COS 326
Functional Programming

Andrew Appel
Princeton University

slides copyright 2013-2023 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes



Alonzo Church, 1903-1995
Princeton Professor, 1929-1967

In 1936, Alonzo Church invented
the lambda calculus. He called
it a logic, but it was a language
of pure functions -- the world's
first programming language.

He said:

"There may, indeed, be other
applications of the system than
its use as a logic."

IndeeEIj)




Alonzo Church Alan Turing (PhD Princeton 1938)

1934 -- developed lambda calculus 1936 -- developed Turing machines
Programming Languages Computers

Optional reading: The Birth of Computer Science at Princeton in the 1930s
by Andrew W. Appel, 2012. http://press.princeton.edu/chapters/s9780.pdf



http://assets.press.princeton.edu/chapters/s9780.pdf

Vastly Abbreviated FP Genealogy

LCF Theorem LISP
Prover (70s) (1960-now)

o o Scheme
Inburg (70s-now)
Caml

(80s-now)

Racket

Miranda (80s) Standard ML (00s-now)

(905 _ nOW) A OCaml
(90s - now)

Haskell

(90s - now) Scala Fi Coq
(00s - now) (now) (80s - now)

lazy 1 ' ;7\ '

call-by-value dependently

\ y J typed

typed, polymorphic




Vastly Abbreviated FP Geneology

LCF Theorem LISP
Prover (70s) (50s-now)

Edinbureh ML Scheme
Rl (70s-now)
Caml

(80s-now)

Racket

Miranda (80s) Standard ML (00s-now)

(90s - now) OCaml
(90s - now)

Haskell

(90s - now) Scala Coq
(00s - now) (80s - now)

|
call-by-value dependently

\ y J typed

typed, polymorphic




Functional Languages: Who's using them? ]

twitter¥
\ Scala for

\GO / le correctness, maintainability, flexibility
M)
O& 0Q Meta

Erlang for concurrency,

MiC’OSOﬂ Be what’s next: \ Haskell for managing PHP,

OCaml for bug-finding

g - mathematicians
F# in Visual Studio _\ Coq (re)proof of

Haskell to 4-color theorem

bluespec synthesize hardware Haskell
* BARCLAYS for specifying

equity derivatives

map-reduce in their data centers

www.artima.com/scalazine/articles/twitter_on_scala.html
www.infog.com/presentations/haskell-barclays
www.janestreet.com/technology/index.html#work-functionally
msdn.microsoft.com/en-us/fsharp/cc742182
research.google.com/archive/mapreduce-osdiO4.pdf
wwwilightbend.com/case-studies/how-apache-spark-scala-and-functionaHorogramming-made-hard-problems-easy-at-bardays
www.haskell.org/haskellwiki/Haskell_in_industry



COURSE LOGISTICS



[ Course Staff

Andrew Appel
Professor
office: CS 209
email: appel@cs

Emma Farkash
Preceptor

Han Xu
Preceptor

Nikhil Pimpalkhare
Preceptor




% COS 326: Functional Prograr X + v

[ 2% cs.princeton.edu/courses/archive/fall24/cos326/index.php W%

COS 326

Functional Programming

Welcome  caml |

Power |
Welcome to COS 326: Functional Programming. In this course, you will learn
about the joy of functional programming: From functions to futures, map-reduce to monads,

Standard Library

interfaces to invariants, and types to tail calls.
Standard Modules .
Ocamlbuild Docs Gettmg Started
OCaml Manual
0Caml Books * Go to our page on installing OCaml and VSCode.
* Create a github account if you don't already have one.
Other Useful Stuff » Visit the Assignments Dashboard to link your PU netid to your github account.
* Go to the Course Info page and take a look at the course policies on collaboration, late
Course Info . i
Ed assignments and other things.

¢ Visit Ed for announcements and Q&A.
Course Overview

The goal of the course is to delve deeper in to the principles of program design, implementation
and understanding. We wish to help students become superb programmers who can design,
implement and reason about software that is elegant, efficient, and correct, and whose code can
be maintained and reused.

