A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.4 HASH TABLES

> hash functions
> separate chaining
> linear probing

» confext

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mid-semester feedback

Did you fill out the mid-semester feedback form?

A. Yes. COS 226 Mid-Semester Feedback
B. No.

This anonymous questionnaire is an opportunity for you to provide feedback to help your
instructor, your preceptor, and the course staff improve their teaching.

C. ldon’t remember.

Please be thoughtful, constructive, and as specific as possible in your responses. Thanks for
your help.

wayne@princeton.edu Switch account)

£% Not shared

* Indicates required question

Precepts

Select your precept: *

Choose v

https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6
https://forms.gle/p6fpviWn2vEaJtyH6

Symbol table implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
delete search delete

sequential search

equals
(unordered list) " " " " " " ; O
binary search 1 1 v compareTo()
(ordered array) 08 " " 02 11 " !
BST n n n log n log n Vn \'4 compareTo()
red-black BST log n log n log n log n log n log n v compareTo()

. O . - equals()
ashing oo () () (0 hashCode)

T subject to certain technical assumptions

Q. Can we do better?

A. Yes, but only with different access to the symbol table keys.

Hashing: basic plan

Save key-value pairs in a key-indexed table, where the index is a function of the key.
Hash function: Mathematical function that maps (hashes) a key to an array index.

Collision: Two distinct keys that hash to same index.

1 "KOR"
Issue. Collisions are unavoidable.

e How to limit collisions?

/ 3 "USA"

hash("USA") = 3
« How to accommodate collisions? 4

hash("ITA") = 3

99 "KEN"

3.4 HASH TABLES

» hash functions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Designing a hash function

Required properties.
 Deterministic.

 Each key hashes to a table index between 0 and m — 1.

hash
Desirable properties. Jfunction
* Very fast to compute. l
« For any subset of n keys to be hashed, each table index table index

gets approximately n/ m keys.

o0 o

® o o0 @ o0

® ® o o o o o o o0 o0 o0

® & & & & 6 o6 o o o o0 o0 o0
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
leads to good hash-table performance leads to poor hash-table performance

(m =10, n = 20) (m =10, n = 20)

Designing a hash function

Required properties.
 Deterministic.

 Each key hashes to a table index between 0 and m — 1.

hash
Desirable properties. Jfunction
* Very fast to compute. l
« For any subset of n keys to be hashed, each table index table index

gets approximately n/ m keys.

Ex 1. Last 4 digits of U.S. Social Security number.
Ex 2. Last 4 digits of phone number.

123-45-67893 (609) 876-5309

JOHN Q PUBLIC

Hash tables: quiz 1

Which is the last digit of your day of birth?

o 0

Oorl
2 or 3
4 or 5
6 or /

8or9

WELCOME BABY

y >
7y =

Y NN
&

Hash tables: quiz 2

Which is the last digit of your year of birth?

o 0

Oorl
2 or 3
4 or 5
6 or /

8or9

WELCOME BABY

y >
7y =

Y NN
&

Java’s hashCode() conventions

All Java classes inherit a method hashCode (), which returns a 32-bit int.

Required. If x.equals(y), then x.hashCode() == y.hashCode().
Highly desirable. If I1x.equals(y), then x.hashCode() != y.hashCode().
X y
} }
hash hash
| |
X .hashCode () y.hashCode ()

Customized implementations. Integer, Double, String, java.net.URL, ...
Legal (but highly undesirable) implementation. Always return 17.

User-defined types. Users are on their own.

