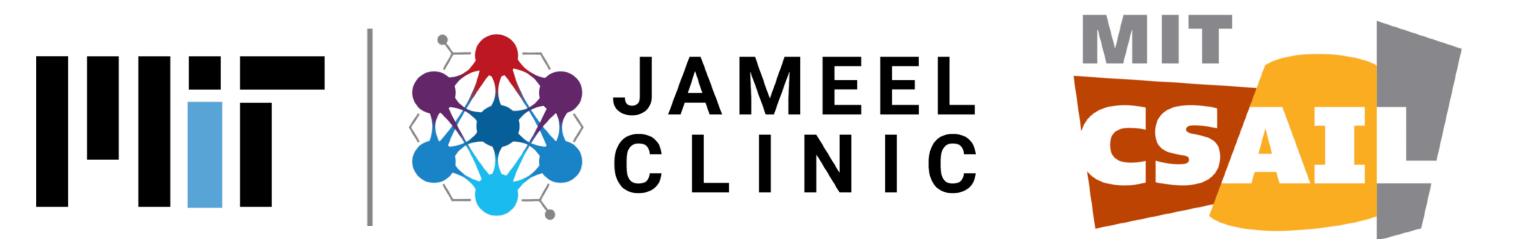
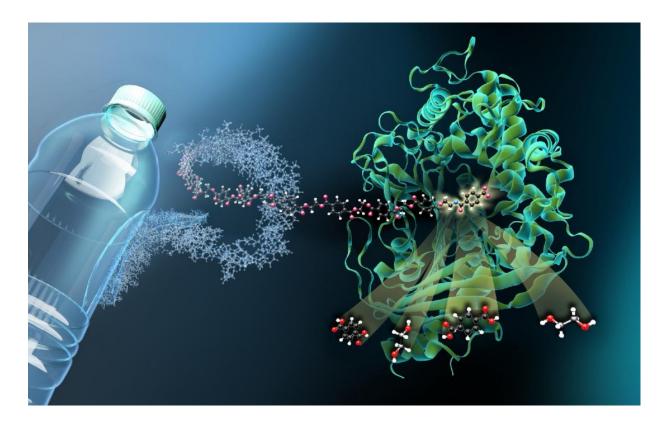
# Diffusion models for protein structure and *de novo* design



# Motivation

- Nature has produced many proteins to support life.
- Evolution does not work fast enough for new challenges.
- (De novo) protein design aims to directly engineer new proteins.



