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Graphs

Graph. Set of vertices connected pairwise by edges.

Why study graphs and graph algorithms?
 Hundreds of graph algorithms.
 Thousands of real-world applications.

* Fascinating branch of computer science and discrete math.
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Transportation networks

Vertex = subway stop; edge = direct route.
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Social networks

Vertex = person; edge = social relationship.

December 2010

“Visualizing Friendships” by Paul Butler




Twitter followers

- edge = Twitter follower.

Vertex = Twitter account
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Protein-protein interaction network
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Graph applications

graph vertex edge
cell phone phone placed call
infectious disease person infection
financial stock, currency transactions
transportation Intersection street
internet router fiber optic cable
web web page URL link
social relationship person friendship
object graph object pointer
protein network protein protein—protein interaction
circuit logic gate wire

neural network neuron synapse



Undirected graph terminology

Graph. Set of vertices connected pairwise by edges.
Path. Sequence of vertices connected by edges, with no repeated edges.

Connected. Two vertices are connected if there is a path between them.

Cycle. Path (with = 1 edge) whose first and last vertices are the same.
vertex 6 edge 68
° (of degree 3) (incident to vertices 6 and 8)

0—O

0

path between O and 2
(of length 3) ™~

(2

cycle

(of length 4)

—




Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges.
Directed path. Sequence of vertices connected by directed edges, with no repeated edges.
Reachable. Vertex w is reachable from vertex v if there is a directed path from v to w.

Directed cycle. Directed path (with > 1 edge) whose first and last vertices are the same.

vertex 6

outdegree = 4 directed edge 71—6

7 is adjacent to 6

° inaegr e‘\ 6 is adjacent from ]
directed path @ a
from 0 to 2 \

(of length 3)

9/ ©

O—

directed cycle
(of length 3)




Graphs and digraphs |: quiz 1

Which of these graphs is best modeled as a directed graph?

A. Facebook: vertex = person; edge = friendship.
B. Web: vertex = webpage; edge = URL link.
C. Internet: vertex = router; edge = fiber optic cable.

D. Molecule: vertex = atom; edge = chemical bond.

11



Some graph-processing problems

Find a path between s and t.

s-t path

(3

shortest s-t path

.54 cycle
)54 Euler cycle

Hamilton cycle

&l

connected com ponents

(3

o

graph isomorphism

planarity

(-

Challenge. Which problems are

Find a path with the fewest edges between s to t.

Find a cycle.

Find a cycle that uses each edge exactly once.

Find a cycle that uses each vertex exactly once.

Find connected components.
Find an isomorphism between two graphs.

Draw in the plane with no crossing edges.

easy? Difficult? Intractable?

also digraph versions

12
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Digraph representation

Vertex representation.
« This lecture: integers between 0 and V- 1.

« Real-world applications: use symbol table to convert between names and integers.

symbol table

Def. A digraph is simple if it has no self-loops or parallel edges.

parallel edges
self-loop
C 0 ->

14



Digraph API

public class Digraph

Digraph(int V)
void addEdge(int v, 1nt w)

Tterable<Integer> adj(int v)

create an empty digraph with V vertices

add a directed edge v—w < our API allows self-loops and parallel edges

vertices adjacent from v

int V() number of vertices
Digraph reverse() reverse digraph
public static int outdegree(Digraph G, 1nt v) { < Note: this method is in full Digraph API,

int count = O;

for (int w : G.adj(v))
count++;

return count;

so no need to re-implement

15



Digraph representation: adjacency matrix

to

adj [][]

Maintain a V-by-V boolean array; for each edge v—w in the digraph: adj[v][w] is true.

Memory. ©(V?) space.

12

11

10

16



Digraph representation: adjacency lists

Maintain vertex-indexed array of lists: adj[v] contains vertices adjacent from vertex v.

Memory. O(E + V) space.
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Graphs and digraphs |: quiz 2

What is the running time of the following code fragment?

Assume adjacency-lists representation, V = # vertices, E = # edges.

for (int v =0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "->" + w);

adj [

print each edge once 0

1

2

3

4

A. OW) Z
7

B. OFE +V) 8
9

C. OWw? 10
11

D. O(EYV) Le

]

VZ /AN

11

~ 10

12

- 12
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Digraph representations

In practice. Use adjacency-lists representation.

« Algorithms based on iterating over vertices adjacent from v.

» Real-world graphs tend to be sparse (not dense).

T T

O(V) edges O(V?) edges

add edge has edge

representation
P fromvtow from v to w?

adjacency matrix V2 1 1

adjacency lists C E + V) 1 outdegree(v)

iterate over vertices
adjacent from v?