10

Implementing hashCode(): integers and doubles

Java library implementations

public final class Integer {
private final int value;

public int hashCode() {
return value;

public final class Double {
private final double value;

public int hashCode() {
long bits = doubleToLongBits(value);

return (1nt) (bits A (bits >>> 32)); <
} A

convert to IEEE 64-bit representation,
xor most significant 32-bits
with least significant 32-bits

if used only least significant 32 bits,

all integers between —2*' and 2*'
would have same hash code (0)

11

Implementing hashCode(): user-defined types

31x + y rule.
origin of rule remains a mystery,
but works well in practice

* |nitialize hash to 1. <

« Repeatedly multiply hash by 31 and add hash of each significant field.

public final class Transaction {
private final String who;
private final Date when;
private final double amount;

public int hashCode() {
int hash = 1;

nash = 31*hash + who.hashCode():) for reference types,
nash = 31*hash + when.hashCode(); use hashCode ()
nash = 31*hash + ((Double) amount) .hashCode();

return hash: “\\\\\\\\\\
s for primitive types,

use hashCode () of wrapper type

12

Implementing hashCode(): user-defined types

31x + y rule.
* |nitialize hash to 1.

« Repeatedly multiply hash by 31 and add hash of each significant field.

public final class Transaction {
private final String who;
private final Date when;
private final double amount;

public int hashCode() {
return Objects.hash(who, when, amount);

} A

} a varargs method that applies
31x + y rule to its arguments

13

Implementing hashCode()

“Standard” recipe for user-defined types.
 Combine each significant field using the 31x + y rule.
* Shortcut 1: use Objects.hash() for all fields (except arrays).
* Shortcut 2: use Arrays.hashCode() for array of primitives.

* Shortcut 3: use Arrays.deepHashCode() for array of objects.

Principle. Every significant field contributes to hash.

In practice. Recipe above works reasonably well; used in Java libraries.

14

Hash tables: quiz 3 iy

Which Java function maps hashable keys to integers between 0 and m-1 ?

key key
hash hash
A : : code function
: private int hash(Key key) {
return key.hashCode() % m; l l
1 key.hashCode () hash(key)

private 1nt hash(Key key) {
return Math.abs(key.hashCode()) % m;

C. Both A and B.

D. Neither A nor B.

15

Modular hashing

Hash code. An int between -23! and 23! - 1.

Hash function. An int between 0 and m—1 (for use as array index).

key key
Iliiiill IIIHHIII
_ _ code function
private int hash(Key key) {
return key.hashCode() % m; l l
1 key.hashCode () hash(key)

bug

private 1nt hash(Key key) {
return Math.abs(key.hashCode()) % m;

1-in-a-billion bug

private int hash(Key key) {
return Math.abs(key.hashCode() % m);

}

correct

16

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to any of m possible indices.

Bins and balls. Toss n balls uniformly at random into m bins.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

Bad news.
* |In a random group of 23 people, more likely than not

that two people share the same birthday.

» Expect two balls in the same bin after ~y/7m /2 tosses.

17

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to any of m possible indices.

Bins and balls. Toss n balls uniformly at random into m bins.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

Good news.
 When n >> m, expect most bins to have approximately n/m balls.

 When n=m, expect most loaded bin has ~Inn/Inlnn balls.

hash value frequencies for words in Tale of Two Cities (m = 97)

3.4 HASH TABLES

> separate chaining

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Collisions

Collision. Two distinct keys that hash to the same index.
« Birthday problem = can’t avoid collisions.

 Load balancing = no index gets too many collisions.

= 0k to scan through all colliding keys.

/

hash("USA™) = 3/
hash("ITA") = 3

99

1 KORII

IIUSAII

"KENII

20

Separate-chaining hash table

Use an array of m linked lists.
 Hash: map key to table index i between 0 and m — 1.

* Insert: add key-value pair at front of chain i (if not already in chain).

put(L, 11)
. hash(L) = 3
separate-chaining hash table (m = 4)
| MR Ry —> null
st[] /
K i ——— E —> A —> null
/

F —> C > B —> null

21

Separate-chaining hash table

Use an array of m linked lists.
 Hash: map key to table index i between 0 and m — 1.
* Insert: add key-value pair at front of chain i (if not already in chain).

