DIFFDOCK: DIFFUSION STEPS, TWISTS, AND TURNS FOR MOLECULAR DOCKING

Gabriele Corso*, Hannes Stärk*, Bowen Jing*, Regina Barzilay & Tommi Jaakkola CSAIL, Massachusetts Institute of Technology

ICLR 2023 Presented by Victor Chu and Howard Yen

Problem Statement

- Developing a single drug costs around 1 billion dollars and takes 10 years of development and testing before potentially being FDA approved
- **Blind Docking:** identifying the correct orientation and conformation for a given ligand and protein without knowing anything about where the ligand will bind onto the protein.
- Large variety of binding mechanisms (hydrophobic, hydrogen-bonding, and π-stacking)

Search-Based Docking

- Define a scoring function (physics based or neural network) where "accurate scoring requires accurate docking"
- Stochastically modify the ligand pose to maximize score
- Performance of Search-based Method on Single Ligand-Receptor (23%):
 - Glide: > 1000 seconds
 - GNINA: ~146 seconds

Machine Learning for Blind Docking

- Attempt to remove the search process by directly predicting where the ligand protein will bind using neural network
- Very fast BUT performance has not reached traditional search methods (20%)

Figure 1. High-level overview of the structural drug binding problem tackled by EQUIBIND. Stärk et al. (2022)

Regression Methods are not suited for Protein Docking

- Issues with data/problem formulation:
 - Aleatoric Uncertainty: ligand might bind with multiple poses to the protein
 - **Epistemic Uncertainty:** limited model is unsuitable for complexity of docking (usually results in physically unrealistic output).
- Regression-style methods select a single configuration that minimizes the expected square error -> the mean of such distributions.

Generative Models for Blind Docking

- Generative models can learn to capture the distribution unlike the alternatives
- Able to sample all/most of the significant modes

Objective

- **Traditional Docking Objective**: maximize percentage of predictions that have < eps with ground truth.
 - Not differentiable!
- **DiffDock Objective:** maximizing the likelihood of the true structure under the model's output distribution (in the limit as eps goes to 0)

Ligand Pose

- Ligand pose can be defined as atomic positions assignment in the R³ⁿ dimension
- However, Ligands are relatively rigid, not completely independent atoms.

Any ligand pose consistent with a seed conformation can be reached by a combination of (1) ligand translations, (2) ligand rotations, and (3) changes to torsion angles.

Definition of Space of Ligand Poses

- $x = R^{3n}$ ligand pose
- R = Rotation Matrix
- r = translation vector
- Theta = torsion vector (m rotatable bonds)
- c = seed pose confirmation
- M_c = Ligand Pose manifold conditioned on c

$$A((\mathbf{r}, R, \boldsymbol{\theta}), \mathbf{x}) = A_{tr}(\mathbf{r}, A_{rot}(R, A_{tor}(\boldsymbol{\theta}, \mathbf{x})))$$

$$\mathcal{M}_{\mathbf{c}} = \{ A(g, \mathbf{c}) \mid g \in \mathbb{P} \}$$

Diffusion Details

- SDE: $d\mathbf{x} = \sqrt{d\sigma^2(t)/dt} \, d\mathbf{w}$ x = tr, rot, c-motion
- Diffusion Kernels:
 - Translation Kernel (T(3)): sample and comp
 - Rotation Kernel (SO(3)): SO(3) kernel is give
 - Torsion Kernel((SO(2)^m): a wrapped normal

~

$$p(\omega) = rac{1-\cos\omega}{\pi}f(\omega) \quad ext{where} \quad f(\omega) = \sum_{l=0}^{\infty}(\omega)$$

Product Space Diffusion

Steps

Two Neural Components of DiffDock: Score Model + Confidence Model

- Inputs:
 - x = ligand, y = protein
- Score Model s(x,y,t)
 - Predicts tangent space "score" two SE(3)-equivariant vectors for the ligand as a whole and an SE(3)-invariant scalar at each of the m freely rotatable bonds.
 - \circ Coarse grained: operates on $\alpha\text{-carbon}$
- Confidence Model d(x,y)
 - Outputs scalar confidence value
 - \circ ~ Fine grained: operates on all atom ~

