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Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
» Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
* Quicksort honored as one of top 10 algorithms of 20™ century

in science and engineering.

Quicksort. [this lecture]




A brief history

Tony Hoare.

* |nvented quicksort in 1960 to translate Russian into English.

« Later learned Algol 60 (and recursion) to implement it.

Tony Hoare
1980 Turing Award

Programming S. L. Graham, R. L. Rivest .

Techniques Editors Acta Informatica 7, 327—355 (1977)
3 by Springer-Verlag 1977

Implementing © by Springer-Verlag

Quicksort Programs

Robert Sedgewick
Brown University

ALGORITHM 64

The Analysis of Quicksort Programs™

QUICKSORT
S. A R. HOAI?E . N d tordehire. Tone This paper is a practical study of how to implement Robert SedgerCk
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. the Quicksort sorting algorithm and its best variants on -
procedure quicksort (A,M,N); value M,N; real computers, including how to apply various code .

array A; integer M,N; optimization techniques. A detailed implementation Received J anuary 19, 1976
comment Quicksort is a very fast and convenient method of combining the most effective improvements to

sorting an array in the random-access store of a computer. The Quicksort is given, along with a discussion of how to
entire contents of the store may be sorted, since no extra space is o

Summary. The Quicksort sorting algorithm and its best variants are presented

; . Mo N itin bly 1 Analytic results . A . . .

required. The average number of comparisons made is 2(M—N) In . M and analyzed. Results are derived which make it ssible to obtain exact formulas de-
(N—M), and the average number of exchanges is one sixth this desc"b“.'g the Peﬁf’m‘““ce Of'the programs are ibi ¥h total ted ni ti of pa I'tpco lar implementations on real com-

amount. Suitable refinements of this method will be desirable for summarized. A variety of special situations are scribing € ? expec ru_n ng time p 1cu P. A e N
its implementation on any actual computer; considered from a practical standpoint to illustrate puters of Quicksort and an improvement called the median-of-three modification.
begin e e beain partition AMN.LY) Quicksort’s wide applicability as an internal sorting Detailed analysis of the effect of an implementation technique called loop unwrapping

1 en LU A,MOING L) i i ol . . > . » sy
T dickeort (AM,J); met]l;z‘; ‘vv:,';t:s':::";;:;igl‘?g:;&’;:; s;‘;ﬁ?:i's . is presented. The paper isintended not only to present results of direct practical utility,

e - V) . y 0l » . . . Y . . . »
v quicksort (A, 1, N) algorithms, code optimization, sorting but a'lsc.) to illustrate th}a intriguing mathematics which arises in the complete analysis
end quicksort CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5 of this important algorithm.

Bob Sedgewick.
» Refined and popularized quicksort in 1970s.

* Analyzed many versions of quicksort.

Bob Sedgewick
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Quicksort overview

Step 1. Shuffle the array.

Step 2. Partition the array so that, for some index j :
 Entry a[j] is in place. «<—— “pivot” or “partitioning item”
* No larger entry to the left of j.
* No smaller entry to the right of j.

Step 3. Sort each subarray recursively.

nput Q U I C K S O R T E X A M

shuffle K A T E L E P U I M Q C
partitioning item

partition E C A I E K L P U T M Q R
™ not greater not less =~

sortleft A C E E 1
sort right L M O P Q R
resut A C E E I K L M O P Q R S



Quicksort partitioning demo

Repeat until pointers cross:

* Scan i from left to right so long as a[i] < a[lo].

* Scan j from right to left so long as a[j] > a[lo].

 Exchange a[i] with a[j].

stop i scan because ali] >= a[lo]



Quicksort partitioning demo

Repeat until pointers cross:

* Scan 1 from left to right so long as ali:

* Scan j from right to left so long as a[j]

 Exchange a[i] with a[j].

When pointers cross. Exchange a[1o] with a[j].

<

>

d

d

1o].

1o].

<K

AN
a I /
! 1
1o J

partitioned!




Quicksort partitioning: Java implementation

private static int partition(Comparable[] a, i1nt lo, 1nt hi) { before
Comparable p = al[lo];
int 1 = lo, J = hi+1; P
while (true) { !
. . lo hi
while (less(a[++i], p)) ,
if (1 == hi) break: < find item on left to swap
: : during
while (less(p, al--j1)) . .
_ _ find item on right to swap
1t (J == 1o) break;
P =p
it (1 >= J) break; < check if pointers cross
exch(Ca, 1, J); - swap
exch(Ca, lo, J); <« swap with pivot aftar
return j; < index of element known to be in place
=p
t 1
lo hi



https://algs4.cs.princeton.edu/23quick/Quick.java.html

Quicksort: quiz 2

In the worst case, how many compares and exchanges does partition()

make to partition a subarray of length n?

