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Problem Statement

● Developing a single drug costs around 1 
billion dollars and takes 10 years of 
development and testing before 
potentially being FDA approved

● Blind Docking: identifying the correct 
orientation and conformation for a 
given ligand and protein without 
knowing anything about where the 
ligand will bind onto the protein.

● Large variety of binding mechanisms 
(hydrophobic, hydrogen-bonding, and 
π-stacking)



Search-Based Docking

● Define a scoring function (physics based or neural network) where “accurate 
scoring requires accurate docking”

● Stochastically modify the ligand pose to maximize score
● Performance of Search-based Method on Single Ligand-Receptor (23%):

○ Glide: > 1000 seconds
○ GNINA: ~146 seconds



Machine Learning for Blind Docking

● Attempt to remove the search process by directly predicting where the ligand 
protein will bind using neural network

● Very fast BUT performance has not reached traditional search methods (20%)

Stärk et al. (2022)



Regression Methods are not suited for Protein Docking

● Issues with data/problem formulation:
○ Aleatoric Uncertainty: ligand might bind with multiple poses to the protein
○ Epistemic Uncertainty: limited model is unsuitable for complexity of docking (usually results 

in physically unrealistic output).
● Regression-style methods select a single configuration that minimizes the 

expected square error  -> the mean of such distributions. 



Generative Models for Blind Docking

● Generative models can learn to capture the distribution unlike the 
alternatives

● Able to sample all/most of the significant modes





Objective

● Traditional Docking Objective: maximize percentage of predictions that 
have < eps with ground truth. 
○ Not differentiable!

● DiffDock Objective: maximizing the likelihood of the true structure under 
the model s̓ output distribution (in the limit as eps goes to 0)



● Ligand pose can be defined as atomic positions 
assignment in the R3n dimension

● However, Ligands are relatively rigid, not 
completely independent atoms.

Ligand Pose



Definition of Space of Ligand Poses

● x = R3n ligand pose
● R = Rotation Matrix
● r = translation vector
● Theta = torsion vector (m rotatable bonds)
● c = seed pose confirmation
● Mc = Ligand Pose manifold conditioned on c



Diffusion Details

● SDE: x = tr, rot, or tor; w = corresponding brownian 
motion

● Diffusion Kernels:
○ Translation Kernel (T(3)): sample and compute the score of a standard Gaussian
○ Rotation Kernel (SO(3)): SO(3) kernel is given by IGSO(3) distribution.
○ Torsion Kernel((SO(2)m): a wrapped normal distribution.



Two Neural Components of DiffDock:
Score Model + Confidence Model
● Inputs:

○ x = ligand, y = protein
● Score Model s(x,y,t)

○ Predicts tangent space “score” - two SE(3)-equivariant vectors for the ligand as a whole and an 
SE(3)-invariant scalar at each of the m freely rotatable bonds.

○ Coarse grained: operates on α-carbon
● Confidence Model d(x,y) 

○ Outputs scalar confidence value
○ Fine grained: operates on all atom



Training the Diffusion Model

● Training Data (x*, y, c): 
○ x* = ground-truth ligand pose
○ y = protein structure
○ c ∈ Mx*

● Training Procedure:
○ Donʼt want to train using Mx* because of poor generalization
○ Create c ∈ Mx* using RDKit and train on Mc manifold
○ Replace x* ground truth with:



Score Model



Confidence Model



Training Confidence Model d(x,y)

● Use trained diffusion model to generate poses for every training example. 
● Generate binary labels based on which poses have RMSD below 2 Å 
● Train Confidence Model (4.77 million parameters) on generated labels.



Workflow

● Generate N random poses
● Simulate Reverse Diffusion
● Rank and select top M poses



Results





Results







Takeaway

● Diffdock achieves 38% top-1 success rate (RMSD<2A) on PDB-Bind, 
significantly outperforming the previous state-of-the-art of traditional 
docking (23%) 

● 3 to 12 times faster than the best search-based method (previous state of the 
art)!
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Introduction

- AlphaFold2 and RoseTTAFold allow for protein structure prediction using 
only the amino acid sequences

- BUT proteins are rarely alone – they interact with other proteins & molecules
- This interaction is important for applications such as drug design
- How to model multiple molecular structures jointly? 



RoseTTAFold All-Atom



Inputs are mostly similar to RF2



Training RFAA – Dataset

- PDB ⟶ for learning complex structures
- protein-small molecule, protein-metal, and covalently modified protein complexes 
- 30% sequence identity clustering + some common filtering

- Cambridge Structural Database ⟶ for learning the general properties of 
small molecules

- small crystal structures of organic non-polymeric molecules 
- Atomize residues ⟶ for learning generic interactions

- Randomly atomize residues in the protein
- Training on multiple modalities/tasks ⟶ better generalization!



CAMEO – Continuous Automated Model Evaluation

- Commonly used for ligand docking evaluation 
- Carries out predictions using structures submitted to the PDB 



CAMEO Results

77% of the high confidence predictions 
have an error of < 2Å RMSD



CAMEO Results

RFAA is good at assembling multiple biomolecules, 
much better than previous methods



CAMEO Results
RFAA generalizes to new 
proteins with low similarity 
with the training set



CAMEO Results
RFAA makes more accurate 
predictions for complexes with low 
Rosetta energy ⟶ correlations with 
physics principles



Predicting Structures of Covalent Modifications to Proteins

Amino acid side chains are modified 
with sugars, phosphates, lipids, and 
other molecules in many essential 
protein functions



Higher confidence/overlap with training ⟶ better 
performance



Examples of accurate predictions



De Novo Small Molecule Binder Design

- Similar to the goal of DiffDock, we are interested in generating/designing 
proteins that binds small molecules

- Developed RFDiffusion All-Atom on top of RFAA 



RFdiffusionAA produces 
protein-ligand interfaces with 
a lower computed ΔG than 
RFdiffusion



Binding Experiments 

- Designed binders for three diverse small molecules
- no protein motif, a single protein motif, a four residue protein motif

- Then measured the binding experimentally



4,416 designs were selected
the tightest binder was stable 
at temp up to 95℃

168 designs selected ⟶ 135 expressed ⟶ 96 UV/Vis 
spectra consistent with CYS-bound heme. 38 were 
monomeric and retained heme-binding through SEC



94 RFdAA 
designs⟶purified 
3 promising 
designs
significant spectral 
shifts



Takeaways

1. RFAA demonstrates significant ability to work on proteins with low overlap 
with the training set ⟶ good generalization 

2. RFAA predictions are highly correlated with physical chemistry 
characteristics

3. RFAA can be extended to ALL-ATOMS