Training the Diffusion Model

- Training Data (x*, y, c):
 - \circ x^{*} = ground-truth ligand pose
 - y = protein structure
 - $\circ \quad c \in Mx^{\star}$
- Training Procedure:
 - Don't want to train using Mx* because of poor generalization
 - $\circ \quad \mbox{Create c} \in Mx^* \mbox{ using RDKit and train on Mc manifold}$
 - Replace x* ground truth with:

$$\operatorname{arg\,min}_{\mathbf{x}^{\dagger}\in\mathcal{M}_{\mathbf{c}}}\operatorname{RMSD}(\mathbf{x}^{\star},\mathbf{x}^{\dagger})$$

Score Model

PARAMETER	SEARCH SPACE
USING ALL ATOMS FOR THE PROTEIN GRAPH	YES, NO
USING LANGUAGE MODEL EMBEDDINGS	YES, NO
USING LIGAND HYDROGENS	YES, NO
USING EXPONENTIAL MOVING AVERAGE	YES, NO
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH	10, 16, 24 , 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH	5, 10, 15 , 18, 20, 30
DISTANCE EMBEDDING METHOD	SINUSOIDAL, GAUSSIAN
DROPOUT	0, 0.05, 0.1 , 0.2
LEARNING RATES	0.01, 0.008, 0.003, 0.001 , 0.0008, 0.0001
BATCH SIZE	8, 16, 24
NON LINEARITIES	RELU
CONVOLUTION LAYERS	6
NUMBER OF SCALAR FEATURES	48
NUMBER OF VECTOR FEATURES	10

Confidence Model

PARAMETER	SEARCH SPACE
USING ALL ATOMS FOR THE PROTEIN GRAPH	YES, NO
USING LANGUAGE MODEL EMBEDDINGS	YES, NO
USING LIGAND HYDROGENS	No
USING EXPONENTIAL MOVING AVERAGE	No
MAXIMUM NUMBER OF NEIGHBORS IN PROTEIN GRAPH	10, 16, 24 , 30
MAXIMUM NEIGHBOR DISTANCE IN PROTEIN GRAPH	5, 10, 15 , 18, 20, 30
DISTANCE EMBEDDING METHOD	SINUSOIDAL
DROPOUT	0, 0.05, 0.1 , 0.2
LEARNING RATES	0.03, 0.003, 0.0003 , 0.00008
BATCH SIZE	16
NON LINEARITIES	RELU
CONVOLUTION LAYERS	5
NUMBER OF SCALAR FEATURES	24
NUMBER OF VECTOR FEATURES	6

Training Confidence Model d(x,y)

- Use trained diffusion model to generate poses for every training example.
- Generate binary labels based on which poses have RMSD below 2 Å
- Train Confidence Model (4.77 million parameters) on generated labels.

Workflow

- Generate N random poses
- Simulate Reverse Diffusion
- Rank and select top M poses

Results

	Holo crystal proteins			Apo ESMFold proteins					
	Top-1	p-1 RMSD Top-5 RMSD			Top-1 RMSD Top-5		RMSD	Average	
Method	%<2	Med.	%<2	Med.	%<2	Med.	%<2	Med.	Runtime (s)
GNINA	22.9	7.7	32.9	4.5	2.0	22.3	4.0	14.22	127
SMINA	18.7	7.1	29.3	4.6	3.4	15.4	6.9	10.0	126*
GLIDE	21.8	9.3							1405*
EquiBind	5.5	6.2	-	-	1.7	7.1	-	-	0.04
TANKBIND	20.4	4.0	24.5	3.4	10.4	5.4	14.7	4.3	0.7/2.5
P2RANK+SMINA	20.4	6.9	33.2	4.4	4.6	10.0	10.3	7.0	126*
P2RANK+GNINA	28.8	5.5	38.3	3.4	8.6	11.2	12.8	7.2	127
EQUIBIND+SMINA	23.2	6.5	38.6	3.4	4.3	8.3	11.7	5.8	126*
EQUIBIND+GNINA	28.8	4.9	39.1	3.1	10.2	8.8	18.6	5.6	127
DIFFDOCK (10)	35.0	3.6	40.7	2.65	21.7	5.0	31.9	3.3	10
DIFFDOCK (40)	38.2	3.3	44.7	2.40	20.3	5.1	31.3	3.3	40

Figure 4: Ligand self-intersections. TANKBind (blue), EquiBind (cyan), DIFFDOCK (red), and crystal structure (green). Due to the averaging phenomenon that occurs when epistemic uncertainty is present, the regression-based deep learning models tend to produce ligands with atoms that are close together, leading to self-intersections. DIFFDOCK, as a generative model, does not suffer from this averaging phenomenon, and we never found a self-intersection in any of the investigated results of DIFFDOCK.

Figure 6: Cumulative density histogram of the methods' RMSD: left on holo crystal structures, right on apo ESMFold structures.

