

Instructions. This exam has nine (9) questions worth a total of one hundred (100) points. You have eighty (80) minutes.

This exam is preprocessed by computer. Write neatly, legibly, and darkly. If you use a pencil, use extra care to write darkly. Fill in bubbles and checkboxes <u>completely</u>: and (not \checkmark or \bigstar). Place <u>only</u> your answer <u>inside</u> a box, although you may show work outside a box.

To change an answer, erase it completely and redo.

Resources. The exam is closed book, except that you are allowed to use a single one-sided reference sheet (8.5-by-11 paper, one-sided, in your own handwriting). No electronic devices are permitted.

Honor Code. This exam is governed by Princeton's Honor Code. Discussing the contents of this exam before solutions have been posted is a violation of the Honor Code.

NAME:									
NETID									
PRECEPT	P01	P02	P02A	P03	P04	P05	P07	P08	P08A
	P10	P11	P12	P12A	P13	P14	P15	P16	P16A
EXAM ROOM	МсСо	sh 50 🔿	McCosh 1	10 〇 Mc	Cosh 62 () McCos	n 66 🔾	Other _	

"I pledge my honor that I will not violate the Honor Code during this examination."

Write the value and type of each of the following expressions. To express a value, write a Java literal of the appropriate form, such as **0** (for an **int**), **3.14** (for a **double**), **false** (for a **boolean**), **"tiger"** (for a **String**), **'a'** (for a **char**). If the expression does not compile or causes a runtime exception, place an **X** in <u>both</u> boxes.

Expression	Value	Туре
(double)(1 / 3 + 1.0)	1.0	double
Double.parseDouble("+" + 1 + "E+1")	+1+E1 or 10.0 or 1E1 or 1e1, etc.	double
Math.max(true, false)	X	X
true ((3.14 / 1.242) > 2.00012)	true	boolean
(0.5 * (10 / 4))	1.0	double
(int) (12 * 0.2)	2	int
(1 > 0) (1.0 <= 2.0 <= 3.0)	X	X
Double.parseDouble("2") + Integer.parseInt("2")	4.0	double

\sim	. •	
()	uestion	2
1		

Java

Which of the following are features of Java? Fill in the circle corresponding to *true* or *false*:

Conditionals

Question 3

1. Consider the following code snippet and table. For each combination of the **boolean** variables **a**, **b**, and **c**, what is the value for **result** <u>after</u> the code executes. Fill in the circle for **true** or **false**. The first row is filled in for you.

	а	b	с	result
<pre>boolean result = false; if (a) result = (b c);</pre>	false	false	false	⊖true●false
else if (b) result = c;	false	false	true	⊖true false
else result = b;	false	true	false	⊖true false
	false	true	true	false
	true	false	false	⊖true false
	true	false	true	\bigcirc true \bigcirc false
	true	true	false	f alse
	true	true	true	false

2. Consider the following code snippet and the boolean variables **a**, **b**, and **result**. After the code executes, which of the following statement(s) are correct? Fill in the circle(s) corresponding to the correct statement(s), if any. Incorrect selections will reduce partial credit.

O Will always assign result = true if at least one of a and/or b is
true.
Will only assign result = true if both a and b are true.
○ Will always assign result = true if a and b have different values.
Will always assign result = false if a is true .
○ Will only assign result = false if a and b have the same value.
○ Will never assign result = false .
\bigcirc I need to know the values of the two <code>boolean</code> variables <code>a</code> and <code>b</code> to
determine whether the statements above are correct.

Question 4

Loops

For each loop on the left, write the letter (in the box) of the matching output on the right when N == 4. You may use each letter once or more than once. (Whitespace in output is for readability purposes only.)

1.	<pre>for (int i = 0; i < N; i++) { for (int j = i; j < N; j++) System.out.print((N - i + j) % 2); System.out.println(); }</pre>	K	A 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0	B 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1
2.	<pre>for (int i = 0; i < N; i++) { for (int j = N; j > i; j) System.out.print((N - i + j) % 2);</pre>	G	C 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0	D 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
	<pre>System.out.println(); }</pre>		E 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1	F 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
3.	<pre>for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) System.out.print((N - i + j) % 2); System.out.println(); }</pre>	Α	G 0 1 0 1 1 0 1 0 1 1	H 1 0 1 1 0 1 0 1 0 1
4.	<pre>for (int i = 0; i < N; i++) { for (int j = 1; j <= i + 1; j++) System.out.print((N - i + j) % 2);</pre>		I 1 0 1 0 1 0 1 1 0 1	J 0 01 010 0101
	System.out.println(); }		K 0 1 0 1 0 1 0 0 1 0 0 1	L 1 10 101
			0	1010

Question 5

Arrays

1. For each code fragment, write what is printed in the box on the right. If the code results in an error (compile- or run-time), write **ERROR** in all CAPS.