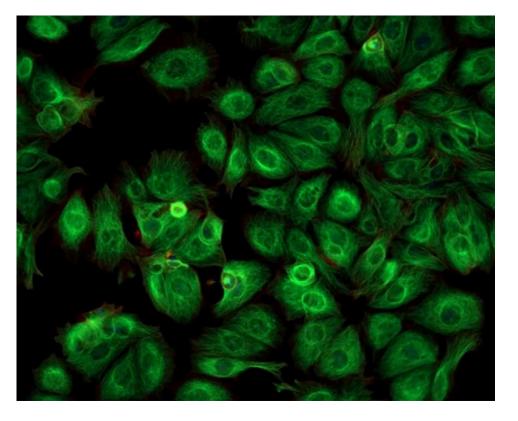


### Vaccine & drug development

Plastic degrading enzymes

Image: Marsbars via iStock

Image: Martin Künsting/HZB





Fluorescence biosensors

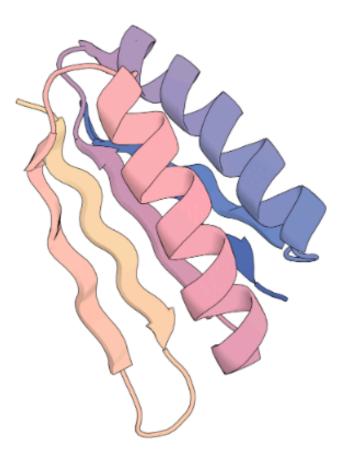
Genome editing

Image: Caleb Foster via Shutterstock

Image: Amanda Heidt via The Scientist

# Al-assisted protein design

**1. Backbone** generation



2. Sequence generation

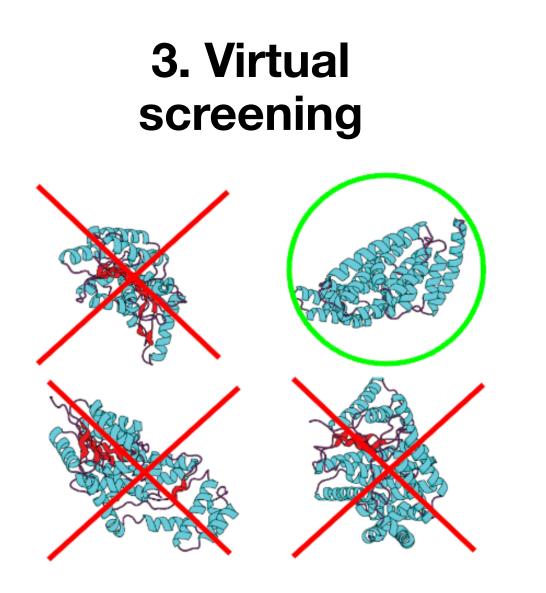


### **Method:**

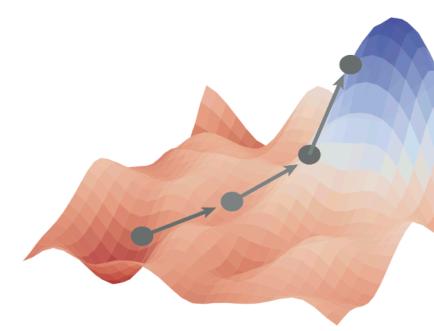
None!