A. ~¥%nand ~%n
B. ~¥%nand ~n
C. ~nand ~%n

D. ~n and ~n




Quicksort: Java implementation

public class Quick {

private static int partition(Comparable[] a, 1nt lo, 1int hi) {

}

public static void sort(Comparable[] a) {
StdRandom.shuffle(a); < shuffle needed for performance
sort(a, 0, a.length - 1); guarantee (stay tuned)

private static void sort(Comparable[] a, 1nt lo, 1nt hi1) {
it (hi <= 1lo) return;
int jJ = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

10
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Quicksort trace
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Quicksort animation

50 random items

https://www.toptal.com/developers/sorting-algorithms/quick-sort

>

algorithm position
in order
current subarray

not in order

12
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Quicksort: implementation details

Partitioning in—-place. Using an extra array makes partitioning easier (and stable),

but it is not worth the cost.

Loop termination. Terminating the loop (when pointers cross) is more subtle than it appears.

Equal keys. Handling duplicate keys is trickier that it appears.

Preserving randomness. Shuffling is needed for performance guarantee.

Equivalent alternative. Pick a random pivot in each subarray. \

not stable!

13



Quicksort: empirical analysis

Running time estimates:
* Home PC executes 10° compares/second.

* Supercomputer executes 10> compares/second.

insertion sort (n2) mergesort (n log n) quicksort (n log n)
home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min
super instant 1 second 1 week instant instant instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.

Lesson 2. Great algorithms are better than good ones.

14



Quicksort: quiz 3

Why is quicksort typically faster than mergesort in practice?

A. Fewer compares.
B. Fewer array acceses.
C. Both A and B.

D. Neither A nor B.

15



IS

worst-case analysi

Quicksort

Worst case. Number of compares is ~ 15 n?2.
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Quicksort: worst-case analysis

Worst case. Number of compares is ~ % n?.

al ]

lo hi O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A B C D E F GH I J K L M NDO
A B C D E F G H | _] K L M N O < afl‘er random Shuﬁqe

Good news. Worst case for randomized quicksort is mostly irrelevant in practice.
« Exponentially small chance of occurring.
(unless bug in shuffling or no shuffling)

* More likely that computer is struck by lightning bolt during execution.

17



Quicksort: probabilistic analysis

Proposition. The expected number of compares C, to quicksort an array of

n distinct keys is ~2nInn (and the number of exchanges is ~¥3nlnn).

Recall. Any algorithm with the following structure takes ®(n log n) time.

public static void f(int n) {
if (n == 0) return:
f(n/2); . solve two problems
f(n/2); of half the size

linear(n); <«—— do ®O®m) work

Intuition. Each partitioning step divides the problem into two subproblems,

each of approximately one-half the size.

T

probabilistically “close enough’”

18



Quicksort properties

Quicksort analysis summary. - 39% more than mergesort

« Expected number of compares is ~1.39 nlog, n.

» Expected number of exchanges is ~0.23 nlog,n. «<— much less than mergesort
e Min number of compares is ~ nlog,n. <—— never less than mergesort

 Max number of compares is ~ % n%.  <«— but never happens

Context. Quicksort is a (Las Vegas) randomized algorithm. "%@;f
S
 Guaranteed to be correct. %

* Running time depends on outcomes of random coin flips (shuffle).

19



Quicksort properties

Proposition. Quicksort is an in—-place sorting algorithm.
« Partitioning: ©(1) extra space.
* Function-call stack: ©(og n) extra space (with high probability).
\ can guarantee ©O(log n) depth by recurring

on smaller subarray before larger subarray
(but this involves using an explicit stack)

Proposition. Quicksort is not stable.

Pf. [ by counterexample |}

| j 0 1 2 3

B G (C A:
1 3 B A1
1 3 Br Ai Ci

0 1 Ar B1 C (G



Quicksort: practical improvements

Insertion sort small subarrays.
* Even quicksort has too much overhead for tiny subarrays.

o« Cutoff to insertion sort for = 10 items.

private static void sort(Comparable[] a, int lo, 1nt hi) {

if (hi <= 1o + CUTOFF - 1) {
Insertion.sort(a, lo, hi):
return;

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

21



Quicksort: practical improvements

Median of sample.
» Best choice of pivot item = median.
« Estimate true median by taking median of sample.

