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Dynamic programming

Algorithm design paradigm.
» Break up a problem into a series of overlapping subproblems.
* Build up solutions to larger and larger subproblems.

(caching solutions to subproblems for later reuse)

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Richard Bellman, #46

Application areas.

* Operations research: multistage decision processes, control theory, optimization, ...

 Computer science: Al, compilers, systems, graphics, databases, robotics, theory, ...
e Economics.

» Bioinformatics.
* Information theory.

* Tech job interviews.

Bottom line. Powerful technique; broadly applicable.



Dynamic programming algorithms

Some famous examples.
» System R algorithm for optimal join order in relational databases.
* Needleman-Wunsch/Smith-Waterman for sequence alignment.
* Cocke-Kasami-Younger for parsing context-free grammars.
* Bellman-Ford-Moore for shortest path. <—— shortest paths lecture
* De Boor for evaluating spline curves.
 Viterbi for hidden Markov models.

* Unix diff for comparing two files.

C- Avidan-Shamir for seam carving. ) «—— see Assignment 6

« NP-complete graph problems on trees (vertex color, vertex cover, independent set, ...).
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Dynamic programming books
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Fibonacci numbers

Fibonacci numbers. 0,1,1,2,3,5,8, 13,21, 34,55, 89, ...

0 if ¢
F,=<1 if =1
F, 1+ F,_o if 1:>1

|
S

Leonardo Fibonacci




Fibonacci numbers: naive recursive approach

Fibonacci numbers. 0,1,1,2,3,5,8,13,21, 34, 55,89, ...

0 it 2 =20
F,=<1 if 1 =1
F, 1+ F,_o9 it 1 >1

Goal. Given n, compute F,.

Naive recursive approach:

public static long fib(int 1) {
1f (1 == 0) return O;
if (1 == 1) return 1;
return fib(1-1) + fib(1-2);



Dynamic programming: quiz |

How long to compute fib(80) using the naive recursive algorithm?

A. Less than 1 second.
B. About 1 minute.
C. More than 1 hour.

D. Overflows a 64-bit Tong integer.



Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.

Ex. To compute fib(6):

e fib(5) is called 1 time.
1

« fib(4) is called 2 times.

« fib(3) is called 3 times.
* fib(2) is called 5 times.
e fib(1) is called F,= F; =8 times.

running time = # subproblems x cost per subproblem



Fibonacci numbers: top-down dynamic programming (memoization)

Memoization.
 Maintain an array (or symbol table) to remember all computed values.
 |If value to compute is known, just return it;

otherwise, compute it; remember it; and return it.

public static long fib(int 1) {
1f (1 == 0) return O;
1f (1 == 1) return 1;
it (f[1] == 0) f[1] = fib(i-1) + fib(1-2);
return f[1];

Impact. Solves each subproblem F; only once; ®(n) time and space to compute F,.

11



Fibonacci numbers: bottom-up dynamic programming (tabulation)

Tabulation.
* Build computation from the “bottom up.”
* Solve small subproblems and save solutions.

* Use those solutions to solve larger subproblems.

public static long fib(int n) {
long[] f = new long[n+1];
f[0] = O;
f[1] = 1;
for (Aint 1 =2; 1 <=n; 1++)
fl1]l = f[i-1] + f[1-2];
return f[n];

Impact. Solves each subproblem F; only once; ®(n) time and space to compute F,; no recursion.

12



Fibonacci numbers: further improvements

Performance improvements.

* Reduce space by maintaining only two most recent Fibonacci numbers.

public static long fib(int n) {
int f = 0, g 1 - < f and g are consecutive

for (int 1 = 0; 1 < n; 1++) {

Fibonacci numbers

g ="t +g;
f =9 - f;
¥
return f;

but our goal here is to
introduce dynamic programming

. {ﬁ] 5 1EV5 (1 1)75 _ <FZ-+1 F, )
" \/5 ’ 2 1 0 Fz Fi—l

« Exploit additional properties of problem: -«

13



Dynamic programming recap

Dynamic programming.
* Divide a complex problem into a number of simpler overlapping subproblems.