We use a programming language from the ML family of programming languages throughout the
course: Objective Caml (OCaml). OCaml is a modern functional programming language with
advanced type and module systems. However, the course is not about the OCaml language;
rather, OCaml provides a convenient framework in which we can achieve the objectives of the
course. Like the object-oriented model of Java, the functional paradigm of OCaml is an
important programming model with which all students should be familiar, as it underlies the core
of almost any high-level programming language. In addition, the OCaml type and module
systems provide frameworks for ensuring code is modular, correct, re-usable, and elegant. In
fact, OCaml does support objects, but we will focus more on other aspects of the language. By
studying alternatives to object-oriented programming, students will be better equipped to use,
implement or even design future programming environments that combine the best features of



Collaboration Policy

The COS 326 collaboration policy can be found here:

https://www.cs.princeton.edu/courses/archive/fall24/cos326/info.phpttcollab

Read it in full prior to beginning the first assignment.

Please ask questions whenever anything is unclear, at
any time during the course.



A Typical Week

Monday

— Lecture

Tuesday
— Assignment from last week due (7 assighments total)

— Your first assignment is due Tuesday Sept 10 at 11pm

Wednesday
— Lecture

— Next assignment is available
— start assignment with material from lecture

Thursday/Friday
— mandatory precept reinforces lecture content

— you may have questions for your preceptor about the
assignment



Course Textbook

SECOND EDITION

REAL WORLD OCAML

Functional Programming for the Masses

ANIL MADHAVAPEDDY
AND YARON MINSKY

http://realworldocaml.org/



Exams

Midterm

* in class during week after midterm break
— 50 minutes, Weds Oct 23 10:00 a.m.
— 50 minutes, Thurs Oct 24 7:30 p.m.

Final
e during exam period in December
* make your travel plans accordingly

* | have no control at all over when the exam occurs,
the Registrar schedules exams.



Assignment O

Install opam, ocaml, VS Code
[and if you use Windows: WSL2]

on your machine by the time precept begins tomorrow.

Resources Page:

https://www.cs.princeton.edu/courses/archive/fall24/cos326 /resources.php

Hint:

ocaml.org


http://www.cs.princeton.edu/~cos326/resources.php

Functional Programming



Thinking Functionally

pure, functional code:

let (x,y) = pair in
(v,x)

you analyze existing data (like pair)
and you produce new data (y,x)

imperative code:

temp = pair.x;
pair.x = pair.y;
pairy = temp;

commands modify or change an
existing data structure (like pair)



[ Thinking Functionally }

pure, functional code: imperative code:

let (x,y) = pair in temp = pair.x;

o B
e outputs are everything! e outputs are irrelevant!
e outputis function of input e outputis not function of input
* data properties are stable e data properties change
* repeatable * unrepeatable
* parallelism apparent * parallelism hidden
e easier to test * harder to test

e easier to compose * harder to compose



This simple switch in perspective can change the way you
think
about programming and problem solving.



Why OCaml? ]

Small, orthogonal core based on the lambda calculus.

— Control is based on (recursive) functions.
— Instead of for-loops, while-loops, do-loops, iterators, etc.
* can be defined as library functions.

— Makes it easy to define semantics

Supports first-class, lexically scoped, higher-order procedures
— a.k.a. first-class functions or closures or lambdas.

— first-class: functions are data values like any other data value
* like numbers, they can be stored, defined anonymously, ...

— lexically scoped: meaning of variables determined statically.

— higher-order: functions as arguments and results
* programs passed to programs; generated from programs

These features also found in Scheme, Haskell, Scala, F#, Clojure, ....



Why OCaml?

Statically typed: debugging and testing aid
— compiler catches many silly errors before you can run the code.
* Atype is worth a thousand tests
— Java is also strongly, statically typed.

— Scheme, Python, Javascript, etc. are all strongly, dynamically
typed — type errors are discovered while the code is running.

Strongly typed: compiler enforces type abstraction.
— cannot cast an integer to a record, function, string, etc.
* so we can utilize types as capabilities; crucial for local reasoning

— C/C++ are weakly typed (statically typed) languages. The compiler
will happily let you do something smart (more often stupid).

Type inference: compiler fills in types for you g W

strong, static
type.