« Median-of-3 (random) items.

N

~ 12/7 nlnn compares (14% fewer)
~ 12/35 nIn n exchanges (3% more)

private static void sort(Comparable[] a, int lo, int hi) {
if (hi <= 1o) return:

int median = medianOf3(a, 1o, mid + (hi1 - 1lo) / 2, hi);
swap(a, lo, median);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

22
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Selection

Goal. Given an array of n items, find item of rank k.
Ex. Min (k=0), max (k=n-1), median (k=n/?2).

Applications.
 Order statistics.
* Find the “top k.”

Use complexity theory as a guide.
* Easy O(n log n) algorithm. How?
* Easy O(n) algorithm for k=0or 1. How?
* Easy Q(n) lower bound. Why?

Which is true?

* O(n) algorithm? is there a linear-time algorithm? ]

* Q(nlog n) lower bound? [ is selection as hard as sorting? |

24



Quickselect demo

Partition array so that for some j:
 Entry a[j] is in place.
* No larger entry to the left of j.

* No smaller entry to the right of j.

Repeat in one subarray, depending on j; stop when j equals k.

select element of rank k = 5

25



Quickselect

Partition array so that for some j:
 Entry a[j] is in place.
* No larger entry to the left of j.

* No smaller entry to the right of j.

Repeat in one subarray, depending on j; stop when j equals k.

public static Comparable select(Comparable[] a, 1nt k) {
StdRandom.shuffle(a);
int lo = 0, hi = a.length - 1;
while Chi > To) {
int j = partition(a, lo, hi);

1t (3 < k) To =73 + 1;
else if (j > k) hi = 3 - 1;
else return alk];

}

return alk]:

if a[k] is here

if a[k] is here

set hi to j-1 set 1o to j+1
=p P =P
t t t
lo Jj hi

26



Quickselect: probabilistic analysis

Proposition. The expected number of compares C, to quickselect the item of rank %

in an array of length n is ©().

probabilistically “close enough’”

/

Intuition. Each partitioning step approximately halves the length of the array.

Recall. Any algorithm with the following structure takes ®(n) time.

public static void f(int n) {

if (n == 0) return;

Tinear(n); «— do O(n) work
f(n/2); <« solve one subproblem of half the size

Careful analysis yields:

o

n+n/2+n/4+...+41 ~ 2n

~2n +2kIn(n/k) +2(n—-k)In(n/(n-k))

<

~~
~

2+2In2)n
338n

<« max occurs for median (k=n/?2)

27



Theoretical context for selection

Q. Compare-based selection algorithm that makes ®(n) compares in the worst case?
A. Yes!

Time Bounds for Selection* T(n) = T(n/5) + T(In/10) + O(n)

MANUEL BLum, RoBERT W. FLOYD, VAUGHAN PRATT, T T
RonaLD L. RivesT, AND ROBERT E. TARjAN

find pivot that eliminates
Department of Computer Science, Stanford University, Stanford, California 94305 i
. 30% of items
Received November 14, 1972

The number of comparisons required to select the i-th smallest of » numbers is shown
to be at most a linear function of # by analysis of a new selection algorithm—PICK.
Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of iz, and a new lower bound on the requisite number
of comparisons is also proved.

Caveat. Constants are high = not used in practice.

Use theory as a guide.

 Open problem: practical algorithm that makes ©(n) compares in the worst case.

* Until one is discovered, use quickselect (if you don’t need a full sort).

28
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Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

* Sort population by age.
 Remove duplicates from mailing list.

* Sort job applicants by college attended.

Typical characteristics of such applications.
* Huge array.

* Small number of key values.

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoen1ix
Phoen1ix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

|

key

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

25:
03:
21:
19:
19:
00:
21
00:
01:
00:
37:
00:
14:
10:
36:
143
10:
: 54

35

22

22

52
13
05
46
32
00

59
10
13
44
03
25
25
14

11

30



Quicksort: quiz 4

When partitioning, how to handle keys equal to pivot?

scan until > P scan until < P

scan until > P scan until < P

- G E P A Q B P C O U P / S

C. Either A or B.

31



War story (system sort in C)

Bug. A gsort() call in C that should have taken seconds was taking minutes

to sort a random array of Os and 1s.