Coutdegree(v) )

T disallows parallel edges

19



Digraph representation (adjacency lists): Java implementation

public class Digraph {

private final int V;
adjacency lists

private Bag<Integer>[] adj; < .
(could use a stack or queue instead of a bag)
public Digraph(int V) { < create empty digraph with V vertices
this.V = V;

adj = (Bag<Integer>[]) new Bag[V];
for (Aint v =0; v < V; v++)
adjlv] = new Bag<>();

}
public void addEdge(int v, int w) { < add edge v—w
adj[v].add(w) ; (parallel edges and self-loops allowed)
}
public Iterable<Integer> adj(int v) { < iterator for vertices adjacent from v
return adjlv];
}

20


https://algs4.cs.princeton.edu/41undirected/Graph.java.html

4. GRAPHS AND DIGRAPHS |

Algorithms > depth-first search

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.
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Reachability problem in a digraph

Reachability problem. Given a digraph G and vertex s, find all vertices reachable from s.

Depth-first search. A systematic method to explore all vertices reachable from s.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent from v.

23



Directed depth-first search demo

To visit a vertex v :
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent from v.

%

a directed graph

24



Directed depth-first search demo

To visit a vertex v :

e Mark vertex v.

« Recursively visit all unmarked vertices adjacent from v.

o

reachable from O

v marked]]
0 T
1 T
2 T
3 T
4 T
5 T
6 F
/ F
8 F
9 F
10 F
11 F
12 F

reachable
from vertex 0

25



Graphs and digraphs |: quiz 3

Run DFS using the given adjacency-lists representation of digraph G,

starting at vertex 0. In which order is dfs(G, v) called?

DF'S preorder
A. 124536
B. 124563
C. 132645
D. 126453 L— 4 a
2 — 3
adj[]
{(Eeiare 0
2
3 0 1 a
) — 5
5
: O

adjacency-lists representation digraph G



Depth-first search: Java implementation

public class DirectedDFS {

private boolean[] marked;

public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
dfs(G, s);

private void dfs(Digraph G, int v) {
marked|[v] = true;
for (int w : G.adj(v))
1f (!'marked[w])
dfs(G, w);

public boolean isReachable(int v) {
return marked|[v]:

}

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DF'S does the work

is v reachable from s ?

27
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Depth-first search: running time

Proposition. DFS marks all vertices reachable from s in ©(E + V) time in the worst case.

Pf.
 |nitializing the marked[] array takes ©(V) time.

* Each vertex is visited at most once.
* Visiting a vertex takes time proportional to its outdegree:

outdegree(vy) + outdegree(v,) + outdegree(v,) + ... = E

T

in worst case,
all V vertices are reachable from s

Note. If all vertices are reachable from s, then E = V-1 and running time simplifies to O(FE).

28



Graphs and digraphs I: quiz 4

What could happen if we marked a vertex at the end of the DFS call (instead of beginning)?

A. Marks a vertex not reachable from s.
private void dfs(Digraph G, 1int v) {

B. Compile-time error. trarkee v l——Erae
for (Aint w : G.adj(v))
1t (Imarked[w])
dfs(G, w);
[marked[v] = true;]
¥

C. Infinite loop / stack overflow.

D. None of the above.

29



Reachability application: program control-flow analysis

Every program is a digraph.

* Vertex = basic block of instructions (straight-line program).

Dead-code elimination. w

Find (and remove) unreachable code.

 Edge = jump.

2 Logical-And-Left

Infinite-loop detection. 3 Logical-Anc-Right >

Determine whether exit is unreachable.

30



Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.

 Edge = reference/pointer.
Roots. Objects known to be directly accessible by program (e.g., stack frame).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

/ J

==
J\J/.)J/J_/i'

:{/-/'/-'

31



Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
« Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS function-call stack).

//;i\;,/
/J =9

32
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Directed paths DFS demo

Goal. DFS determines which vertices are reachable from s. How to reconstruct paths?

Solution. Use parent-link representation.

marked[] edgeTo][]

<

0
\G

0 T -
1 T 0
2 .
3 T 4 )
4 T 5
5 T 0
\ 6 F _
O .
9/ s f
9 F -
10 F _
reachable from O 11 F -
12 F _

parent-link representation
of paths from vertex 0

34



Depth-first search: path finding

Parent-link representation of paths from s.
 Maintain an integer array edgeTo[].
* Interpretation: edgeTo[v] is the next-to-last vertex on a path from s to v.

 To reconstruct path from s to v, trace edgeTo[] backward from v to s (and reverse).