Installing, Running OCaml

* OCaml comes with compilers:
— "ocamlc" — fast bytecode compiler
— "ocamlopt" — optimizing, native code compiler
— "dune" — a build system for OCaml
* And an interactive, top-level shell:
— useful for trying something out.
— "ocaml" or "utop" at the prompt.
— but use the compiler (via dune) most of the time

* See the course web pages for installation pointers
— also OCaml.org



Editing OCaml Programs

Many options:

— We recommend VS Code, with its OCaml| mode

But you can use other text editors if you want, such as:

— Emacs

* good but not great support for OCaml.
— Sublime, atom

* Many CS326 students have used these



AN INTRODUCTORY EXAMPLE
(OR TWO)



A First OCaml Program

hello.ml:

print string "Hello COS 326!!\n"




) File Edit Selection View Go Run --- Get Started - lec1 [WSL: Ubuntu-20.04] - Visual Stu... [ = (B | 08

@ EXPLORER ) Get Started X

v LEC1 [WSL: UBUNTU-20.... [ B U &
od assert.ml
wd broken.ml

= Visual Studio Code

2 hello2.mi Editing evolved
M Makefile

= JELI AL NE Walkthroughs

wd sum.ml

* Get Started with VS
Code

Discover the best
customizations to make VS
Code yours.

Recent Learn the

/home/a Fundamentals

Jump right into VS Code and
get an overview of the must-
have features.

Boost your
Productivity

> OUTLINE
1 v/ Show welcome page on startup
> TIMELINE

X WSL: Ubuntu-2004 ®0A0 @ opam(_coq-platform.2022.04.0~8.15~2022.04)




0o
I
O
X

’Q — e hello.ml - handout [WSL: Ubuntu-20.04] ... | |

Q = helloml ® y 4

home > appel > lec1 > 22 hello.ml

' .
~

print_string "Hello COS 326!!\n"

®
$03
WSl Ubimt2004 T2 2000t O @0 A0 B anam( conolatiarm 2099 0408



) = e hello.ml - handout [WSL: Ubuntu-20.04] .. ([ & (0|08 - 0O X
|£‘1 File > .
1
Edit > .
New Terminal Ctrl+Shift+ P
/O Selection > : : -
Split Terminal Ctrl+Shift+5
View >
g&a Go > Run Task...
Run > Run Build Task... Ctrl+Shift+B  ~ X
e Terminal 5 Run Active File
Help 5 Run Selected Text
'{é} Configure Tasks...
Configure Default Build Task... 27

X WSL: Ubuntu-20.04  £° 2022*+

04.0~8



*) = e hello.ml - handout [WSL: Ubuntu-2004] .. (D & (D [08 - 0O X

Q = helloml ® y 4

home > appel > lec1 > 22 hello.ml

N

print_string "Hello COS 326!!\n"
%

“ ubuntu$ I

PROBLEMS OuUTPUT TERMINAL  **- > | bash + v a A X

®
$03
WSl Ubimto004 T2 2000t O @0 A0 B anam( conlatiarm 2099 0408



-
oo
I
O
X

’o — e hello.ml - handout [WSL: Ubuntu-20.04] ... Q

Q = helloml ® y 4

home > appel > lec1 > 22 hello.ml

N

print_string "Hello COS 326!!\n"
%

“ ubuntu$ ocaml hello.mll

PROBLEMS OuUTPUT TERMINAL  **- > | bash + v a A X

®
$03
WSl Ubimtio004 T2 2000t O @0 A0 B anam( conoiatiarm 2099 0408



-
oo
I
O
X

’o — e hello.ml - handout [WSL: Ubuntu-20.04] ... Q

Q = helloml ® y 4

home > appel > lec1 > 22 hello.ml

N

print_string "Hello COS 326!!\n"
%

® ubuntu$ ocaml hello.ml
Hello COS 326!!
~ ubuntu$ l

PROBLEMS OuUTPUT TERMINAL +*++ |[>] bash - lecl + v a A X

®
$03
WSl Ubimti2004 B2 2000t O @0 A0 B anam( conolatiarm 2095 0408



A First OCaml Program

hello.ml:

print string "Hello COS 326!!\n"




A First OCaml Program

hello.ml:

print string "Hello COS 326!!\n"

yl 7 AN AN
\ a program
a function its string argument can be nothing

enclosedin"..." more than

just a single
no parens. normally call a function f like this: €Xpression
(but that is

f arg uncommon)