Takeaway

- Diffdock achieves 38% top-1 success rate (RMSD<2A) on PDB-Bind, significantly outperforming the previous state-of-the-art of traditional docking (23%)
- 3 to 12 times faster than the best search-based method (previous state of the art)!

Generalized Biomolecular Modeling and Design with RoseTTAFold All-Atom

Rohith Krishna^{1,2‡}, Jue Wang^{1,2‡}, Woody Ahern^{1,2,3‡}, Pascal Sturmfels^{1,2,3}, Preetham Venkatesh^{1,2,4°}, Indrek Kalvet^{1,2,7°}, Gyu Rie Lee^{1,2,7°}, Felix S Morey-Burrows⁵, Ivan Anishchenko^{1,2}, Ian R Humphreys^{1,2}, Ryan McHugh^{1,2,4}, Dionne Vafeados^{1,2}, Xinting Li^{1,2}, George A Sutherland⁵, Andrew Hitchcock⁵, C Neil Hunter⁵, Minkyung Baek⁶, Frank DiMaio^{1,2}, David Baker^{1,2,7*}

bioRxiv 2023 Presented by Victor Chu and Howard Yen

Outline

- 1. Introduction
- 2. RoseTTAFold All-Atom dataset and training
- 3. Binding evaluation
- 4. Structure prediction
- 5. Experimental results
- 6. Takeaways

Introduction

- AlphaFold2 and RoseTTAFold allow for protein structure prediction using only the amino acid sequences
- BUT proteins are rarely alone they interact with other proteins & molecules
- This interaction is important for applications such as drug design
- How to model multiple molecular structures jointly?

RoseTTAFold All-Atom

Inputs are mostly similar to RF2

Outputs

æ

Predicted Error

Training RFAA – Dataset

- $PDB \rightarrow for learning complex structures$
 - protein-small molecule, protein-metal, and covalently modified protein complexes
 - 30% sequence identity clustering + some common filtering
- Cambridge Structural Database → for learning the general properties of small molecules
 - small crystal structures of organic non-polymeric molecules
- Atomize residues \rightarrow for learning generic interactions
 - Randomly atomize residues in the protein
- Training on multiple modalities/tasks \rightarrow better generalization!

CAMEO – Continuous Automated Model Evaluation

- Commonly used for ligand docking evaluation
- Carries out predictions using structures submitted to the PDB

77% of the high confidence predictions have an error of < 2Å RMSD

RFAA is good at assembling multiple biomolecules, much better than previous methods

D.

Assemblies with Multiple Biomolecules

RFAA generalizes to new proteins with low similarity with the training set

Η.

Assemblies Outside Training Distribution

Closest Protein Seq in Training: 25% Closest Ligand In Training: 1.0 Ligand RMSD: 0.38 Closest Protein Seq in Training: 38% Closest Ligand In Training: 0.41 Ligand RMSD: 0.89 Closest Protein Seq in Training: 23% Closest Ligand In Training: 0.46 Ligand RMSD: 1.20

RFAA makes more accurate predictions for complexes with low Rosetta energy → correlations with physics principles

Η.

Assemblies Outside Training Distribution

Closest Protein Seq in Training: 25% Closest Ligand In Training: 1.0 Ligand RMSD: 0.38 Closest Protein Seq in Training: 38% Closest Ligand In Training: 0.41 Ligand RMSD: 0.89 Closest Protein Seq in Training: 23% Closest Ligand In Training: 0.46 Ligand RMSD: 1.20

Predicting Structures of Covalent Modifications to Proteins

Amino acid side chains are modified with sugars, phosphates, lipids, and other molecules in many essential protein functions

Higher confidence/overlap with training \rightarrow better performance

Examples of accurate predictions

De Novo Small Molecule Binder Design

- Similar to the goal of DiffDock, we are interested in generating/designing proteins that binds small molecules
- Developed RFDiffusion All-Atom on top of RFAA

RFdiffusionAA produces protein-ligand interfaces with a lower computed ΔG than RFdiffusion

Binding Experiments

- Designed binders for three diverse small molecules
 - no protein motif, a single protein motif, a four residue protein motif
- Then measured the binding experimentally

.XX Closest TM Score with similar ligand

Takeaways

- 1. RFAA demonstrates significant ability to work on proteins with low overlap with the training set \rightarrow good generalization
- 2. RFAA predictions are highly correlated with physical chemistry characteristics
- 3. RFAA can be extended to ALL-ATOMS