A 1 g Or 1 [h 1IMS ROBERT SEDGEWICK | KEVIN WAYNE

2.2 MERGESORT

» mergesort

> sorting complexity

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Two classic sorting algorithms: mergesort and quicksort

Critical components in our computational infrastructure.

Mergesort. [this lecture]

L Ede?2 e s C

OCaml

2.2 MERGESORT

> mergesort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Mergesort overview

Basic plan.

* Divide array into two halves.

» Recursively sort left half.
* Recursively sort right half.

* Merge two sorted halves.

First Draft

of a
Report on the
EDVAC

John von Neumann

input M ERGESOTRITEXAMTPLE

sort left half E E G M O R R S

sort right half

A E ELMZPT X

merge results A £E E E E G L MMOP R R S T X

Y
"
I
“a
"
)
”~
”
~
=

N

Il

Abstract in-place merge demo

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[1o] to a[hi].

1o mid mid+1 h1i
af] E E G M R A C E R T
N / N _/
Y Y

sorted sorted

Merging: Java implementation

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {

for (int k = 1o; k <= hi; k++) copy
aux|[k] = alk];

int 1 = lo, J = mid+1; merge
for (int k = To; k <= hi; k++) {
1f (1 > mid) alk]l = aux[j++];
else if (j > hi) alk] = aux[i++];
else 1f (less(aux[j], aux[1])) alk] = aux[j++];
else alk] = aux[1++];
}
}
1o 1 mid J h1

Mergesort quiz 1

How many calls does merge() make to less() when merging two sorted subarrays,

each of length n /2, into a sorted array of length »n?

A. ~Wn to ~%n merging two sorted arrays, each of length n/2
B. ~Wn ay ap a, az by by by b3
C. ~%nto ~n

D. ~n

Mergesort: Java implementation

public class Merge {
private static void merge(...) {

private static void sort(Comparable[] a, Comparable[] aux, 1nt lo, int hi) {
1f (hi <= 1o) return;
int mid = lo + (h1 - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+1l, hi);
merge(a, aux, lo, mid, hi);

public static void sort(Comparable[] a) {
avoid allocating arrays

Comparable[] aux = new Comparablela.length]; «—— . ,
within recursive function calls

sort(a, aux, 0, a.length - 1);

1o mid h1

10 11 12 13 14 15 16 17 18 19

Mergesort: trace

AR

merge(a, aux, 0, O, 1)

merge(a, aux, 2, 2, 3)
merge(a, aux, 0, 1, 3)

merge(a, aux, 4, 4, 5)
merge(a, aux, 6, 6, 7)
merge(a, aux, 4, 5, 7)
merge(a, aux, 0, 3, 7)
merge(a, aux, 8, 8, 9)
merge(a, aux, 10, 10, 11)
merge(a, aux, &8, 9, 11)
merge(a, aux, 12, 12, 13)
merge(a, aux, 14, 14, 15)
merge(a, aux, 12, 13, 15)
merge(a, aux, &8, 11, 15)
merge(a, aux, 0, 7, 15)

all

1

12 13 14 15

=<
=< M|
)
O
i
wniu
O
A |~

~ I O
Wn

A E E E E G L M

> | =

M P L

— - =X m

E

X X T

result after recursive call

Mergesort quiz 2

Which subarray lengths will arise when mergesorting an array of length 12?2

A. {1,2.3,4,6,8, 12"
B. {1,2, 3, 6, 12}
C. {1,2,4,8,12"

D. {1,3,6,9 12}

10

Mergesort: animation

50 random items

https://www.toptal.com/developers/sorting-algorithms/merge-sort

>

algorithm position
in order
current subarray

not in order

11

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: animation

50 reverse-sorted items

https://www.toptal.com/developers/sorting-algorithms/merge-sort

|||>

algorithm position
in order
current subarray

not in order

12

https://www.toptal.com/developers/sorting-algorithms/merge-sort

Mergesort: empirical analysis

Running time estimates:
* Laptop executes 10° compares/second.