(parens are used for grouping, precedence
only when necessary)



A Second OCaml Program

sumTo8.ml:

a comment

(*...™)

z////

(* sum the numbers from 0 to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -—> n + sumTo (n-1)

let =
print int (sumTo 8);
print newline ()




[ A Second OCaml Program

the name of the function being defined

sumTo8.ml:

(* sum the numbers from 0 to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
/f 0O -> 0
| n -—> n + sumTo (n-1)

let =
print int (sumTo 8);
print newline ()

the keyword “let” begins a definition; keyword “rec” indicates recursion



A Second OCaml Program

sumTo8.ml:

(* sum the numbers from O to n

precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with é\\\\\\\\\\\\\\\\
0O -—> 0
| n -—> n + sumTo (n-1)
let =

prznt_int (sumTo 8) ;
print newline ()

" result type int

argument
~ named n
with type int




A Second OCaml Program

deconstruct the value n
using pattern matching

sumTo8.ml:

from 0 to n
n must be a natural number

(* sum the number
preconditio
match

(n:int) : int =
with é-’”””"’%’/”’/”’%’ﬂ’%~
0O —> 0

| n’ -> n’ 4+ sumTo (n-1)

)

let rec su

let =
print int (sumTo 8);
print newline ()

— data to be
deconstructed
appears
between
key words
“match” and
“with”




[ A Second OCaml Program

vertical bar "|" separates the alternative patterns

sumTo8.ml:

(* sum the numbers from 0 to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0O -> 0
|/n => n + sumTo (n-1)

let / =
rint int (sumTo 8);
print newline ()

dec%structed data matches one of 2 cases:
(i) the data matches the pattern O, or (ii) the data matches the variable pattern n



A Second OCaml Program

Each branch of the match statement constructs a result

sumTo8.ml:

(* sum the numbers from O to n

precondition: n must be a natural number
*)

let rec sumTo (n:int) : int
match n with

0O -> 0

| n -—> n + sumTo (n-1)

let = é\\\\\\\\\\\\\\\\\\\\\\\

prznt_int (sumTo 8) ;
print newline ()

construct
the result O

construct

a result
using a
recursive

call to sumTo




A Second OCaml Program

sumTo8.ml:

(* sum the numbers from 0 to n
precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
match n with
0 -> 0
| n -—> n + sumTo (n-1)

let =
print int (sumTo 8);
print newline ()

\

print the
result of
calling
sumTo on 8

print a
new line



= e sum.ml - handout WSL: Ubuntu-2004] -.. [J @ (I |08 - O X
lg A helloml ® JMsumml @ .
home > appel > lec1 > & sum.ml > ...
p 1 (¥ sum the numbers from @ to n qme-- [
2 sumTo © = 0O D
3 sumlo 3 = 6
g—‘ 4 sumTo (-1) =
5 *)
int -> int
e 6 let rec sumTo (n:int) : int =
7 if n <= @ then
8 %)
9 else
10 n + sumTo (n-1)
@ PROBLEMS  TERMINAL *** >] bash - lec1 =+ v W ~ X

Hello COS 326!!
O ubuntu$ [] |



*J = e sum.ml-handout WSL: Ubuntu-2004]-.. [ & (0 |08 - O X

p wd hello.ml i 4 sum.ml ® %a
2

home > appel > lec1 > & sum.ml > .

}C) 1 (* sum the numbers from 0 j —_
sumTo © 0 This is not part of the

program, it's just VS Code

wJ N
(¥

Fa
—

reminding you the type of
the "sumTo" function

o
Wy J__

¥

:{

int -> int
6 let rec sumTo (n:int) : int =
1t n <= @ then

8 0
else
10 n + sumfo (n-1)
§ PROBLEMS  TERMINAL *** > bash-lect +~v [IJ W ~ X

{g} Hello COS 326!!
ubuntu$ [] 4

Y WS- Ubuntu-2004 22 2022*+ <> RoA0 O obaml( coa-platform 2022 04.0~8



] = e sum.ml- handout [WSL: Ubuntu-20.04] -... - ’ s - O 5.8

p wd hello.ml i 4 sum.ml ® %a
2

home > appel > lec1 > & sum.ml > .
um the numbers from 0 —

|
/C) umTo © Good program style: before
each function definition,
write a comment saying