### **ProteinMPNN Directed evolution** Protein folding





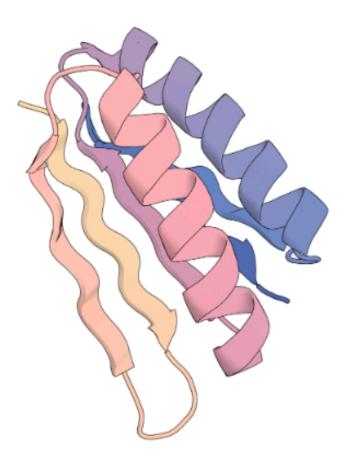
### 4. Property/fitness optimization





# **Probabilistic viewpoint**

**1. Backbone** generation



2. Sequence generation



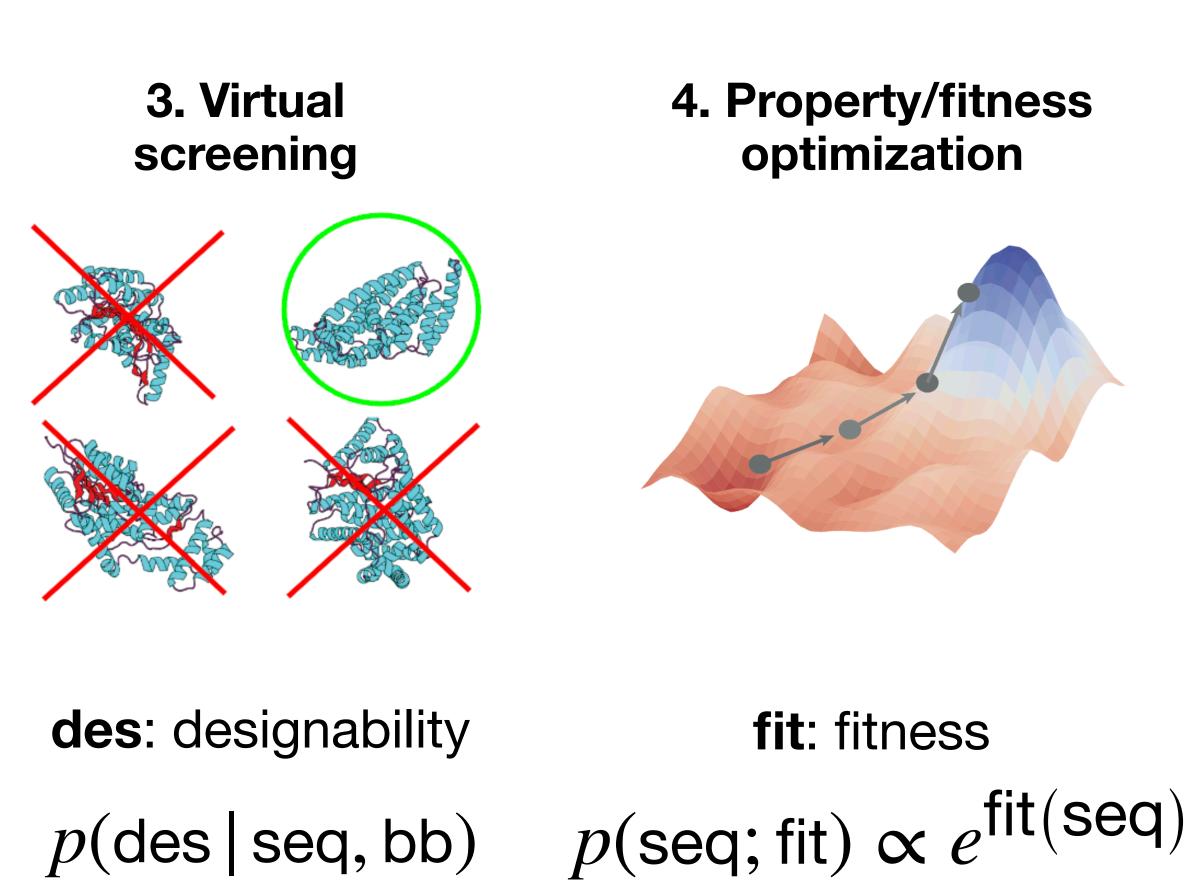
Notation: **Distribution:** 

**bb**: backbone

p(bb)

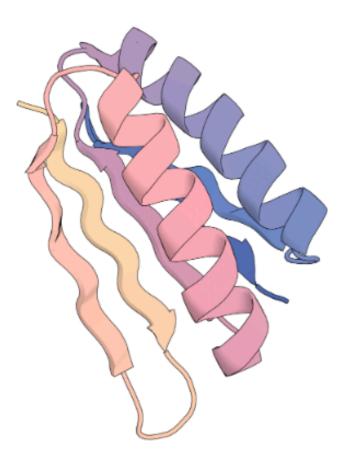
seq: sequence

p(seq | bb)