* Supercomputer executes 10'> compares/second.

insertion sort (n2) mergesort (n log n)
e st e
home instant 2.8 hours 317 years instant 1 second 18 min
super instant 1 second 1 week instant instant instant

Bottom line. Good algorithms are better than supercomputers.

13

Mergesort analysis: number of compares

Proposition. Mergesort uses < nlog, n compares to sort any array of length n.

Pf sketch. The number of compares C(n) to mergesort any array of length »

satisfies the recurrence:

C(n) < C([n/2) + C(n/2]) + n—1 forn >1, with C(1)=0.

sort sort merge
left half right half

proposition holds even when n is not a power of 2
(but analysis cleaner in this case)

For simplicity. Assume n is a power of 2 and solve this recurrence:

D(n) =2Dn/2) + n, for n > 1, with D(1) =0.

14

Divide-and-conquer recurrence

Proposition. If D(n) satisfies D(n)=2D(n/2)+ n forn > 1, with D(1) =0, then D(n) = nlog, n.

Pf by picture. Q: how about D(n)= 3D(n/3) + 5n?

D(n) n

= n
/ \
Dn/?2) D(n/?2) 2(n/?2) =n
log, n D(n/4) D(n/4) D(n/4) D(n/4) 4(n/4) = n
ANV ANEAYA
D({/@(S) D(n {\8) D(f; ‘/\8) D(i{ /“\8) D(? ‘\/\‘8) D(n <8) D(? ‘/‘\8) D(iff /\\8) 8(n/8) = n

[D) =nlog, n)

15

Mergesort analysis: number of array accesses

Proposition. Mergesort makes ®(n log n) array accesses.

Pf sketch. The number of array accesses A(n) satisfies the recurrence:

An) = A([n/2)) + A(|n/2]) + ©(n) forn >1, with A(1) =0.

Key point. Any algorithm with the following structure takes ©(n log n) time:

public static void f(int n) {
1if (n == 0) return:
f(n/2);
f(n/2);

linear(n); <—— do ©n) work

solve two problems of half the size

Famous examples. FFT, closest pair, hidden-line removal, Kendall-tau distance, ...

16

Mergesort analysis: memory

Proposition. Mergesort uses ©(n) extra space.
Pf. The length of the aux[] array is n, to handle the last merge.

two sorted subarrays

A CD G H I M N UV B E F J O P Q R S T

merged result

AB CD E F GH I J M N O P QR S T UV

essentially negligible

/

Def. A sorting algorithm is in-place if it uses ®(log n) extra space (or less).

Ex. Insertion sort and selection sort.

Challenge 1 (not hard). Get by with an aux[] array of length ~ % n (instead of n).

Challenge 2 (very hard). In-place merge.

17

Mergesort quiz 3

Consider the following modified version of mergesort.

How much total memory is allocated over all recursive calls?

A. O®m) private static void sort(Comparable[] a, 1int lo, int h1) {
it (hi1 <= lo) return;

B. O(nlogn) int mid = lo + Ch1 - lo) / 2;
int n = hi - 1o + 1;

C. O@? Comparable[] aux = new Comparable[n];
sort(a, lo, mid);

D. ©@2" sort(a, mid+1l, h1);

merge(a, aux, lo, mid, hi);

18

Mergesort: practical improvement

Use insertion sort for small subarrays.

* Mergesort has too much overhead for tiny subarrays.

 Cutoff to insertion sort for = 10 items.

private static void sort(...) {

if (hi <= 1o + CUTOFF - 1) {
Insertion.sort(a, lo, hi):
return;

int mid = lo + (h1 - lo) / 2;
sort (a, aux, lo, mid);

sort (a, aux, mid+1, hi);
merge(a, aux, lo, mid, hi);

<

makes mergesort
about 20% faster

19

Mergesort quiz 4

Is our implementation of mergesort stable?