‘fl

J N
(Fa
(|

L)
{
J

¥
—
(|

,io
f
(Fa
:1
-
(|

what it's supposed to do,
perhaps with examples

int -> Iint
let rec sumTo (n:int) : int =
if n <= @ then

3 %)
else
10 n + sumfo (n-1)
§ PROBLEMS  TERMINAL *** > bash-lec1 +~v [I] W ~ X

{c% Hello COS 326!!
ubuntu$ [] 45

Y WS- Ubuntu-2004 22 2022*+ <> RoA0 O obaml( coa-platform 2022 04.0~8



= e sum.ml - handout [WSL: Ubuntu-20.04] -.. [[J & (I} | 08 o X
Q ™ helloml ® Msumml ® i
home > appel > lec1 > & sum.ml > ...
L -2 L
p & let rec sumTo (n:int) : int = :,::
7 if n <= 0 then E
8 %)
g‘ 9 else
10 n + sumTo (n-1)
L 11
12  let = —
13 Printf.printf “"The sum of the numbers from ©
to 8 is %d\n" (sumTo 8)
PROBLEMS  TERMINAL *** >] bash - lec1 =+ v W ~ X

@ ® ubuntu$ ocaml hello.ml
Hello COS 326!!

ﬁ)} ~ ubuntu$ D




= e sum.ml - handout [WSL: Ubuntu-2004] -.. [ & (I (|08 - 0O X

Q ™ helloml ® ™Msumml © m
home > appel > lec1 > & sum.ml > ...

HiL = 1L B,
p 6 let rec sumTo (n:int) : int = ::--
7 if n <= @ then i -
8 %)
i" 9 else
10 n + sumTo (n-1)
coe 11
12 let =
13 Printf.printf “"The sum of the numbers from © B
to 8 is %d\n" (sumTo 8)
14
@ PROBLEMS  TERMINAL *** >] bash - lect1 =+ v W A~ X
® ubuntu$ ocaml sum.ml i
The sum of the numbers from © to 8 is 36 [
o ubuntu$ |} I



= e sum.ml - handout [WSL: Ubuntu-2004] -.. [ & (I (|08 - 0O X
Q A helloml ® @summl @ .
home > appel > lec1 > & sum.ml > ...
/O 15 let triang n = n¥*(n+1)/2 ::;_’L"f:" .
16 :'t:.. -
int -> unit
g.‘ 17 let test n = assert (sumTo n = triang n)
18
19 let = test ©
20 let = test 1
21 let = test 5
22 let = test 10
23
@ PROBLEMS  TERMINAL *** >] bash - lec1 =+ v W A~ X
® ubuntu$ ocaml sum.ml i
The sum of the numbers from © to 8 is 36 I
O ubuntu$ [] |



= e sum.ml - handout WSL: Ubuntu-2004] -.. [J @ (I |08 - O X

lg ™helloml ® ™Msumml @ Py

home > appel > lec1 > & sum.ml > ...
p 15 | 1ot +rianc n = n¥(n+1)/2 e

PROBLEMS  TERMINAL  +++ >] bash - lec1 =+ v W ~ X

g.‘ © ubuntu$ utopl '

®
$03
WSl Ubimt2004 T2 2000t O @0 A0 B anam( conolatiarm 2099 0408



’Q — e sum.ml - handout [WSL: Ubuntu-20.04] -...

d helloml @ 4 sum.ml

home > appel > lec1 > &2 sum.ml > ...

p 15 | 1ot $rianc n = n¥(n+1)/2

PROBLEMS TERMINAL

g.‘ O ubuntu$ utop

>] ocamirun - lec1 —+ v

y4

elcome to utop version 2.9.1 (using OCaml version 4.13.1)

Type #utop help for help about using utop.

—( 11:03:04 )< command © >

utop#l

{ counter: 0 }-

Arith_status

Array

Arraylabels

Assert failure

Atomi




Q od helloml ® 24 summl ° L

Jo
5

e sum.ml - handout [WSL: Ubuntu-2004] -.. [ & (I (|08 - 0O X

home > appel > lec1 > & sum.ml > ...
15 | lat trianc n = n¥(n+1)/2 e —

PROBLEMS  TERMINAL  +++ >] ocamlrun - lec1 =+ v W ~ X

elcome to utop version 2.9.1 (using OCaml version 4.13.1)

Type #utop help for help about using utop.