### **This talk**

**1. Backbone** generation



### 2. Sequence generation



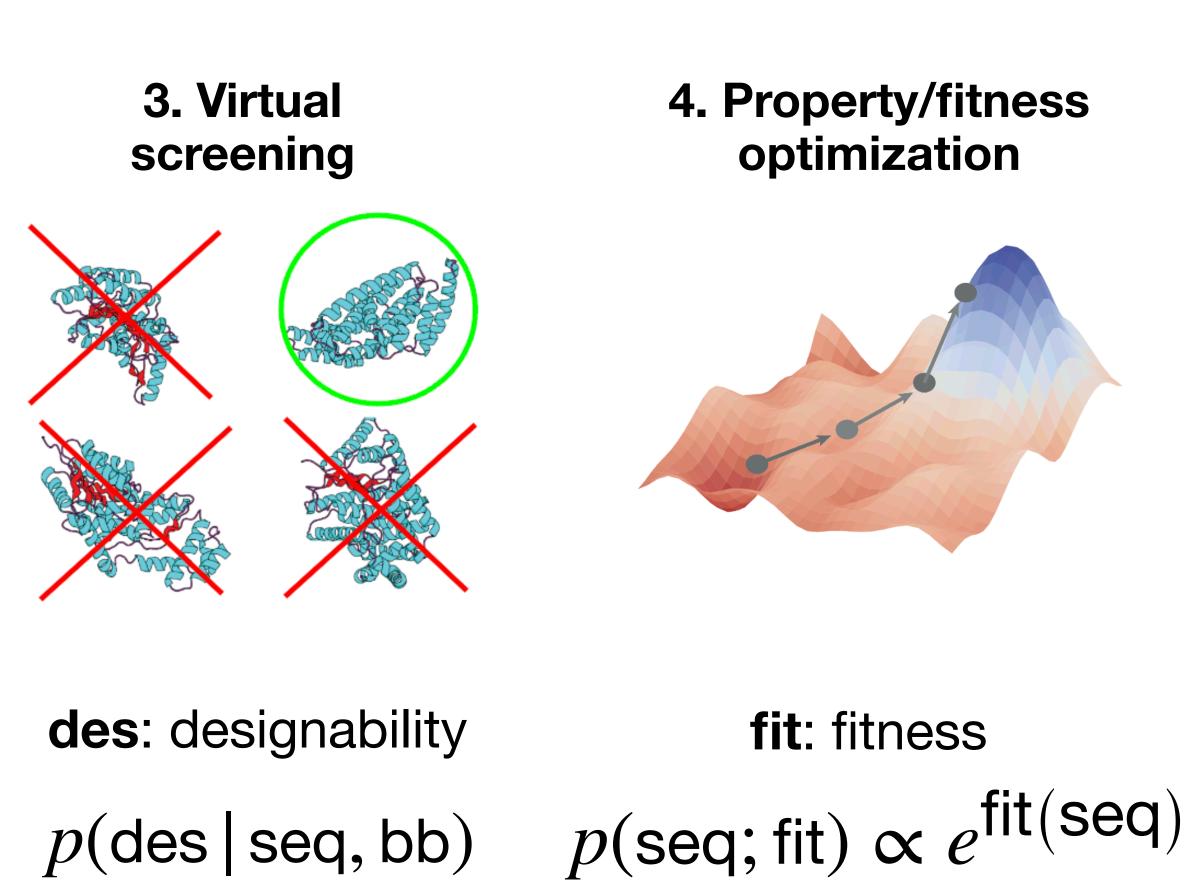
## **Notation:**

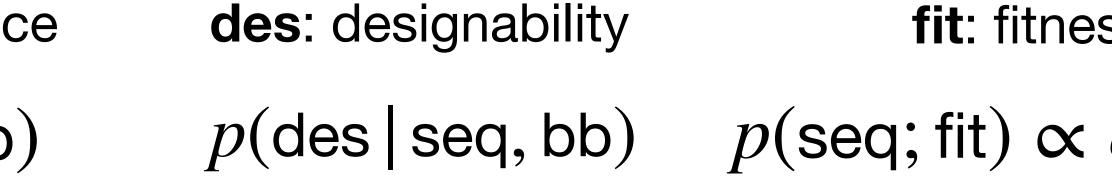
**bb**: backbone

seq: sequence

**Distribution:** 

p(seq | bb)





### Probabilistic protein design Why generative models

- **Exploration (sampling)**: ability to generate *multiple* designs.
- **Composition**: combine and reuse models.
- **Uncertainty**: calibrate models with biological noise (i.e. evolution, experiments). lacksquare

### Talk Outline:

|                | Method                         | Generative Model   |  |
|----------------|--------------------------------|--------------------|--|
| 1. FrameDiff   | SE(3) diffusion $p(bb)$        |                    |  |
| 2. RFdiffusion | SE(3) diffusion + RosettaFold2 | p (bb   property)  |  |
| 3. FrameFlow   | SE(3) flow matching            | $p\left(bb\right)$ |  |



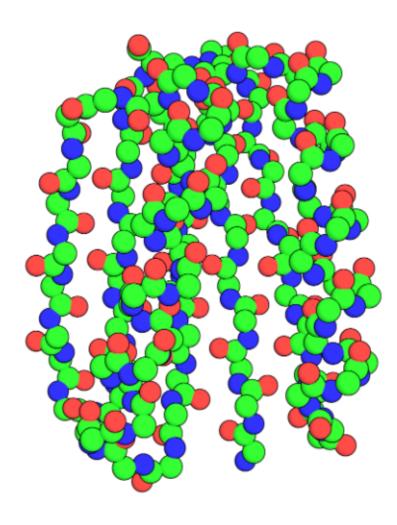
# FrameDiff

# Paper: SE(3) diffusion model with application to protein backbone generation

Jason Yim\*, Brian Trippe\*, Valentin De Bortoli\*, Emile Mathieu\*, Arnaud Doucet, Regina Barzilay, Tommi Jaakkola

ICML 2023

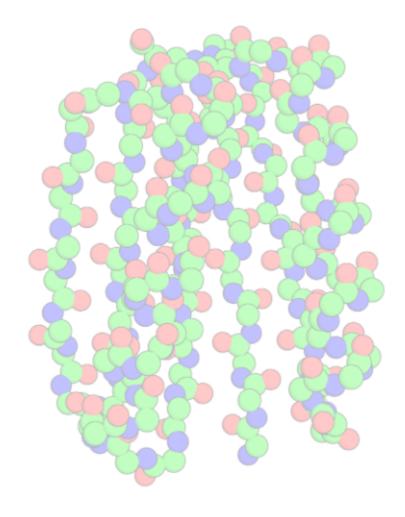
## Structure representations

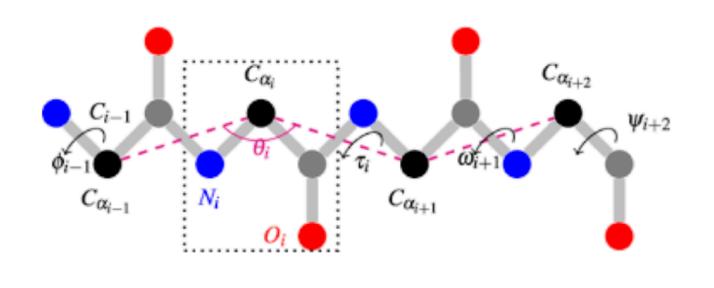


**Option #1**: model 3D coordinates of every atom.

- + Precise control over atom placement.
- Bonds are not fixed.

