x1,y1):point) ((x2,y2):point) : float =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

type annotations
can be included

(x1, y1)

(x2, y2)

a

b
c

82

Distance between two points

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

let pt1 = (2.0,3.0)
let pt2 = (0.0,1.0)
let dist12 = distance pt1 pt2

implement some tests

(x1, y1)

(x2, y2)

a

b
c

83

MORE TUPLES

84

Tuples
Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

85

Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

86

Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

Here's a tuple with 4 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

87

Tuples
Here's a tuple with 2 fields:

Here's a tuple with 3 fields:

Here's a tuple with 4 fields:

Here's a tuple with 0 fields:

(4.0, 5.0) : float * float

(4.0, 5, "hello") : float * int * string

(4.0, 5, "hello", 55) : float * int * string * int

88

() : unit

SUMMARY:
BASIC FUNCTIONAL PROGRAMMING

92

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

For tuple types:
– when the input has type t1 * t2

• use let (x,y) = … to deconstruct
– when the output has type t1 * t2

• use (e1, e2) to construct

We will see this paradigm repeat itself over and over

93

Records
Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

94

Records
Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

95

type name = {first:string; last:string;}

let my_name = {first=“David”; last=“Walker”;}

let to_string (n:name) = n.last ^ ", " ^ n.first

An example:

Records
Records are a lot like tuples. It’s just that they have named fields.

Having named fields (records rather than tuples) often makes it
easier to understand a program, especially when there are more
than just 2 or 3 fields in a structure.

Note: Records come with several other useful features, like functional
updates via “with expressions.”
See Real World OCaml for more info.

96

type name = {first:string; last:string;}

let my_name = {first=“David”; last=“Walker”;}

let to_string (n:name) = n.last ^ ", " ^ n.first

An example:

WRAP-UP

97

Writing Functions Over Typed Data
Steps to writing functions over typed data:

1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
5. Build new output values
6. Clean up by identifying repeated patterns

For tuple types:
– when the input has type t1 * t2

• use let (x,y) = … to deconstruct
– when the output has type t1 * t2

• use (e1, e2) to construct

We will see this paradigm repeat itself over and over

98

Exercise
99

type item = {
 number: int;
 name: string;
}

type contact = {
 name: string*string; (* first and last name *)
 phone: item;
}

let get_name x = x.name

let myphone = {number=122; name="iphone";}

let _ = print_endline (get_name myphone)

What error do you get when you try to compile this file? (Type it in.) Why?