« Search: perform sequential search in chain .

get(E)
o hash(E) = 1
separate-chaining hash table (m = 4)
| MR Ry —> null
st[]/ i
K | 10—t 3 | o —— e (D1 A | 0 —— nuu
/

22

Separate-chaining hash table: Java implementation

public class SeparateChainingHashST<Key, Value> {
private int m = 128;

private Node[] st = new Node[m];

private static class Node {
private Object key;
private Object val;
private Node next;

P no generic array creation
(declare key and value of type Object)

private 1nt hash(Key key)
{ /* as before */ }

public Value get(Key key) {
int 1 = hash(key) ;
for (Node x = st[1]; X != null; X = X.next)
it (key.equals(x.key)) return (Value) x.val;
return null;

array resizing
code omitted

23

Separate-chaining hash table: Java implementation

public class SeparateChainingHashST<Key, Value>
private int m = 128;
private Node[] st = new Node[m];

private static class Node {
private Object key;
private Object val;
private Node next;

}

private 1nt hash(Key key)
{ /* as before */ }

public void put(Key key, Value val) {
int 1 = hash(key):
for (Node x = st[1]; x != null; X = x.next)
1f (key.equals(x.key)) { x.val = val; return; }
st[1] = new Node(key, val, st[1]);

24

Analysis of separate chaining

Recall load balancing: Under the uniform hashing assumption,

the length of each chain is tightly concentrated around mean = n/m.

hash value frequencies for words in Tale of Two Cities (m = 97)

calls to either
equals() or hashCode()

/

Consequence. Expected number of probes for search/insert is O(n / m).
« m too small = chains too long. T
 mtoo large = too many empty chains. m times faster than

: : _ . sequential search
e Typical choice: m ~ 4n = ©O(1) time for search/insert.

25

Resizing in a separate-chaining hash table

Goal. Average length of chain n/m is ©().
 Double length m of array when n/m = 8.

 Halve length m of arraywhenn/m < 2.

x .hashCode () does not change;

* Note: need to rehash all keys when resizing. «—— .
but hash(x) typically does

before resizing (n/m = 8)

st[]

after resizing (n/m = 4)

St[]/

W PN L E—A

T~

Symbol table implementations: summary

guarantee

implementation __
ops?
mm

sequential search

(unordered list) " " " "
binary search 1 |
(ordered array) 08 " " 08 11
BST n n n log n
red-black BST log n log n log n log n
separate chaining n n n 1

can achieve ©(1) probabilistic, amortized guarantee
by choosing a hash function at random
(see “universal hashing’)

average case

log n

log n

ordered

n
n \'4
Vn \'4

log n v
1

key
interface

equals()

compareTo()

compareTo()

compareTo()

equals()
hashCode ()

T under uniform hashing assumption

27

3.4 HASH TABLES

Al gorith ms > linear probing

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Linear-probing hash table: insert

 Maintain key-value pairs in two parallel arrays, with one key per cell.
» Resolve collisions by linear probing:

search successive cells until either finding the key or an unused cell.

Inserting into a linear-probing hash table.

linear-probing hash table

0 1 2 3 4 5 6 7 8 9 10 11 12 13
keys[] P M A C H L E

put(K, 14) K

hash(K) = 7 14

vals|[]

14

15

29

Linear-probing hash table: search

 Maintain key-value pairs in two parallel arrays, with one key per cell.
» Resolve collisions by linear probing:

search successive cells until either finding the key or an unused cell.

Searching in a linear-probing hash table.

linear-probing hash table

0 1 2 3 4 5 6 7 8 9 10 11 12 13
keys|[] P M A C H L ® E
get(K) get(Z) . z

hash(K) = 7 hash(Z) = 8

vals[] O

14

15

30

Linear-probing hash table demo

Hash. Map key to integer i between O and m - 1.
Insert. Put at table index i if free; if nottryi+1,i+2, ...

Search. Search table index i; if occupied but no match, tryi+1,i+2, ...

