Consistency

f| vET [Nov (8
TES | TAM
f| Ex [TvMm (Y

COS 316: Principles of Computer System Design

Lecture 12

Wyatt Lloyd & Rob Fish

Why Do We Build Systems?

* Abstract away complexity

Distributed Systems are Highly
Complex Internally

Sharding 9

j C ol (Geo)-RepIicfétion
- | >l S s

Concurrent access by many client

Distributed Systems are Highly

Complex Internally
Sharding, Geo-Replication, Concurrency

Distributed Systems are Highly

Complex Internally
Sharding, Geo-Replication, Concurrency

Consistency Models

« Contract between a (distributed) system and the applications
that run on it

* A consistency model is a set of made by the
distributed system

Stronger vs Weaker Consistency

Application Code

Application Code

Strongly Consistent
Distributed System

Weakly Consistent
Distributed System

Stronger vs Weaker Consistency

« Stronger consistency models
+ Easier to write applications
- System must hide many behaviors

 Fundamental tradeoffs between consistency & performance
 (Discuss CAP, PRAM, SNOW in 418!)

 Weaker consistency models
- Harder to write applications
Cannot (reasonably) write some applications
+ System needs to hide few behaviors

Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
l operations in the same order

Eventual Consistency Anything goes

Linearizabilit
“Appears to be a Single Machine”

* External client submitting requests and getting responses
from the system can'’t tell this is not a single machine!

* There is some over all operations
» Processes all requests one by one

* Order preserves the between operations

 |f operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

* (But there must be some total order)

Real-Time Ordering Examples

Pa | wix=1)
Ps I— w(x=2) —I

Mythical

Single
Machine

Real-Time Ordering Examples

Pa | wix=1)
Ps w(x=2) —l
P. | [wix=3) -]

Mythical \\ /

Single
Machine

Linearizable?
Pa | wix=1)
Py | wix=2)
Pc |— w(x=3) -I

P, | r0=2 -} rv=3 v

W1, Wy, I'p, W3, I'3

Linearizable?

Pa |— w(x=1) -|

Ps |— w(x=2) -|

Pc |— w(x=3) -|

P, | ro=2 < rix=3 < v
P, | r0=1 <} rv=2 v

W1, I, Wo, g, W3

Linearizable?
Pa | wix=1)
Py | wix=2)
Pc |— w(x=3) -I

Po - r(x)=2 = r(x)=3 — v
Pp = r(x)=1 = r(x)=2 4

Po | r0=2 | r0=2 —| v

W1, Wy, g, 'y, W3

Linearizable?
Pa | wix=1)
P, | wix=2)
Pc |— w(x=3) -I

P - =2 —|| r(0=3 — v
Po - r)=1 | rx1=2 — v
Po - r)=2 = r(x1=2 — v
Po | r0=1 <} rv=3 v

W1, 1, Wo, W3, I3

Linearizable?

Pa | wix=1)

|- wix=2)

|- wixea)

= r(x)=3 =
= r(x)=2 =
= r(x)=2 =

= r(x)=3 =

X NN NX

Linearizable?
Pa | wix=1)
Ps | wix=2)
Pc |— w(x=3) -I
Pp |— w(x=4) -l |— w(x=5) -l

Pe |— W(x=6) -I
P | r0=2 | r0=3 | rv=6 4} rv=s 4 v

W1, Wy, r2’ Wy, W3! r3, WG! r6! W5’ r5
OR
W1, Wy, Wy, Iy, W3, I3, Wg, I, W5, I'5

OR
W1, Wy, o, W3, I'3, Wy, Wg, g, W5, I'5

Linearizable?

Pa | wix=1) 4

Ps F wix=2) 4

Pe | wix=3)

Po F wix=a) 4 | wix=s5)

P |- wixee)

Pe | ro=2 } ri=s - ro=6 | rv=s 4 X

Linearizable?
Pa | wix=1)
Ps |— w(x=2) -|
Pc |— w(x=3) -I

Pp |— w(x=4) -l |— w(x=5) -l
Pe |— w(x=6) -I

P, | r0=4 -} r0=2 | r0=3 -} rv=6 - v

W1, Wy, 4, Wy, I, W3, I'3, W5, Wg, I'g

Linearizable?
Pa | wix=1)
Py | wix=2)
Pc Frost <4 X

Linearizability ==
“Appears to be a Single Machine”

* There Is some over all operations
* Processes all requests one by one

* Order preserves the between operations

* If operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

 (But there must be some total order)

How to Provide Linearizability?

1. Use a single machine ©

2. Use “state-machine replication” on top of a consensus

protocol like Paxos
 Distributed system appears to be single machine that does not fail!!

« Covered extensively in 418

Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
1 operations in the same order

Eventual Consistency Anything goes

Consistency Hierarchy

Linearizability

--------I ------------------------ CAP

Causal+ Consistency

l

Eventual Consistency

Causal+ Consistency Informally

1. Writes that are causally related
must be seen by everyone in the same order.

2. Concurrent writes may be seen in a different
order by different entities.

« Concurrent: Writes not causally related

* Potential causality: event a have a causal
effect on event b.
* Think: is there a path of information from a to b?
« a and b done by the same entity (e.g., me)

 ais awrite and b is a read of that write
* + transitivity

Causal+ Sufficient

Friends
Bc S @ Add to Cart
| Then | | Then |
NeW JOb' -\.l.,Can -
Employment Purchase

retained retained

[o—

l Theh |

Error
404 - File not found

Deletion
retained

Causal+ Sufficient

(*) I am a new customer.

ﬁ Wvatt likes (You'll create a password later)
aﬂ““' My Little Pony. ‘ SI'S" in u,sigg our Secure server g,
| Then | | Then |

Hide from Timeline ‘ Proceed to checkout ﬁ)

Causal+ Not Sufficient
(Need Linearizability)

* Need a total order of operations
* e.g., Alice’s bank account = 0

* Need a real-time ordering of operations
* e.g., Alice changes her password, Bob cannot login with old password

Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
1 operations in the same order

Eventual Consistency Anything goes

Eventual Consistency

* Anything goes for now...

* (If updates stop,
eventually all copies of the data are the same)

* But, eventually consistent systems often try to provide
consistency and often do

* e.g., Facebook’s TAO system provided linearizable results 99.9994%
of the time [Lu et al. SOSP “15]

» “Good enough” sometimes
* e.g., 99 vs 100 likes

Consistency Model Summary

» Consistency model specifies strength of abstraction
* Linearizability - Causal+ - Eventual
« Stronger hides more, but has worse performance

* When building an application, what do you need?
« Select system(s) with necessary consistency
« Always safe to pick stronger

* When building a system, what are your guarantees?
* Must design system such that they always hold

* Must confront fundamental tradeoffs with performance
 What is more important?