—( 11:03:04 )< command © > { counter: 0 }-
utop # let x = 5;;

val x : int = 5
—( 11:03:84 )—<
utop # I

command 1 > { counter: 0 }-

Ve | Arith _status|Array|Arraylabels|Assert failure|Atomi




IQ od helloml ® 24 summl ° L

Jo
5

e sum.ml - handout [WSL: Ubuntu-2004] -.. [ & (I (|08 - 0O X

home > appel > lec1 > & sum.ml > ...

15 | let +rianoc n = n¥(n+1)/2 TR
PROBLEMS  TERMINAL  ++- >] ocamlrun - lec1 =+ v W ~ X

a
—( 11:03:04 )< command @ > { counter: 0 }-

utop # let x = 5;;

val x : int = 5

—( 11:03:04 )< command 1 > { counter: 0 }-
utop # #Huse "sum.ml";;

val sumTo : int -> int = <fun>

The sum of the numbers from © to 8 is 36

- unit = ()
—( 11:03:35 )< command 2 > { counter: 0 }-
utop # I

Ve | Arith _status|Array|Arraylabels|Assert failure|Atomi




IQ od helloml ® 24 summl ° L

Jo
5

e sum.ml - handout [WSL: Ubuntu-2004] -.. [ & (I (|08 - 0O X

home > appel > lec1 > & sum.ml > ...

15 | let +rianoc n = n¥(n+1)/2 TR
PROBLEMS  TERMINAL  ++- >] ocamlrun - lec1 =+ v W ~ X

a
—( 11:03:04 )< command @ > { counter: 0 }-

utop # let x = 5;;

val x : int = 5

—( 11:03:04 )< command 1 > { counter: 0 }-
utop # #Huse "sum.ml";;

val sumTo : int -> int = <fun>

The sum of the numbers from © to 8 is 36

- unit = ()

—( 11:03:35 )< command 2 > { counter: 0 }-
utop # sumlo 6;;

Ve | Arith _status|Array|Arraylabels|Assert failure|Atomi




IQ od helloml ® 24 summl ° L

Jo
5

e sum.ml - handout [WSL: Ubuntu-2004] -.. [ & (I (|08 - 0O X

home > appel > lec1 > & sum.ml > ...

15 | let +rianc n = n¥(n+1)/2 e
PROBLEMS  TERMINAL  ++- >] ocamlrun - lec1 =+ v W ~ X
val x : int = 5 ;
—( 11:03:04 )< command 1 > { counter: 0 }-

utop # #use "sum.ml"™;;

val sumTo : int -> int = <fun>

The sum of the numbers from 0 to 8 is 36

- unit = ()

—( 11:03:35 )< command 2 > { counter: 0 }-
utop # sumlo 6;;

- int = 21

—( 11:04:14 )< command 3 > { counter: 0 }-
utop # I

Ve | Arith _status|Array|Arraylabels|Assert failure|Atomi




OCAML BASICS:
EXPRESSIONS, VALUES, SIMPLE TYPES



|

Terminology: Expressions, Values, Types

Expressions are computations

— 2+ 3 is a computation

Values (a subset of the expressions) are the results of computations

— S5is avalue

Types describe collections of values and the computations that
generate those values

— int is a type

— values of type int include
* 0,1,2,3, .., max_int
e -1,-2, ..., min_int



Some simple types, values, expressions

int
float
char
string
bool

unit

Values:

-2, 0, 42

3.14, -1., 2el?2
rar, 'b’, &’
"moo", "cow"

true, false

()

Expressions:
42 * (13 + 1)
(3.14 +. 12.0) *. 10eo0

int_of_char ra’

"mOO" A "COW"
if true then 3 else 4
print int 3

For more primitive types and functions over them,
see the OCaml Reference Manual here:

https://ocaml.org/api/Stdlib.html



Evaluation

42 * (13 + 1)



[ Evaluation

42 * (13 + 1) —-->* 588

| J
!