# Structure representations



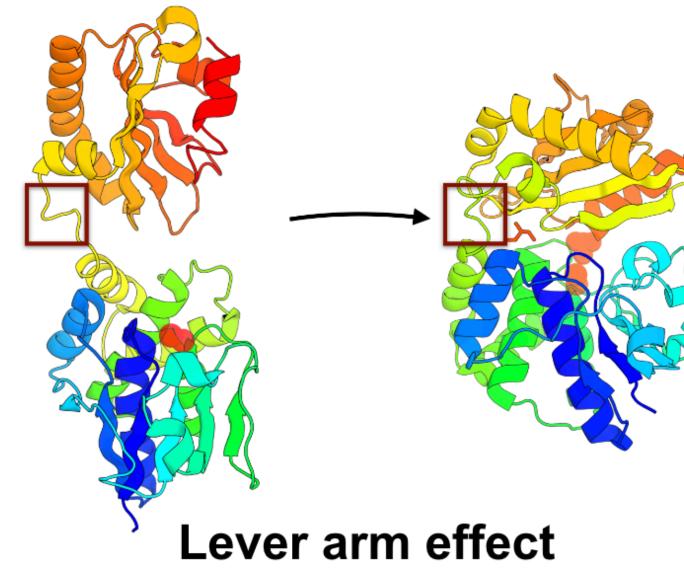


**Option #1**: model 3D coordinates of every atom.

- + Precise control over atom placement.
- Bonds are not fixed.

torsion angles.

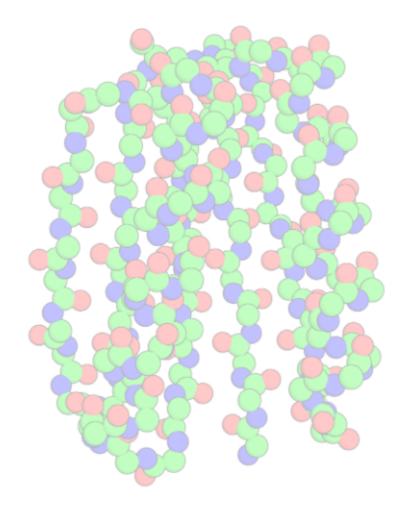
- + Bonds are fixed. Hard to control atom -
- placement.

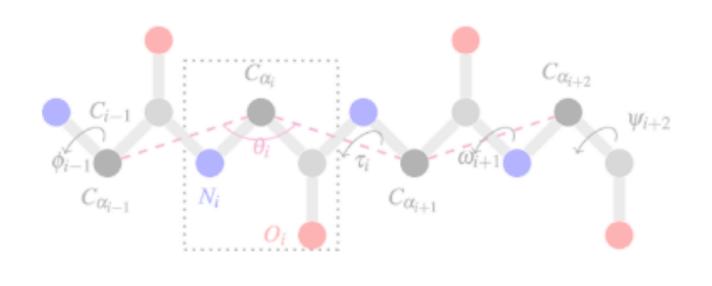


Option #2: model only



# Structure representations



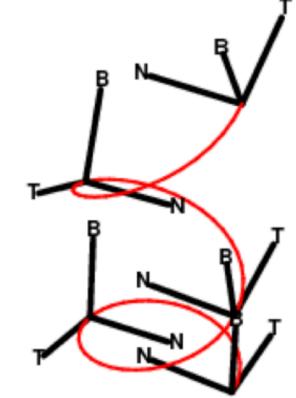


**Option #1**: model 3D coordinates of every atom.

- + Precise control over atom placement.
- Bonds are not fixed.

torsion angles.

- + Bonds are fixed. Hard to control atom
- placement.