Note. Array length m must be greater than number of key-value pairs n.

keys[] P M A C S H L E

14

15

31

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value> {
private int m = 32768;
private Valuel[] vals = (Valuel[]l) new Object|m];
private Key[] keys = (Key[]) new Object[m];

private 1nt hash(Key key)
{ /* as before */ }

private void put(Key key, Value val) { }

public Value get(Key key) {
for (int 1 = hash(key); keys[i1] !'= null; 1 = (1+1) % m)
1f (key.equals(keys[i]))
return vals|[1];

}

return null;

array resizing
code omitted

32

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value> {
private int m = 32768;
private Value[] vals = (Value[]) new Object[m];
private Key[] keys = (Key[]) new Object[m];

private 1nt hash(Key key)
{ /* as before */ }

public Value get(Key key) { /* previous slide */ }

public void put(Key key, Value val) {
int 1;
for (1 = hash(key); keys[1] !'= null; 1 = (3+1) % m) {
1f (keys[1].equals(key))
break;
¥
keys[1] = key;
vals[1] = val;

array resizing
code omitted

33

Hash tables: quiz 4

Under the uniform hashing assumption, where is the next key most likely to be added

in this linear-probing hash table (no resizing)?

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14 15 16 17 18 19

A. Index 4.

B. Index 17.
C. Eitherindex 4 or 17.

D. All open indices are equally likely.

34

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a

linear-probing hash table of size m that contains n = am keys is at most

L,] L 1
2\ 1-« 2\ (1-—a)?

search hit search miss / insert

[beyond course scope]

S5 20 ,,\ Zxg ‘:."~§'F":5~AA.L r > % . Ma!ﬂ}?‘

i ‘va"w ﬂwtm"»"' ?

R NOTBS Off WOPE ADDRESSIRG. SRS N ¥ wv2aiss

S l Iﬁtrcduction and Datini£idns. Jééﬁwﬁadressing is a widely-used technique
- for keeping "symbol tublies,"” The pethod was first used, in 1954 by Samuyel, Amdahl,
and Rochme in an assembly propram “or the IHM T0l, An extensive discussion of
the method was given by Peterson in 1957 {1], and frequent references have ceen
wade to it ever since (e.g., Schey and Spruth {2), Iversen [31). However, the
tlwing characteristics have apparently never besn axactliy established, and indeed
the anthor has heard reports of severel reputsble mathematiciana who falled o

find the aolution after some trial. Tharefore it iz the purpsse of this note to
indicate one way by which the solu.ion cen be cbiained,

Parameters.

« m too large = too many empty array entries.

 mtoo small = search time blows up.

Typical choice: o = n/m ~ Vb, «—— # probes for search hif LS gbout 3/2
probes for search miss is about S/ 2

35

ST implementations: summary

guarantee average case
ordered

implementation
ops?
mm

sequential search

(unordered list) & " " . . !
binary search 1 1 v
(ordered array) 0 1 " & 08 7t " "
BST n n n log n log n Vn 4
red-black BST log n log n log n log n log n log n \'4
separate chaining n n n 17 1 1
linear probing n n n 17 17 1

key
interface

equals()

compareTo()

compareTo()

compareTo()

equals()
hashCode ()

equals()
hashCode ()

T under uniform hashing assumption

36

Separate chaining vs. linear probing

Separate chaining.

» Performance degrades gracefully.
st[]

* Clustering less sensitive to poorly-designed hash function.

A~ w NN B O

AN

Linear probing.
* Unrivaled data locality.

* More probes because of clustering.

keys[] | P | M A|C|S|H|L E R | X

vals|[]

null

37

3-Sum (revisited)

3-SuM. Given n distinct integers, find three such that a+ 5 + ¢ =0.

Goal. ®(?) expected time; ®(n) extra space.

38

3.4 HASH TABLES

Algorithms
> context

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Hashing: variations on the theme

Many many improved versions have been studied.

Use different probe sequence, i.e., not h(k), h(k) + 1, h(k) + 2, ...

\ \ \

Google Swiss Table Facebook F14 Python 3

During insertion, relocate some of the keys already in the table.

[Cuckoo hashing, Robin Hood hashing, Hopscotch hashing, ...]