Read like this: “the expression 42 * (13 + 1) evaluates to the value 588”

The “*” is there to say that it does so in 0 or more small steps



[ Evaluation

42 * (13 + 1) —-->* 588

| J
I

Read like this: “the expression 42 * (13 + 1) evaluates to the value 588”

The “*” is there to say that it does so in 0 or more small steps

Here I’'m telling you how to execute an OCaml expression --- i.e., I’'m telling you
something about the operational semantics of OCaml

More on semantics later.



Evaluation

42 * (13 + 1)

(3.14 +. 12.0) *. 10e06

int_of_char ra’
n n A n n
moo COW

if true then 3 else 4

print int 3

—=>%* 588

——>%* 151400000.
—=>% 97

-—>*  “moocow”
—o>k 3

—=>% ()



Evaluation

1 + "hello" -->* 77



Evaluation

1 + "hello" -->* 977

“+” processes integers
“hello” is not an integer
evaluation is undefined!

Don’t worry! This expression doesn’t type check.

Aside: See this 4-min talk on Javascript:
https://www.destroyallsoftware.com/talks/wat



OCAML BASICS:
CORE EXPRESSION SYNTAX



Core Expression Syntax

The simplest OCaml expressions e are:

e values numbers, strings, bools, ...
* id variables (x, foo, ...)

* e, 0pe, operators (x+3, ...)

* ideje,..e, function call (foo 3 42)

* letid=e;ine, local variable decl.

* ife,thene,elsee; a conditional

* (e) a parenthesized expression

e (e:t) an expression with its type



A note on parentheses

)

In most languages, arguments are parenthesized & separated by commas:

£(x,y,2) sum(3,4,5)
In OCaml, we don’t write the parentheses or the commas:

f xy z sum 3 4 5

But we do have to worry about grouping. For example,

f xy z
f x (y z)

The first one passes three arguments to f (x, y, and z)

The second passes two arguments to f (x, and the result of applying the
functiony to z.)



OCAML BASICS:
TYPE CHECKING



Type Checking ]

Every value has a type and so does every expression

This is a concept that is familiar from Java but it becomes more
important when programming in a functional language

We write (e : t) to say that expression e has type t. eg:

2 :int "hello" : string

2+2:int "I say " A "hello" : string



Type Checking Rules

There are a set of simple rules that govern type checking

— programs that do not follow the rules will not type check and
OCaml will refuse to compile them for you (the nerve!)

— at first you may find this to be a pain ...

But types are a great thing:
— help us think about how to construct our programs
— help us find stupid programming errors
— help us track down errors quickly when we edit our code
— allow us to enforce powerful invariants about data structures



Type Checking Rules

Example rules:
(1) 0:int

(2) "abc":string

(and similarly for any other integer constant n)

(and similarly for any other string constant "...

)



Type Checking Rules ]

Example rules:

(1) 0:int (and similarly for any other integer constant n)
(2) "abc":string (and similarly for any other string constant "...")
(3) ifel:intande2:int (4) ifel:intande2:int

thenel +e2:int thenel *e2:int



Type Checking Rules ]

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
then el +e2:int thenel *e2:int
(5) ifel:stringande2 :string (6) ife:int

then el M e2 : string then string_of inte :string



Type Checking Rules ]

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Using the rules:

2 :intand 3 :int. (By rule 1)



Type Checking Rules ]

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)



Type Checking Rules ]

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5:int (By rule 1)



Type Checking Rules

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly fg

FYIl: This is a formal proof
that the expression is well-
typed!

(3) ifel:intande2:int
thenel +e2:int

(5) ifel:stringande2 :string
then el  e2 : string

: string

Using the rules:

2 :intand 3 :int. (By rule 1)
Therefore, (2 + 3) : int (By rule 3)
5:int (By rule 1)

Therefore, (2 + 3) *5:int (By rule 4 and our previous work)



Type Checking Rules

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Another perspective:
P S s :int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ????



Type Checking Rules

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Another perspective:
7 * 9997 :int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ????



Type Checking Rules

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Another perspective:
7 * (add_one 17) : int

rule (4) for typing expressions //
says | can put any expression

with type int in place of the ????