**Option #2**: model only

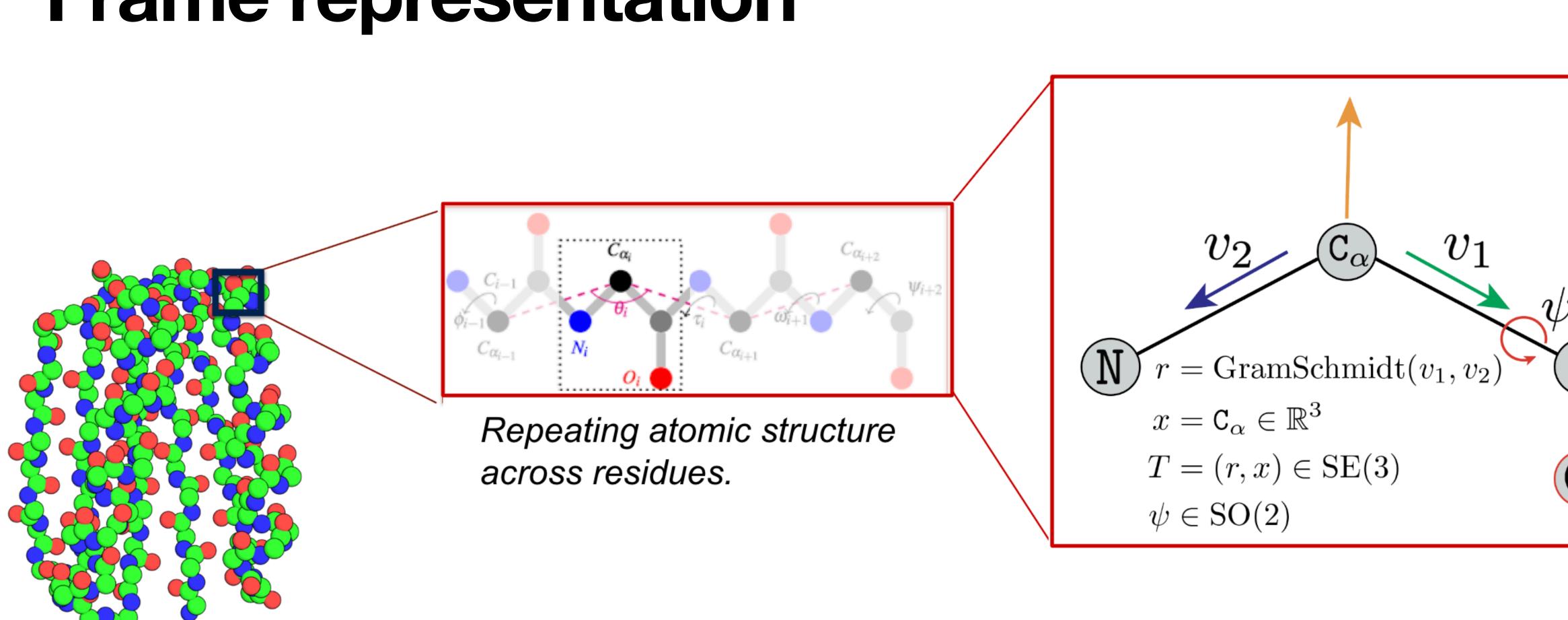
**Option #3**: model with frames along a chain.

- 3 out of 4 bonds are fixed.
- **Precise control over** frame placement
- more complicated math structure.