A. Yes.
B. No, but it can be easily modified to be stable.
C. No, mergesort is inherently unstable.

D. [Idon’t remember what stability means.

a sorting algorithm is stable if it
preserves the relative order of equal keys

input C A1 B A As

sorted As A1 Ao B C(C

not stable

20

Sorting summary

in-place?

selection \'e

stable? average

5 n? 5 n? 5 n?
v n Vi n? 15 n?
v Yanlog,n nlog,n nlog,n
\'4 n nlog,n nlog,n

number of compares to sort an array of n elements

remarks

n exchanges

use for small n
or partially sorted

O(n log n) guarantee; stable

holy sorting grail

21

Partially sorted arrays

Version 1. Given an array of n integers where the first n — 100 entries are already in sorted order,

sort the entire array in ©(n) time.

sorted

22

Partially sorted arrays

Version 2. Given an array of n integers where the first n —1/n entries are already in sorted order,

sort the entire array in ©(n) time.

sorted

23

2.2 MERGESORT

> sorting complexity

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

term

description

example (X = sorting)

model of computation

cost model

upper bound

lower bound

optimal algorithm

specifies memory
and primitive operations

primitive operation counts

cost guarantee provided by
some algorithm for a problem

proven limit on cost guarantee
for all algorithms for a problem

algorithm with best possible
cost guarantee for a problem

|

lower bound ~ upper bound

comparison tree

compares

~nlog, n

<

<

can gain knowledge about input

only through pairwise compares
(e.g., Java’s Comparable framework)

from mergesort

25

Comparison tree (for 3 distinct keys a, b, and c)

d

yes no

code between compares
(e.g., sequence of exchanges)

yes

/ no /yes
abc J bac J

yes

/

yes

/
_ach |

\

ab

C C

height of pruned comparison tree =
worst-case number of compares

\

b a

one (and only one) reachable leaf corresponds to each each possible ordering

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make at least

log,(n!) ~ nlog, n compares.

Pf.
« Assume array consists of n distinct values a, through a,.
* n! different orderings = n! reachable leaves.
* Worst-case number of compares = height & of pruned comparison tree.

* Binary tree of height # has < 2" leaves.

ol

1&&%@& T

n! reachable leaves /

< 2" leaves

27

Compare-based lower bound for sorting

Proposition. In the worst case, any compare-based sorting algorithm must make at least

log,(n!) ~ nlog, n compares.

Pf.
« Assume array consists of n distinct values a, through a,.
* n! different orderings = n! reachable leaves.
* Worst-case number of compares = height & of pruned comparison tree.

* Binary tree of height # has < 2" leaves.

n!

2h > # reachable leaves

= h = log,(n!)

~ nlog, n

|

Stirling’s formula

Computational complexity

A framework to study efficiency of algorithms for solving a particular problem X.

term description

example (X = sorting)

: specifies memor
model of computation pecti Y

and primitive operations
cost model primitive operation counts

cost guarantee provided by
upper bound ,
some algorithm for a problem

roven limit on cost guarantee
lower bound p 5

for all algorithms for a problem

[gorith th best bl
optimal algorithm ALgortnm wi €St possiote

cost guarantee for a problem

First goal of algorithm design: optimal algorithms.

comparison tree

compares

~nlog, n

29

Computational complexity results in context

Compares? Mergesort is optimal with respect to number compares.

Space? Mergesort is not optimal with respect to space usage.

Lesson. Use theory as a guide.
Ex. Design sorting algorithm that makes ~ !4 nlog, n compares in worst case?

Ex. Design sorting algorithm that makes ©(n log n) compares and uses ©(1) extra space.

30

Sorting with few values

Version 1. Is it possible to sort an array of n integers ranging from 0 to n -1 in ©(n) time?

31

Sorting with few values

Version 2. Is it possible to sort an array of n elements with integer keys ranging from 0 to n -1 in ©(n) time?