Insert tombstones prophylactically, to avoid primary clustering.

[graveyard hashing]

A

Google

quadratic probing, double hashing, pseudo-random probing, ...

]

eliminates primary clustering,
<—— which enables higher load factor / less memory
(but sacrifices data locality)

«<— reduces worst-case time for search

«—— eliminates primary clustering,
maintains data locality

40

Hash tables vs. balanced search trees

Hash tables. R
* Simpler to code.
> —> —>
» Typically faster in practice.
* No effective alternative for unordered keys.
\

Balanced search trees.
» Stronger performance guarantees.

» Support for ordered ST operations.

* Easier to implement compareTo() than hashCode().

Java includes both.
* BSTs: java.util.TreeMap. < red-black BST

 Hash tables: java.util.HashMap, java.util.IdentityHashMap.

T T

separate chaining linear probing

(Java 8: if chain gets too long,
use red—black BST for chain)

41

Algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
Al. Yes: aircraft control, nuclear reactor, pacemaker, HFT, missile-defense system, ...

A2. Yes: denial-of-service (DoS) attacks.

st[]

/

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up
in single slot that grinds performance to a halt

N OO o AW NN BRr O

Real-world exploits.
* Linux 2.4.20 kernel: save files with carefully chosen names.
* Bro server: send carefully chosen packets to DoS the server,

using less bandwidth than a dial-up modem.

42

Hashing: beyond symbol tables

File verification. When downloading a file from the web:
* Vendor publishes hash of file.
* Client checks whether hash of downloaded file matches.

* |f mismatch, file corrupted.

Download IntelliJ IDEA

Windows Mac Linux

Ultimate Community

For web and enterprise development For JVM and Android development

Version: 2019.3.3

Build: 193.6494.35
10 February 2020

Release notes Free trial Free, open-source
M-+
. . - ‘
Download and verify the flleCSHA—256 checksum)
%

c62ed2df891ccbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270

sha256sum 1dealIC-2023.2.dmg

c62ed2df891ccbb40d890e8a0074781801f086a3091ad4a2a592a96ataba31270

43

Hashing: cryptographic applications

One-way hash function. “Hard” to find a key that will hash to a target value

(or two keys that hash to same value).

Ex. MD5, SHA-1, SHA-256, SHA-512, SHA3-512, Whirlpool, BLAKE3,

B
W,

de758e98d49123c3af9115226221641d

fixed-length hash

Applications. File verification, digital signatures, cryptocurrencies, password authentication,

blockchain, non-fungible tokens, Git commit identifiers, ...

44

Credits

image source license
Social Security Card Adobe Stock Education License
Cell Phone Number Adobe Stock Education License
Birth Announcement postable.com
Recipe Pixabay Pixabay Content License
Meat Grinder flaticon.com Flaticon license

Document [con

Donald Knuth

stockio.com

Hector Garcia-Molina

free with attribution

Lecture Slides © Copyright 2023 Robert Sedgewick and Kevin Wayne

https://stock.adobe.com/images/generic-american-social-security-card/27922613
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://stock.adobe.com/images/flat-design-concept-message-and-chat-present-by-icon-text-message-vector-illustrate/206595690
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://www.postable.com/card/pine-branch-birth-announcement
https://pixabay.com/vectors/recipe-label-icon-symbol-spoon-575434/
https://pixabay.com/service/license-summary/
https://www.flaticon.com/free-icon/meat-grinder_180476
https://www.freepikcompany.com/legal#nav-flaticon
https://www.stockio.com/free-icon/documents
https://www.stockio.com/free-icon/documents
https://www.cs.cmu.edu/news/2010/carnegie-mellon-announces-knuth-and-kleinberg-will-receive-katayanagi-prizes-computer-science

A final thought

“ Programmers waste enormous amounts of time thinking about,
or worrying about, the speed of noncritical parts of their programs,
and these attempts at efficiency actually have a strong negative

impact when debugging and maintenance are considered.

We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3%. ”

— Donald Knuth