Why is gsort() so slow?
\/_/

ack<
SSSSSSS

A A A Ay Ac A Ay Ay Ay A Apg skip over equal keys
! 1
L j

At Ay Az Ay As As A A Ay A Ang stop scan on equal keys
1 1

L ]

32



Duplicate keys: partitioning strategies

Bad. Don’t stop scans on equal keys.

BAABABBB|CCC

Good. Stop scans on equal keys.

BAABA[B|CCBCB

Better. Put all equal keys in place. How?

AAABBBBBI|CCC

AAAAAAAAAA[A]

AAAAAAIAAAAA

AAAAAAAAAAA]

33



Dutch National Flag Problem

Problem. Given an array of n buckets, each containing

a red, white, or blue pebble, sort them by color.

input .. . ... §
ored [ BB

Operations allowed.
« swap(i,j). swap the pebble in bucket i with the pebble in bucket ;.

« getColor(i): determine the color of the pebble in bucket .

Performance requirements.
« Exactly n calls to gerColor().
« At most n calls to swap().

« O(1) extra space.

34



3-way partitioning

Goal. Use pivot p = a[lo] to partition array into three parts so that:
 Red: smaller entries to the left of 1t.
 White: equal entries between 1t and gt.

« Blue: larger entries to the right of gt.

before
P
t
lo hi
after
<p =P >p
) t t t

lo It gt hi



Dijkstra’s 3-way partitioning algorithm: demo

 Letp = a[lo] be pivot.
* Scan i from left to right and compare a[i] to p.

- less: exchange a[i] with a[1t]; increment both 1t and 1

- greater: exchange a[i] with a[gt]; decrement gt

- equal: increment 1

lo 1t 1

oo

gt h1

b

D B X W P> P3 V P4 A Ps C Y /

36



3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, 1nt hi) {
1f (hi <= 1o) return;
Comparable p = allo];

int 1t = lo, gt = h1;
int 1 = lo + 1;
while (1 <= gt) {
int cmp = al[1].compareTo(p);

1f (cmp < 0) exch(a, Tt++, 1++);
else if (cmp > 0) exch(a, i, gt--);
else 1++;

sort(a, lo, 1t - 1);
sort(a, gt + 1, hi);

before
P
t
lo hi
during
<p =P > P
t t t
It ] gt
after
<p =P >p
| t t
lo [t gt hi

37



Quicksort: quiz 5

What is the worst-case number of compares to 3-way quicksort an array of length »

containing only 7 distinct values?

A. O(n)

B. O(nlogn)
C. On?

D. O’

input

38



Sorting summary

3-way quick

inplace?

v

v

number of compares to sort an array of n elements

15 n?

Y»nlog,n

nlog,n

average

15 n?

lhn?

nlog,n

2ninn

2nlnn

nlog,n

15 n?

15 n?

nlog,n

15 n?

15 n?

nlog,n

remarks

n exchanges

use for small n
or partially sorted arrays

O(n log n) guarantee;
stable

O(n log n) probabilistic guarantee,

fastest in practice

improves quicksort
when duplicate keys

holy sorting grail

39



2.3 QUICKSORT

Algorithms
> system sorts

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


https://algs4.cs.princeton.edu

Sorting applications

Sorting algorithms are essential in a broad variety of applications:

Sort a list of names.
Organize an MP3 library.
Display Google PageRank results.

List RSS feed in reverse chronological order.

Find the median.

ldentify statistical outliers.

Binary search in a database.

Find duplicates in a mailing list.

Data compression.
Computer graphics.
Computational biology.

Load balancing on a parallel computer.

< obvious applications

problems become easy once
items are in sorted order

< non-obvious applications

41



System sort

Premise. Suppose you are the lead architect of a new programming language.

Q. Which sorting algorithm(s) would you use for the system sort? Defend your answer.

42



System sorts in Java 8 and Java 11

Arrays.sort() and Arrays.parallelSort().
* Has one method for Comparable objects.

* Has an overloaded method for each primitive type. —

 Has an overloaded method for use with a Comparator.

» Has overloaded methods for sorting subarrays.

Algorithms.
* Version of mergesort (Timsort) for reference types.

* Version of quicksort (Dual-pivot quicksort) for primitive types.

Q. Why use different algorithms for primitive and reference types?

Bottom line. Use the system sort!

43
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A final thought
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