[ define n + 1 subproblems, where subproblem i is computing Fibonacci number i]

» Define a recurrence relation to solve larger subproblems from smaller subproblems.

[ easy to solve subproblem i if we know solutions to subproblems i—1and i -2 ]

0 it =20
Fi—l -+ FZ'_Q if 7 >1

» Store solutions to subproblems, solving each subproblem only once.

[ store solution to subproblem i in array entry f[i] ]

» Use stored solutions to solve the original problem.

' solution to subproblem #n is original problem ]

14
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House painting problem

Goal. Given a row of n black houses, paint some orange so that:
« Maximize total profit, where profiz(i) = profit from painting house i orange.

» Constraint: no two adjacent houses painted orange.

AALA

. > 3 456
profit(i) 9 13 30

profit for painting houses 1, 4, and 6 orange
(10+ 20 + 25 = 55)

16



House painting problem: dynamic programming formulation

Goal. Given a row of n black houses, paint some orange so that:
« Maximize total profit, where profiz(i) = profit from painting house i orange.

» Constraint: no two adjacent houses painted orange.

Subproblems. OPT(i) = max profit to paint houses 1, ..., i.
Optimal value. OPT(n).

l

o 12 3456
profit(i) 10 9 13 20 30 25
oo, o 10 10 23

keep house 6 black  paint house 6 orange
OPT(6) = max { OPT(5), profit(6) + OPT(4) }
= max { 53, 25+ 30 }
= 55

17



House painting problem: dynamic programming formulation B

Goal. Given a row of n black houses, paint some orange so that:
« Maximize total profit, where profiz(i) = profit from painting house i orange.

» Constraint: no two adjacent houses painted orange.

Subproblems. OPT(i) = max profit to paint houses 1, ..., i.
Optimal value. OPT(n).

optimal substructure
(optimal solution can be constructed from

Binary choice. To compute OPT(i) , either: optimal solutions to smaller subproblems)
 Don’t paint house i orange: OPT(i — 1).
< take best
« Paint house i orange: profit(i) + OPT(i — 2).
Dynamic programming recurrence.
(0 if i =0
OPT (i) = « profit(1) if 1 =1
. max{ OPT(i — 1), profit(i) + OPT(i —2)} if¢>2

18



House painting: naive recursive implementation

Naive recursive approach:

private int opt(int 1) {
1f (1 == 0) return O;
1f (1 == 1) return profit[1l];
return Math.max(opt(i-1), profit[i] + opt(i-2));

Dynamic programming recurrence.

’

0 ifte=20
OPT (i) = « profit(1) if 1 =1

. max{ OPT(i — 1), profit(i) + OPT(i —2)} if¢>2

19



Dynamic programming: quiz 2

What is running time of the naive recursive algorithm as a function of n?

A. O(n)
B. 0Om?
C. O(") for some c>1.

D. O@!

private int opt(int 1) {
1f (1 == 0) return O;
1f (1 == 1) return profit[1l];
return Math.max(opt(i-1), profit[i] + opt(i-2));

20



“Those who cannot remember the

past are condemned to repeat it. ”

— Dynamic Programming

(Jorge Agustin Nicolds Ruiz de Santayana y Borrds)




Housing painting: bottom-up implementation

Bottom-up DP implementation.

1nt[] opt = new 1nt[n+1];
opt[0] = 0;
opt[1l] = profit[1l];
for (int 1 = 2; 1 <= n; 1++)
opt[1] = Math.max(opt[1-1], profit[i1] + opt[i1-2]);

OPT(3)

Proposition. Computing OPT(n) takes O(n) time and uses O(n) extra space.

