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Problem Statement

e Developing a single drug costs around
and takes
and testing before
potentially being FDA approved
e Blind Docking: identifying the correct
orientation and conformation for a
given ligand and protein

e Large variety of binding mechanisms
(hydrophobic, hydrogen-bonding, and
ni-stacking)



Search-Based Docking

e Define a scoring function (physics based or neural network) where “accurate
scoring requires accurate docking”
e Stochastically modify the ligand pose to maximize score

e Performance of Search-based Method on Single Ligand-Receptor (23%):
o  Glide: > 1000 seconds
o  GNINA: ~146 seconds
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Machine Learning for Blind Docking

e Attempt to remove the search process by directly predicting where the ligand
protein will bind using neural network
e Very fast BUT performance has not reached traditional search methods (20%)

Random RDKit

conformer Prediction of 3D binding interaction without active site
knowledge (blind docking) and ligand bound conformation.
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Figure 1. High-level overview of the structural drug binding problem tackled by EQUIBIND.
Stark et al. (2022)



Regression Methods are not suited for Protein Docking

e Issues with data/problem formulation:
o Aleatoric Uncertainty: ligand might bind with multiple poses to the protein

o Epistemic Uncertainty: limited model is unsuitable for complexity of docking (usually results
in physically unrealistic output).
e Regression-style methods select a single configuration that minimizes the
expected square error ->the mean of such distributions.
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Generative Models for Blind Docking

e Generative models can learn to capture the distribution unlike the
alternatives
e Able to sample all/most of the significant modes
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Objective

e Traditional Docking Objective: maximize percentage of predictions that

have < eps with ground truth.
o Not differentiable!
e DiffDock Objective: maximizing the likelihood of the true structure under

the model’s output distribution (in the limit as eps goes to 0)



Ligand Pose

e Ligand pose can be defined as atomic positions
assignment in the R*" dimension

e However, Ligands are relatively rigid, not
completely independent atoms.

Any ligand pose consistent with a seed conformation can be reached by a combination of
(1) ligand translations, (2) ligand rotations, and (3) changes to torsion angles.




Definition of Space of Ligand Poses

x = R*" ligand pose

R = Rotation Matrix

r = translation vector

Theta = torsion vector (m rotatable bonds)

c = seed pose confirmation

M_= Ligand Pose manifold conditioned on ¢

A((I‘, R7 9)7 X) — Atr(r7 Arot(Ra Ator(ev X)))

Me = {A(g,C) | g € ]P}



Diffusion Details

e SDE: dx = 4/do?(t)/dtdw x=tr, rot, c==

motion

e Diffusion Kernels:
o Translation Kernel (T(3)): sample and comg
o Rotation Kernel (SO(3)): SO(3) kernel is give
o Torsion Kernel((SO(2)™): a wrapped normal
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Two Neural Components of DiffDock: TM
Score Model + Confidence Model

e Inputs:

o x=ligand, y = protein
e Score Model s(x,y,t)

o Predicts tangent space “score” - two SE(3)-equivariant vectors for the ligand as a whole and an
SE(3)-invariant scalar at each of the m freely rotatable bonds.
o Coarse grained: operates on a-carbon

e Confidence Model d(x,y)

o  Outputs scalar confidence value
o Fine grained: operates on all atom



Training the Diffusion Model

e Training Data (x* y, ¢):
o x*=ground-truth ligand pose
o y=protein structure
o ¢ €& Mx*

e Training Procedure:

o Don’t want to train using Mx* because of poor generalization
o Create c € Mx™* using RDKit and train on Mc manifold
o Replace x* ground truth with:

arg min,; c . RMSD(x*, xT)



Score Model

PARAMETER

SEARCH SPACE

USING ALL ATOMS FOR THE PROTEIN GRAPH

USING LANGUAGE MODEL EMBEDDINGS

USING LIGAND HYDROGENS

USING EXPONENTIAL MOVING AVERAGE

MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH
DISTANCE EMBEDDING METHOD

YES, No
YES, No
YES, NO
YES, No
10, 16, 24, 30
5,10,15,18,.20; 30
SINUSOIDAL, GAUSSIAN

DROPOUT 0, 0.05, 0.1, 0.2

LEARNING RATES 0.01, 0.008, 0.003, 0.001, 0.0008, 0.0001
BATCH SIZE 8, 16, 24

NON LINEARITIES RELU

CONVOLUTION LAYERS 6

NUMBER OF SCALAR FEATURES 48

NUMBER OF VECTOR FEATURES

10




Confidence Model

PARAMETER SEARCH SPACE
USING ALL ATOMS FOR THE PROTEIN GRAPH YES, NoO
USING LANGUAGE MODEL EMBEDDINGS YES, No
USING LIGAND HYDROGENS No

USING EXPONENTIAL MOVING AVERAGE No
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH 10, 16, 24, 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH 5,10, 15, 18, 20, 30
DISTANCE EMBEDDING METHOD SINUSOIDAL
DROPOUT 0, 0.05,0.1,0.2
LEARNING RATES 0.03, 0.003, 0.0003, 0.00008
BATCH SIZE 16

NON LINEARITIES RELU
CONVOLUTION LAYERS 5

NUMBER OF SCALAR FEATURES 24

NUMBER OF VECTOR FEATURES 6




Training Confidence Model d(x,y)

e Use trained diffusion model to generate poses for every training example.
e Generate binary labels based on which poses have RMSD below 2 A
e Train Confidence Model (4.77 million parameters) on generated labels.