32

Sorting with few values

Version 3. Is it possible to sort an array of » integers ranging from 0 to n°> — 1 in O(n) time?

Hint 1. Express each integer as an + b, where 0 <a,b < n-1.
Hint 2. The algorithm from Version 2 can be made stable

(e.g., insert new elements at the end of the linked list).

33

Commercial break (sponsored bym)

)

Q. Why doesn’t this Skittles sorter violate the sorting lower bound?

r

34

http://www.apple.com

Complexity results in context (continued)

Lower bound may not hold if the algorithm can exploit:

* The initial order of the input array.

Ex: insertion sort makes only ©(n) compares on partially sorted arrays.

* The distribution of key values.
Ex: 3-way quicksort makes only ®(n) compares on arrays

with a small number of distinct keys. [next lecture]

 The representation of the keys.
Ex: radix sorts do not make any key compares;

they access the data via individual characters/digits.

35

Asymptotic notations

15 n?
Bbn2+3n+22

Yon?+ nlog,n

tilde leading
(~) term
big Theta order Of
(©) growth
big O upper
(0) bound
big Omega lower
(€2) bound

~ 15 n?

O(n?)

O(n?)

Q(n?)

15 n?
Tn?+n”

5n?-3n

10 n?
22 n
log, n

15 n?
n3+3n

2I’l

ignore
lower-order terms

also ignore
leading coefficient

O(n?) or smaller

O(n?) or larger

(O-notation

N

exact
run time

l

\

(2-notation

36

Mergesort quiz 5

Which of the following correctly describes the function f(n) = 10logn + 2nlogn+0.1n?

O(n log n)

A.

B. 02"

C. O(nlog n)
D. Q(n)

E.

All of the above.

Mergesort quiz 6

Which of the following statements is implied by the sorting lower bound?

A. Any sorting algorithm runs in time at least O(n log n) on any large enough input.
B. Any compare-based sorting algorithm makes ® log n) compares or uses ®(n) memory.
C. In the worst case, any compare-based sorting algorithm makes O® log n) compares.

D. In the worst case, any compare-based sorting algorithm makes Q(n log n) compares.

E. None of the above.

38

Sorting a linked list

Problem. Given a singly linked list, rearrange its nodes in sorter order.

Application. Sort list of inodes to garbage collect in Linux kernel.

Version 0. ®(nlog n) time, ®(n) extra space.

Version 1. O(nlogn) time, O(og n) extra space.

Version 2. O(nlogn) time, O(1) extra space.

39

Credits

image/video source license
Jon von Neumann IAS / Alan Richards
Tim Peters unknown
Theory vs. Practice Ela Sjolie
Skittles Sorting Machine Rolf R. Bakke

Fast Skittles Sorting Machine Kazumichi Moriyama

Impossible Stamp Adobe Stock education license
Divide-and-Conquer wallpapercrafter.com
Mergesort Instructions IDEA CCBY-NC-SA 4.0

Lecture Slides © Copyright 2024 Robert Sedgewick and Kevin Wayne

https://www.chronicle.com/article/early-computings-deal-with-the-devil
https://elasjoliedotcom.files.wordpress.com/2011/03/theory_practice_tree.jpg
https://www.youtube.com/watch?v=tSEHDBSynVo
https://www.youtube.com/watch?v=-_JdQZTQuTI#ws
https://stock.adobe.com/images/impossible-stamp-set-impossible-square-grunge-sign/406633267
https://stock.adobe.com/enterprise-conditions#educationLicenses
https://wallpapercrafter.com/1898086-divide-and-conquer-conquer--divide-blocks-scrabble.html

Merging demo (Transylvanian-Saxon folk dance)

bl0] b[1] bl2] b[3]:| bl4] b[5) %] bi6] b(7]

https:/ /www.youtube.com/watch?v=XaqR3G_NVoo

b[8] b[9]

https://www.youtube.com/watch?v=XaqR3G_NVoo