@ v  marked[] edgeTo][]

(2) (4)
@/@_\%,E

public Iterable<Integer> pathTo(int v) {

1t (Imarked[v]) return null;

Stack<Integer> path = new Stack<>();

for (Iint x = v; X !=s; x = edgeTo[x])
path.push(x) ;

path.push(s);

return path;

S v MW NN R, O
m 4 =4 4 4 4 -
S uvi A W O

35



Depth-first search (with path finding): Java implementation

private 1nt[] edgeTo; < edgeTo[V] = previous vertex
private int s; on path from s to v

edgeTo[w] = v;

AN

v—w is edge that led
to the discovery of w

36


https://algs4.cs.princeton.edu/42digraph/DepthFirstDirectedPaths.java.html

Graphs and digraphs I: quiz 5

Suppose there are many paths from s to v. Which one does DepthFirstDirectedPaths find?

A. A shortest path (fewest edges).
B. A longest path (most edges).

C. Depends on digraph representation.

37
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Flood fill

Problem. Implement flood fill (Photoshop magic wand).

39



Depth-first search in undirected graphs

Connectivity problem. Given an undirected graph G and vertex s, find all vertices connected to s.

Solution. Use DFS. «——— pur now, for each undirected edge v—w:
v is adjacent to w and w is adjacent to v

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent to v.

Proposition. DFS marks all vertices connected to s in ®(E + V) time in the worst case.

40



Depth-first search demo

To visit a vertex v :
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent to v.

tinyG. txt
0 ’ 8 U E

05
4 3
01
(o) (o —)
6 4
5 4
0 2
N\ Q 11 12
3 4 11 12 o 10
06
7 8
9 11
. 5 3

graph G

41



Depth-first search demo

To visit a vertex v :
e Mark vertex v.

« Recursively visit all unmarked vertices adjacent to v.

vertices connected to O

(and associated paths)

v  marked[] edgeTol]
0 T -
1 T 0
2 T 0
3 T 5
4 T 6
5 T 4
6 T 0
/ F -
8 F -
9 F -
10 F -
11 F -
12 F -

42



Graphs and digraphs |: quiz 6

How to represent an undirected edge v-w using adjacency lists?

A. Add w to adjacency list for v.

B. Add v to adjacency list for w.

C. Both A and B.

D. None of the above.

43



Directed graph representation (review)

public class Digraph {

private final int V;
private Bag<Integer>[] adj;

public Digraph(int V) {
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (Aint v=20; v <V; v++)
adjlv] = new Bag<>();

public void addEdge(int v, 1nt w) {
adj[v].add(w) ;

public Iterable<Integer> adj(int v) {
return adj[v];

}

adjacency lists

create empty digraph with V vertices

add edge v—w

iterator for vertices adjacent from v

44
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Undirected graph representation

Graph

Graph

adj[w].add(v);

adjacency lists

create empty graph with V vertices

add edge v—w

iterator for vertices adjacent to v

45
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Depth-first search (in directed graphs)

public class DirectedDFS {

private boolean[] marked;

public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
dfs(G, s);

}

private void dfs(Digraph G, int v) {
marked|[v] = true;
for (int w : G.adj(v))
1f (!'marked[w])
dfs(G, w);

public boolean isReachable(int v) {
return marked|[v]:

}

marked[v] = true if v is reachable from s

constructor marks vertices reachable from s

recursive DFS does the work

is v reachable from s !

46
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Depth-first search (in undirected graphs)

DepthFirstSearch

DirectedDFS(Graph

Graph

1sConnected

marked[v] = true if v is connected to s

constructor marks vertices connected to s

recursive DFS does the work

is v connected to s ‘!

47
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Depth-first search summary

DFS enables direct solution of several elementary graph and digraph problems.
« Reachability (in a digraph). v
« Connectivity (in a graph). v
« Path finding (in a graph or digraph). V¥
* Topological sort.

* Directed cycle detection.

DFS is also core of solution to more advanced problems.
* Euler cycle.

¢ BiconneCtiVity- SIAM J. CoMpuT.

Vol. 1, No. 2, June 1972

« 2-satisfiabil ITy. DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

* Planarity testing.

Abstract. The value of depth-first search or “‘backtracking’ as a technique for solving problems is

° St r O n C O m O n e n t S illustrated by two examples. An improved version of an algorithm for finding the strongly connected
g p . components of a directed graph and an algorithm for finding the biconnected components of an un-

direct graph are presented. The space and time requirements of both algorithms are bounded by

k,V + k,E + k,for some constants k,, k,, and k5, where V'is the number of vertices and E is the number

¢ N O n b I pa rt I te m atC h I n g . of edges of the graph being examined.
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DFS visualization (by Gerry Jenkins)
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