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Why Do We Build Systems?

* Abstract away complexity



Distributed Systems are Highly
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Consistency Models

« Contract between a (distributed) system and the applications
that run on it

* A consistency model is a set of made by the
distributed system



Stronger vs Weaker Consistency
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Stronger vs Weaker Consistency

« Stronger consistency models
+ Easier to write applications
- System must hide many behaviors

 Fundamental tradeoffs between consistency & performance
 (Discuss CAP, PRAM, SNOW in 418!)

 Weaker consistency models
- Harder to write applications
Cannot (reasonably) write some applications
+ System needs to hide few behaviors



Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
l operations in the same order

Eventual Consistency Anything goes



Linearizabilit
“Appears to be a Single Machine”

* External client submitting requests and getting responses
from the system can'’t tell this is not a single machine!

* There is some over all operations
» Processes all requests one by one

* Order preserves the between operations

 |f operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

* (But there must be some total order)



Real-Time Ordering Examples
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Linearizable?
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Linearizability ==
“Appears to be a Single Machine”

* There Is some over all operations
* Processes all requests one by one

* Order preserves the between operations

* If operation A before operation B ,
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

 (But there must be some total order)



How to Provide Linearizability?

1. Use a single machine ©

2. Use “state-machine replication” on top of a consensus

protocol like Paxos
 Distributed system appears to be single machine that does not fail!!

« Covered extensively in 418



Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
1 operations in the same order

Eventual Consistency Anything goes



Consistency Hierarchy
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Causal+ Consistency Informally

1. Writes that are causally related
must be seen by everyone in the same order.

2. Concurrent writes may be seen in a different
order by different entities.

« Concurrent: Writes not causally related

* Potential causality: event a have a causal
effect on event b.
* Think: is there a path of information from a to b?
« a and b done by the same entity (e.g., me)

 ais awrite and b is a read of that write
* + transitivity



Causal+ Sufficient
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Causal+ Sufficient

(*) I am a new customer.
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Causal+ Not Sufficient
(Need Linearizability)

* Need a total order of operations
* e.g., Alice’s bank account = 0

* Need a real-time ordering of operations
* e.g., Alice changes her password, Bob cannot login with old password



Consistency Hierarchy

Linearizability Behaves like a single machine
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Eventual Consistency

* Anything goes for now...

* (If updates stop,
eventually all copies of the data are the same)

* But, eventually consistent systems often try to provide
consistency and often do

* e.g., Facebook’s TAO system provided linearizable results 99.9994%
of the time [Lu et al. SOSP “15]

» “Good enough” sometimes
* e.g., 99 vs 100 likes



Consistency Model Summary

» Consistency model specifies strength of abstraction
* Linearizability - Causal+ - Eventual
« Stronger hides more, but has worse performance

* When building an application, what do you need?
« Select system(s) with necessary consistency
« Always safe to pick stronger

* When building a system, what are your guarantees?
* Must design system such that they always hold

* Must confront fundamental tradeoffs with performance
 What is more important?






