Introduction to Naming

B vET | Nov (M
TES | TAM
EN [TVM

A

COS 316: Principles of Computer System Design
Lecture 3

Wyatt Lloyd & Rob Fish



Naming Module

 Naming Overview (today)
 Memory Naming
* OS, Security

* Unix File System Naming
« OS

 Git Naming
* OS, Distributed Systems

* Network Naming
* Networking

Application

Hardware

Hardware



Application: “l would like to send data to the Internet host, please.”
System: “Which host?”

Application: “Oh uh ... cs.princeton.edu”



Application: “l would like to send data to the Internet host, please.”
System: “Which host?”

Application: “Oh uh ... cs.princeton.edu”

cs.princeton.edu is the name for an IP address!



Application: “Can | please get the data?”
System: “You’re gonna have to be more specific.”

Application: “The data in /home/wlloyd/316-revamp.txt”



Application: “Can | please get the data?”
System: “You’re gonna have to be more specific.”
Application: “The datain /home/wlloyd/316-revamp.txt”

/home/wlloyd/316-revamp.txt Is the name for a bunch of sectors on disk!



Application: “What is the sum of two numbers?”
System: “l really need to know which numbers...”
Application: “Fine, fine, fine: the ones in registers r1 and r2.”



Application: “What is the sum of two numbers?”
System: “I really need to know which numbers...”
Application: “Fine, fine, fine: the ones in registers r1 and r2.”

rland r2 are names for words of memory residing in CPU registers!



Whenever an application uses a resource, it must somehow name it.



Agenda

 Why does it matter?
* An intellectual framework for naming
« Naming memory



Why does naming matter?

* Naming is the most central design
choice in the interface of a system

* Recall: Systems provide an interface to underlying resources
* Mediate access to shared resources
 Isolate applications
« Abstract complexity
» Abstract differences in implementation

 We always need some way for applications (or other clients)
to name those resources



Why does naming matter?

 The names systems use to expose underlying resources
affects every other aspect of the system:
* Performance of the system implementation
« Application performance and flexibility
« Security & Isolation
* Portability
* Resource sharing and concurrency



Naming Scheme Framework

« Values: What is it that we’re naming?
* Disk sectors?
* Network nodes?
 Users?

 Names: What’s the format of a name?
« Alphanumeric strings up to 32 characters
* Non-zero integers
* 128-bit numbers

 Allocation mechanism: How does the system create new names and values?

* Lookup mechanism: How does the system map from names to values?



Let’s Name Memory

d A3y
p18S20 @

4
a
7]
14
(o]

¢ 9

[
&

(alalalalalal

5151 & T

R L L L L I

= = a i r
EREEL AEEEEEEEEEEEEEEEEEEEEE R R R R TR R

Image from: https://commons.wikimedia.org/wiki/File:DRAM_DDR2_512.jpg



Naming Memory #1: Geometric memory

 Values: Words of memory

« Names: DIMM 1; BANK 3; ROW 1200; COLUMN 4;
» Specifies the precise location of the word(s)

* Allocation: n/a
 Or install more memory

* Lookup mechanism: direct in simple hardware



Naming Memory #2: Physical memory

 Values: Words of memory

« Names: OxDEADBEEF
* Integer up to the maximum size of memory in words

* Allocation: n/a
 Or install more memory

* Lookup mechanism: direct in simple hardware



Comparing Geometric and Physical

* Performance of the system implementation
» Application performance and flexibility

« Security & Isolation

* Portability

* Resource sharing and concurrency

* All essentially the same

« But physical is more portable than geometric
* (Geometric is not real for memory, dominated by physical)



Naming Memory #3: Virtual memory

 Values: (type, address)
» Type is a type of storage; address is storage specific

* (Memory, memory address)
 (File, file name and offset in file)
* (Remote memory, remote node and memory address)

 Names: 64 bit address & process ID
 E.g., (OXDEADBEEF, 1337)
» process ID is typically implicit

 Allocation: mmap



mmap system call

 void *mmap(void *addr, size_t length) simpiifieq)

» Application chooses an unused name: an address not yet allocated for it

* (Or can pass in NULL if it doesn’t care)

« Kernel (the system!)
» keeps a list of unused physical 4KB memory pages
 allocates “value” by removing a physical page from the list

« adds mapping between virtual address and physical to the application’s “page table”

* in-memory data structure understood by virtual memory hardware that maps virtual addresses to
physical addresses



Virtual memory lookup

* Lookup virtual address in “page table”
« Stored in memory (where it is “pinned”)
« OS maintains one page table per process

* Page table maps virtual address to physical memory address
OR file and location OR remote machine and memory address

* Performance implications?



Naming Memory #3: Virtual memory

 Values: (type, address)
» Type is a type of storage; address is storage specific

* (Memory, memory address)
 (File, file name and offset in file)
* (Remote memory, remote node and memory address)

 Names: 64 bit address & process ID
 E.g., (OXDEADBEEF, 1337)
» process ID is typically implicit

 Allocation: mmap

« Lookup: TLB, page table, disk, ...



Virtual memory lookup

» Lookup virtual address in TLB (Translation lookaside buffer)
 Small hardware implemented cache
« Hit - translates to physical address

* TLB miss goes to “page table”
« Stored in memory (where it is “pinned”)
« OS maintains one page table per process

* Page table maps virtual address to physical memory address
OR file and location OR remote machine and memory address



Comparing Physical and Virtual

Winner?
* Performance of the system implementation * Physical
* Application performance * Physical
* Application flexibility * Virtual
« Security (Isolation) * Virtual
 Effectiveness of caching * Physical
* Resource sharing and concurrency « ~Same

« Portability * ~Same



What type of memory naming to use?

1. On your laptop
2. For a tiny power constrained microcontroller

3. For a supercomputer that runs one massive simulation at a time

4. On your phone



Naming Memory #4: Original UNIX

« Swap out all memory for one process at a time
« Allows using physical addresses with isolation!
« Simple and efficient to implement in hardware
« Can’t run applications in parallel
« Expensive to switch between applications



Naming Memory #5: Segmentation

* Virtual addresses are low-order bits of physical address +
segment register

* Relatively simple hardware
* (just concatenate segment register and virtual address)

* Isolates concurrent applications using names
* Much coarser grain: all virtual memory must be contiguous in RAM
« Can’t share memory between applications



Summary

 Names are the way systems expose resources to applications

« Central to designing and understanding systems
* Performance
» Security
« Caching
* Resource sharing

 Framework for naming:
» Values
 Names
» Allocation mechanism
* Lookup mechanism