- a. int[] a = { 3, 2, 0, 1, 4 }; double[] d = {1.0, -3.14, 126.0, 0.0, 1.0}; StdOut.println(a.length == d.length);
- b. int[] a = { 3, 2, 0, 1, 4}; a = new int[3]; StdOut.println(a[1]);

c. int[] a = { 3, 2, 0, 1, 4 }; StdOut.println(a[a[a[3]]]);

d. int[] a = { 3, 2, 0, 1, 4 }; int[] b = { -3, -2, 0, -1, -4}; int[] c = a + b; StdOut.println(c[1]);

2. Recall from Programming Exam 1, an EV charging station data file has the total number stations on the first line (\geq 1). Each subsequent line has the **name** and (**x**, **y**) location for a single EV station. For example:

∕₀ cat uata.	J.LXL	
3		
LocationA	40.28	-74.81
LocationB	40.38	-74.65
LocationC	40.36	-74.62

For each of the following problems, which solutions **require** storing all the data (using arrays) and which can be computed without using arrays? Assume all input is read from standard input using **StdIn**. Fill in the corresponding circle.

		Requires arrays	Does not require arrays
a.	Plots the locations of all the stations on a map using StdDraw.	\bigcirc	\bigcirc
b.	Prints the distances between all stations.	\bigcirc	\bigcirc

Consider these programs:

<pre>public class 0 {</pre>	public class R {
<pre>public static void main(String[] args) {</pre>	<pre>public static void main(String[] args) {</pre>
<pre>int num = Integer.parseInt(args[0]);</pre>	<pre>int a = Integer.parseInt(args[0]);</pre>
<pre>while (!StdIn.isEmpty()) {</pre>	<pre>while (!StdIn.isEmpty()) {</pre>
<pre>int value = StdIn.readInt();</pre>	<pre>int b = StdIn.readInt();</pre>
if (value > num)	<pre>StdOut.print(a + b);</pre>
<pre>StdOut.print(value + " ");</pre>	<pre>StdOut.print(" ");</pre>
}	}
<pre>StdOut.println();</pre>	<pre>StdOut.println();</pre>
}	}
}	}

Assume the contents of the file **input.txt** as shown below:

5 1 8 9 4 6

Suppose that you execute each of the following commands. For each command, what numbers are printed on standard output? Write your answer in the space provided. If the command results in an error, write **ERROR** (in all CAPS). If no numbers are printed, write **NONE** (in all CAPS).

% java-introcs Q 4 < input.txt</pre>

```
% java-introcs R 1 < input.txt | java-introcs Q 5</pre>
```

% java-introcs Q 1 3 < input.txt</pre>

% java-introcs R 2 | java-introcs Q 10

Consider the following functions:

```
public static int[] swap1(int[] a, int[] b) {
      int[] temp = b;
      a = b;
      b = temp;
      return a;
  }
 public static int[] swap2(int[] a, int[] b) {
      for (int i = 0; i < a.length; i++) {</pre>
        int t = a[i];
        a[i] = b[i];
        b[i] = t;
      }
      return a;
  }
 public static void swap3(int[] a, int[] b) {
      for (int i = 0; i < a.length; i++) {</pre>
        int t = a[i];
        a[i] = b[i];
        b[i] = t;
      }
      return;
  }
 public static void swap4(int[] a, int[] b) {
      b = swap1(a, b);
      swap3(a, b);
      b = new int[b.length];
      return;
  }
Given the arrays:
                  int[] x = { 10, 30, 50 };
                                                           int[] y = \{ 20, 40, 60 \};
```

Assume each function is called with the array values \mathbf{x} and \mathbf{y} as initialized above, where each function call is independent of one another. Fill in the circle that indicates if the array values are swapped after calling each function. Select "Not Sure" to receive 1 point partial credit. (Each part is worth 4 points.)

	Function	Does swap	Does not swap	Not sure
1	<pre>swap1(x, y);</pre>	\bigcirc	\bigcirc	\bigcirc
2	<pre>swap2(x, y);</pre>	\bigcirc	\bigcirc	\bigcirc
3	<pre>swap3(x, y);</pre>	\bigcirc	\bigcirc	\bigcirc
4	<pre>swap4(x, y);</pre>	\bigcirc	\bigcirc	\bigcirc

Consider the following recursive static method:

```
public static String mystery(int n) {
    if (n == 0)
        return "";
    else if (n == 1)
        return "I";
    else if (n == 2)
        return "W";
    else
        return mystery(n - 1) + mystery(n - 2);
}
```

1. What is the value of mystery(2)

2. What is the value of mystery(3)

3. What is the value of mystery(4)

4. What is the value of mystery(6)

5. Provide an example of a call to **mystery(__)** that will produce a **StackOverflowError**. If there is no such example, fill in the circle for NONE.

mystery() ONONE

Performance

Fill in the circle that describes the order of growth of the running time with respect to **n**:

1	<pre>public static long mystery1(int n) { if (n == 1) return 1; return n * mystery1(n-1); }</pre>	Linearithmic	Constant O Quadratic	Cubic	Linear O Exponential
2	<pre>public static String mystery2(int n) { String s = ""; for (int i = 0; i < n; i++) if (Math.random() < .5) s += "0"; else</pre>	O Linearithmic	Constant O Quadratic	Cubic	Linear O Exponential
3	<pre>public static void mystery3(int n) { if (n == 0) return; StdOut.print(n + " "); mystery3(n-1); mystery3(n-1); mystery3(n-1); }</pre>	Linearithmic	Constant O Quadratic	Cubic	C Linear C Exponential
4	<pre>public static void mystery4(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = Math.sin(2 * Math.PI *</pre>	C	Constant O Quadratic	Cubic	C Linear C Exponential
5	A program has the following running times for different sizes of its input n. n Time (seconds) 10000 5 20000 42 30000 135 40000 318	C	Constant Quadratic	Cubic	O Linear O Exponential