Workflow

e Generate N random poses
e Simulate Reverse Diffusion
e Rank and select top M poses



Results







Results

Holo crystal proteins Apo ESMFold proteins

Top-1 RMSD  Top-S RMSD  Top-1 RMSD  Top-5 RMSD Average
Method %<2 Med. | %<2 Med. | %<2 Med. | %<2 Med. | Runtime (s)
GNINA 22.9 7.7 32.9 4.5 2.0 22.3 4.0 1422 127
SMINA 18.7 Tl 29.3 4.6 3.4 15.4 6.9 10.0 126*
GLIDE 21.8 9.3 1405*
EQUIBIND 5.5 6.2 - - 1.7 7.1 - - 0.04
TANKBIND 20.4 4.0 24.5 34 104 54 14.7 4.3 0.7/2.5
P2RANK+SMINA 20.4 6.9 33.2 4.4 4.6 10.0 | 10.3 7.0 126*
P2RANK+GNINA 28.8 59 38.3 3.4 8.6 11.2 | 12.8 T 127
EQUIBIND+SMINA  23.2 6.5 38.6 3.4 4.3 8.3 11.7 5.8 126*
EQUIBIND+GNINA  28.8 4.9 39.1 3.1 10.2 8.8 18.6 5.6 127
DIFrFrDOCK (10) 35.0 3.6 40.7 2.65 21.7 5.0 319 33 10
DIFFDOCK (40) 38.2 33 4.7 240 | 203 1 | 313 33 40
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Figure 4: Ligand self-intersections. TANKBind (blue), EquiBind (cyan), DIFFDOCK (red), and
crystal structure (green). Due to the averaging phenomenon that occurs when epistemic uncertainty
is present, the regression-based deep learning models tend to produce ligands with atoms that are
close together, leading to self-intersections. DIFFDOCK, as a generative model, does not suffer from
this averaging phenomenon, and we never found a self-intersection in any of the investigated results
of DIFFDOCK.
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Figure 6: Cumulative density histogram of the methods’ RMSD: left on holo crystal structures, right
on apo ESMFold structures.

Top-1 RMSD (A) Top-5RMSD (A)  Average

Method %<2 Med. | %<2 Med. | Runtime (s)
DIFFDOCK-SMALL-NOESM (10) 26.2 4.7 32.0 3.2 7
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Figure 11: Ablation study on the number of reverse diffusion steps.



Takeaway

e Diffdock achieves 38% top-1 success rate (RMSD<2A) on PDB-Bind,
significantly outperforming the previous state-of-the-art of traditional
docking (23%)

e 3to 12 times faster than the best search-based method (previous state of the
art)!
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Introduction

- AlphaFold2 and RoseTTAFold allow for protein structure prediction using
only the amino acid sequences

- BUT proteins are rarely alone - they
- This interaction is important for applications such as
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Inputs are mostly similar to RF2
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Training RFAA - Dataset

- PDB—

- protein-small molecule, protein-metal, and covalently modified protein complexes
- 30% sequence identity clustering + some common filtering

- Cambridge Structural Database —

- small crystal structures of organic non-polymeric molecules

- Atomize residues —
- Randomly atomize residues in the protein



CAMEO - Continuous Automated Model Evaluation

- Commonly used for ligand docking evaluation
- Carries out predictions using structures submitted to the PDB



CAMEO Results
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E.

CAMEO Results

DiffDock

UniMol
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RFAA is good at assembling multiple biomolecules,

much better than previous methods TACEERS
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Predicting Structures of Covalent Modifications to Proteins

Amino acid side chains are modified
with sugars, phosphates, lipids, and A

other molecules in many essential Covalent modification and residue
treated as atoms

~

protein functions

"Residue to Atom"
Bond Features

Remainder of protein
treated as residues



Higher confidence/overlap with training — better
performance
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De Novo Small Molecule Binder Design

- Similar to the goal of DiffDock, we are interested in generating/designing
proteins that binds small molecules
- Developed RFDiffusion All-Atom on top of RFAA
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Binding Experiments

- Designed binders for three diverse small molecules
no protein motif, a single protein motif, a four residue protein motif

- Then measured the binding experimentally
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Takeaways

1. RFAA demonstrates significant ability to work on proteins with low overlap
with the training set — good generalization

2. RFAA predictions are highly correlated with physical chemistry
characteristics

3. RFAA can be extended to ALL-ATOMS