### **Frame representation**

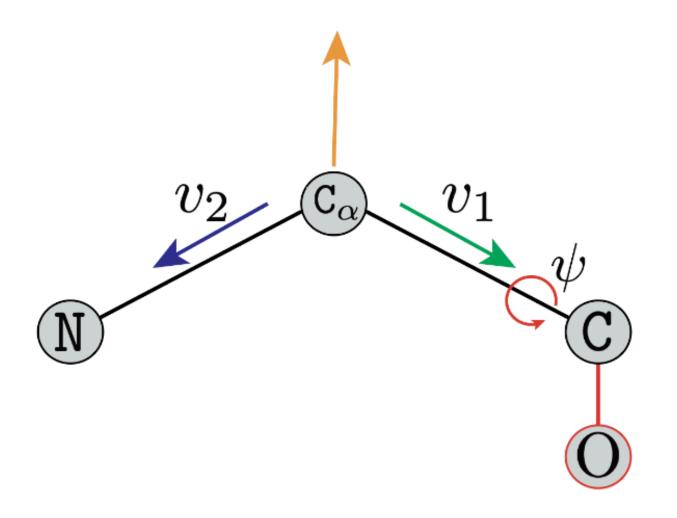


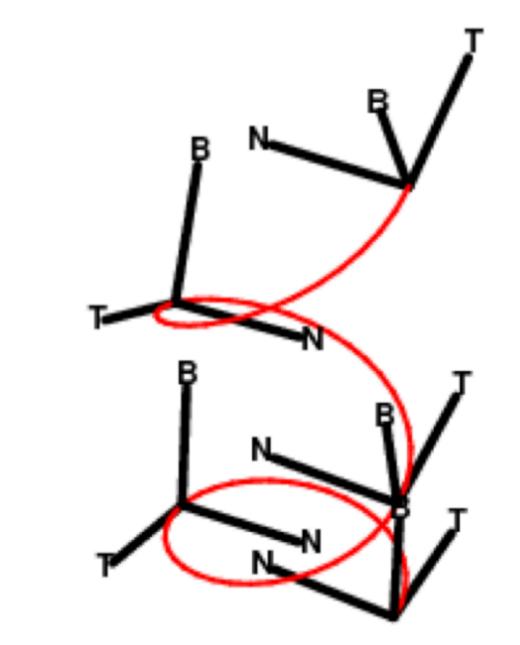
→ Each residue now represented as a Translation (Cα coordinate) and Rotation.  $\rightarrow$  3 out of 4 bonds are automatically satisfied.