N\

AN /

solutions to smaller subproblems already available

y

0 ite=20

profit(1) if § = 1

max { OPT(¢ — 1), profit(i) + OPT(i —2)} ifi¢>2

\

22



Housing painting: trace

Bottom-up DP implementation trace.

profit(i)
OPT(i)

0

AANAAAA

- > 5 o
10 9 13 20 30 25

10 10 23 30 53

OPT(i) = max profit for painting houses 1, 2, ..., i

23



Housing painting: traceback

Q. We computed the optimal value. How to reconstruct an optimal solution?

A. Trace back path that led to optimal value.

yﬁ\ yﬁ\ A
- > 5 o
10 9 13 20 30 25

profir(i)
OPT(i) 0 10 «—— 10 23 30 53

OPT(i) = max profit for painting houses 1, 2, ..., i

24



Coin changing problem

Problem. Given n coin denominations {d,,d,, ...,d, } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Ex. Coin denominations = {1, 10,25, 100 }, V=131.
Greedy (8 coins). 131¢=100+25+1+1+1+1+1+1.
Optimal (5 coins). 131¢ =100+ 10+ 10 + 10 + 1.

8 coins 5 coins
(131¢) (131¢)

Remark. Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.

vending machine
(out of nickels)

25



Dynamic programming: quiz 3

Which subproblems for coin changing problem?

A. OPT(i) = fewest coins needed to make change for target value V
using only coin denominations d,,d,, ..., d;.

B. OPT(v) = fewest coins needed to make change for amount v,
forv=0,1,2,...,V.

C. Either A or B.

D. Neither A nor B.

26



Coin changing: dynamic programming formulation

Problem. Given n coin denominations { d,, d,, ..

.,d, } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Subproblems. OPT(v) = fewest coins needed to make change for amount v.

Optimal value. OPT(V).

Ex. Coin denominations {1,5,8 } and V= 10.

v

# coins

e e e e e e e e e e
0 1 3 4 2 3 1

OPT(10)

min { 1 + OPT(10 — 1), 1 + OPT(10 - 5), 1 + OPT(10 — 8) }

min{1+2, 1+1, 1+2)}
2

27



Coin changing: dynamic programming formulation B

Problem. Given n coin denominations { d,,d,, ...,d, } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Subproblems. OPT(v) = fewest coins needed to make change for amount v.
Optimal value. OPT(V).

Multiway choice. To compute OPT(v),

« Select a coin of denomination d; <v for some i.
< take best

« Use fewest coins to make change for v — d.. (among all coin denominations)

AN

optimal substructure

Dynamic programming recurrence.

0 it v =20

OPT(U) = in { 1+ OPT(?J _ di) } if v >0

1 d@SU

28



Coin changing: bottom-up implementation

Bottom-up DP implementation.

int[] opt = new 1nt[V+1];
opt[0] = 0;

for (intv=1, v <=V; vi+) { ()f*f(v) _
opt[v] = INFINITY;
for (int 1 =1; 1 <= n; 1++) {
1t (d[1] <= v)
opt[v] = Math.min(Coptlv], 1 + optlv - d[1]]);

Proposition. DP algorithm takes ®(n V) time and uses ®(V) extra space.

Note. Not polynomial in input size; underlying problem is NP-complete.

0

min {1+ OPT(v—d;) }
’i:diS’U

it v=20

it v >0

29
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Shortest paths in directed acyclic graphs: dynamic programming formulation

Problem. Given a DAG with positive edge weights, find shortest path from s to r.
Subproblems. distTo(v) =length of shortest s~v path.
Goal. distTo(¥).

Multiway choice. To compute distTo(v) :

» Select an edge e =u—v entering v. rake best among (5) 10
distlo(u) + weight(e)

« Concatenate with shortest s~u path.

|

optimal substructure

&) ©
)

Dynamic programming recurrence.

0 it v=-s=s

distTo(v) =
min { distTo(u) + weight(e) } if v # s

€ = U—>v

31



Shortest paths in directed acyclic graphs: bottom-up solution

Bottom-up DP implementation. Takes ®(E + V) time with two tricks:
* Solve subproblems in topological order.