Type Checking Rules

You can always start up the OCaml interpreter to find out a type
of a simple expression:

S ocaml
OCaml Version 4.13.1

i




Type Checking Rules

You can always start up the OCaml interpreter to find out a type
of a simple expression:

or utop
S ocaml
OCaml Version 4.13.1
# 3 + 1;;

“..nm /

to end e

a phrase
in the
top level

(“;;” can also end a top-level phrase in a file, but I'm going to avoid using it there because then some of you will confuse it with a ”;”



Type Checking Rules

You can always start up the OCaml interpreter to find out a type

of a simple expression:

S ocaml
OCaml Version 4.13.1

# 3 + 1;;

i

: 1int

press //////7

return e

and you
find out

= 4

the type
and the
value



Type Checking Rules

You can always start up the OCaml interpreter to find out a type
of a simple expression:

S ocaml
OCaml Version 4.13.1
# 3 + 1;;
- : int = 4
# “hello ” ~ “world”;;
press - string = “hello world”
it
return /
and you
find out ]
the type
and the

value



Type Checking Rules

You can always start up the OCaml interpreter to find out a type
of a simple expression:

S ocaml
OCaml Version 4.13.1
3+ 1;;
: int = 4
“‘hello ” ~ “world”;;
string = “hello world”
#quit;;

Uy H+= | H= | HF




Type Checking Rules ]

Example rules:

(1) 0:int (and similarly for any other integer constant n)

(2) "abc":string (and similarly for any other string constant "...")

(3) ifel:intande2:int (4) ifel:intande2:int
thenel +e2:int thenel *e2:int

(5) ifel:stringande2 :string (6) ife:int
then el M e2 : string then string_of inte :string

Violating the rules:

"hello" : string (By rule 2)
1:int (By rule 1)
1+ "hello" : ?? (NO TYPE! Rule 3 does not apply!)



Type Checking Rules

Violating the rules:

# "hello" + 1;;

Error: This expression has type string but an
expression was expected of type int

The type error message tells you the type that was expected and
the type that it inferred for your subexpression

By the way, this was one of the nonsensical expressions that did
not evaluate to a value

It is a good thing that this expression does not type check!

“Well typed programs do not go wrong”
Robin Milner, 1978



Type Checking Rules

Violating the rules:

# "hello™ + 1;;
Error: This expression has type string but an
expression was expected of type int

A possible fix:

# "hello" ~ (string of int 1);;
- Strj_ng = "hellol"

One of the keys to becoming a good ML programmer is to
understand type error messages.



|

Type Checking Rules

What about this expression:

# 3/ 0 ;;

Exception: Division by zero.

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?



[ Type Checking Rules

What about this expression:

# 3/ 0 ;;
Exception: Division by zero.

Why doesn't the ML type checker do us the favor of telling us the
expression will raise an exception?
— In general, detecting a divide-by-zero error requires we know that
the divisor evaluates to O.
— In general, deciding whether the divisor evaluates to O requires
solving the halting problem:

# 3 / (if turing machine halts m then 0 else 1);;

There are type systems that will rule out divide-by-zero errors, but
they require programmers supply proofs to the type checker



Isn’t that cheating?

“Well typed programs do not go wrong”
Robin Milner, 1978

(3/0) iswelltyped. Does it “go wrong?” Answer: No.

“Go wrong” is a technical term meaning, “have no defined
semantics.” Raising an exception is perfectly well defined
semantics, which we can reason about, which we can handle in
ML with an exception handler.

So, it’s not cheating.

(Discussion: why do we make this distinction, anyway?)



Type Soundness

“Well typed programs do not go wrong”

Programming languages with this property have
sound type systems. They are called safe languages.

Safe languages are generally immune to buffer overrun

vulnerabilities, uninitialized pointer vulnerabilities, etc., etc.

(but not immune to all bugs!)

Safe languages: ML, Java, Python, ...

Unsafe languages: C, C++



OVERALL SUMMARY.:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

96



OCaml ]

OCaml is a functional programming language

— express control flow and iteration by defining functions
— not by modifying the values of variables and data structures

[ Imperative: “do this” Functional: “be this” ]

OCaml is a typed programming language

— the type of an expression correctly predicts the kind of value
the expression will generate when it is executed

— types help us understand and write our programs
— the type system is sound; the language is safe