* Build reverse digraph G® (to support iterating over edges incident to vertex v).

Equivalent (but simpler) computation. Relax vertices in topological order.

Topological topological = new Topological (G);
for (int v : topological.order())

for (DirectedEdge e : G.adj(v))
relax(e);

Backtracing. Can find the shortest paths themselves by maintaining edgeTo[] array.

&) © ©

32



Dynamic programming: quiz 4

Given a DAG, how to find longest path from s to ¢ in O(E£ + V) time?

sa\\@/,a/@\b—»a—»a—»af

longest path from s to t in a DAG (all edge weights = 1)

A. Negate edge weights; use DP algorithm to find shortest path.
B. Replace min with max in DP recurrence.
C. Either A or B.

D. No poly-time algorithm is known (NP-complete).

33



Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.
 Vertex v corresponds to subproblem v.
« Edge v—w means subproblem v must be solved before subproblem w.
* Digraph must be a DAG. Why?

Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

(Y (2 o0 D0

coin denominations ={1,5,8}, V=10

34



Shortest paths in DAGs and dynamic programming

DP subproblem dependency digraph.
 Vertex v corresponds to subproblem v.
« Edge v—w means subproblem v must be solved before subproblem w.
* Digraph must be a DAG. Why?

Ex 2. Modeling the house painting problem as a longest path problem in a DAG.

/

profit for painting
house 6 orange

35
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Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display

on cell phones and web browsers.

R

‘Image Resizing

Shai Avidan
Mitsubishi Electric Research Lab

Ariel Shamir
The interdisciplinary Center & MERL

37


https://www.youtube.com/watch?v=vIFCV2spKtg

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for display

on cell phones and web browsers.

In the wild. Photoshop, ImageMagick, GIMP, ...

38



Content-aware resizing

To find vertical seam in a picture:
« Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors (SW, S, SE).
* Weight of pixel = “energy function” of 4 neighboring pixels (N, E, S, W).

Y 4 Y ) 4 Y
) 4 ) 4 ) 4 ) 4 ) 4 ) 4 Y
Y ) 4 ) 4 Y ) 4 ) 4 Y

39



Content-aware resizing

To find vertical seam in a picture:
« Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors (SW, S, SE).
* Weight of pixel = “energy function” of 4 neighboring pixels (N, E, S, W).

« Seam = shortest path (sum of vertex weights) from top to bottom.

seam

40



Content-aware resizing

To remove vertical seam in a picture:

* Delete pixels on seam (one in each row).

41



Content-aware resizing: dynamic programming formulation

Problem. Find a min energy path from top to bottom.
Subproblems. distTo(col, row) = energy of min energy path from any top pixel to pixel (col, row).
Goal. min { distTo(col, H-1) }.

Dynamic programing recurrence. For you to figure out in Assignment 6.

seam

42



Summary

How to design a dynamic programming algorithm.

- ~O- IIIIIII!E!!!!!!IIII
» Find good subproblems. {/ g IR [T
* Develop DP recurrence for optimal value. e )
. illlllll‘u',,'iﬁi‘ﬁiilll\lllé
- optimal substructure L TINL el A0 L ][]
| illlllllﬂ,luI!wlilllIIIIIIIII\IIIE
- overlapping subproblems IIIIIIi'“JT'ﬂ':’f!!!!! ]
depend d hich | bprobl S
« Determine dependency order in which to solve subproblems. | 4
p ' p IBUE = !“'“II=====i!I
° I _ I I
Cache computed results to avoid unnecessary re-computation. ee—_—

. . . . ol Lo [ b B Ll T T T [T
« Reconstruct the optimal solution via backtracing.
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A final thought

A

ALGORITHM (NOUN)

WORD USED BY
PROGRAMMERS WHEN
THEY DO NOT WANT TO
EXPLAIN WHAT THEY DID.