### **Frame representation**

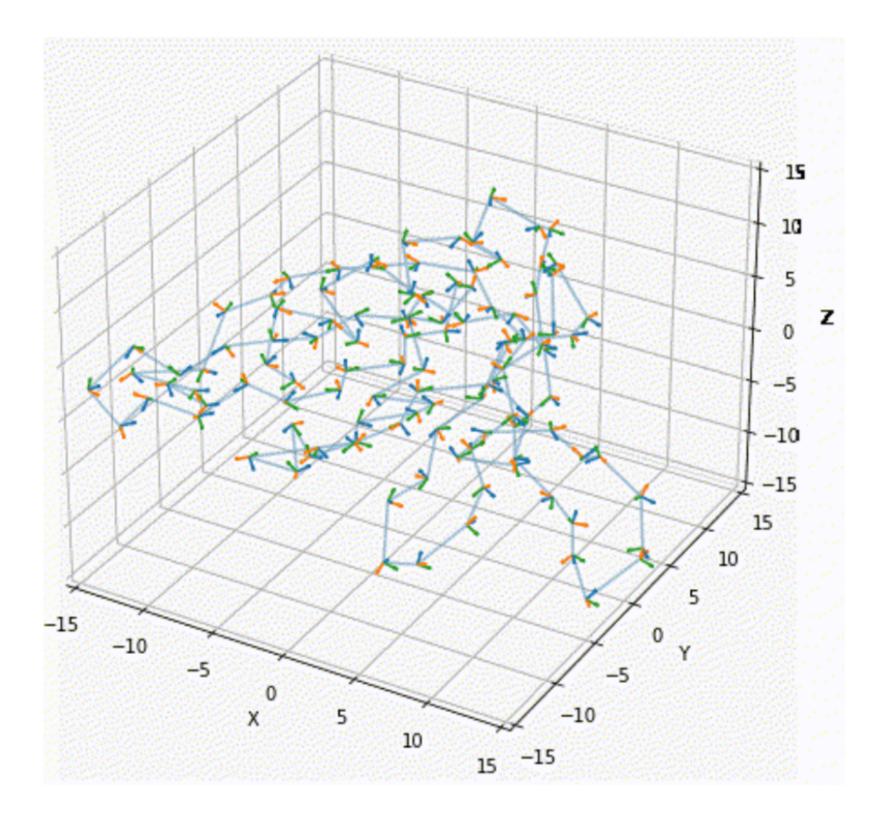




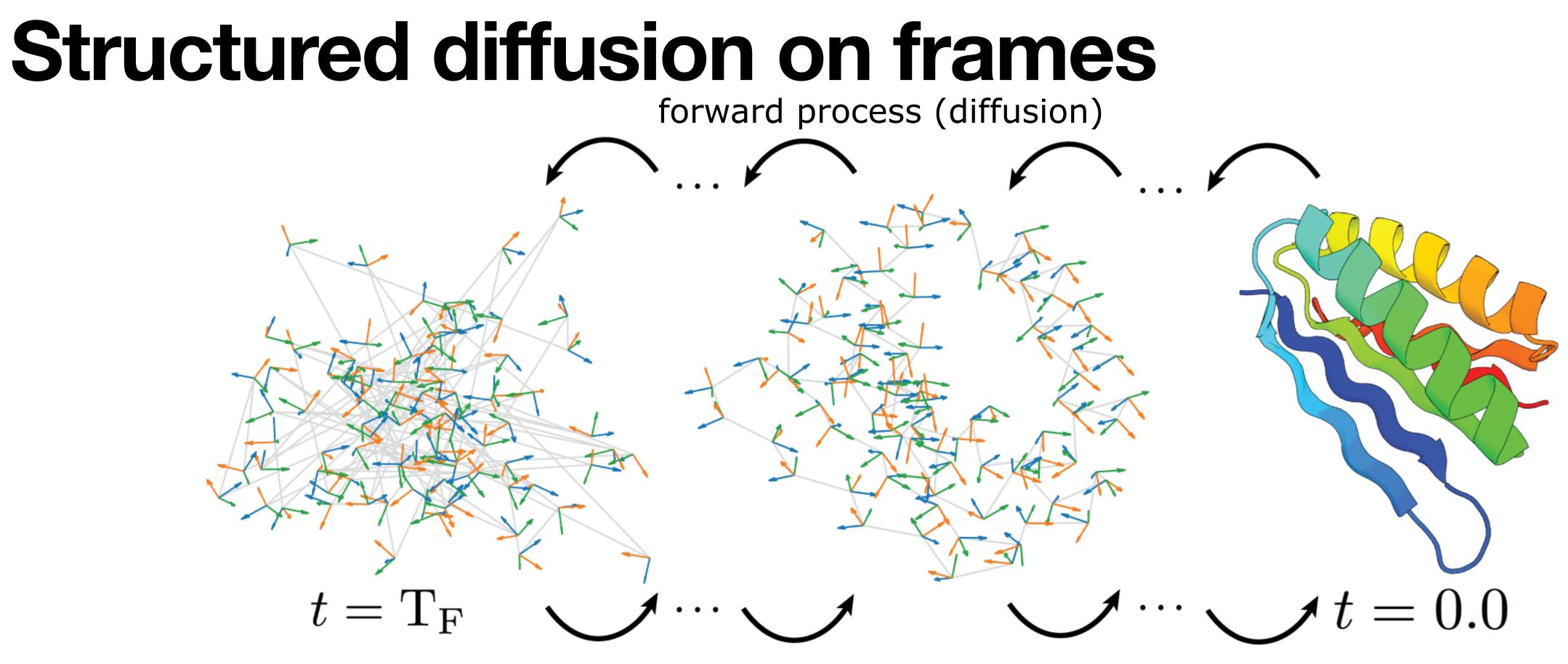
(1) Single residue **frame**: translation and rotation

(2) Multiple **frames** along a chain

### (3) Every backbone residue is represented with a frame.







invariance based on explicit centering

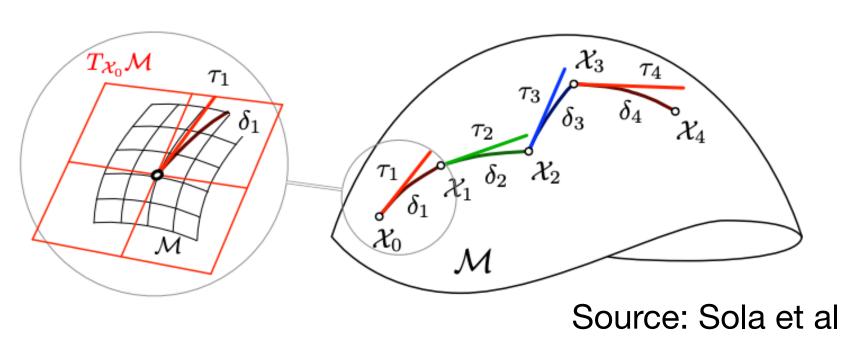
reverse process (sampling)

We want SE(3) invariant densities (same protein, same likelihood); translation



### Structured diffusion on frames **SE**(3) diffusion construction

- SE(3) diffusion through manifold characterization:
  - Brownian motion on SE(3) requires metric on  $T_x$ SE(3).
  - Choice of metric on SE(3) is crucial: left-invariant or right-invariant.
  - Only the left-invariant metric factorizes into a product manifold.  $SE(3) = SO(3) \times \mathbb{R}^3$  (see Appendix D and Murray et al.) where  $\langle (R, x) \cdot (R', x') \rangle_{SE(3)} = \langle R, R' \rangle_{SO(3)} + \langle x, x' \rangle_{\mathbb{R}^3}$

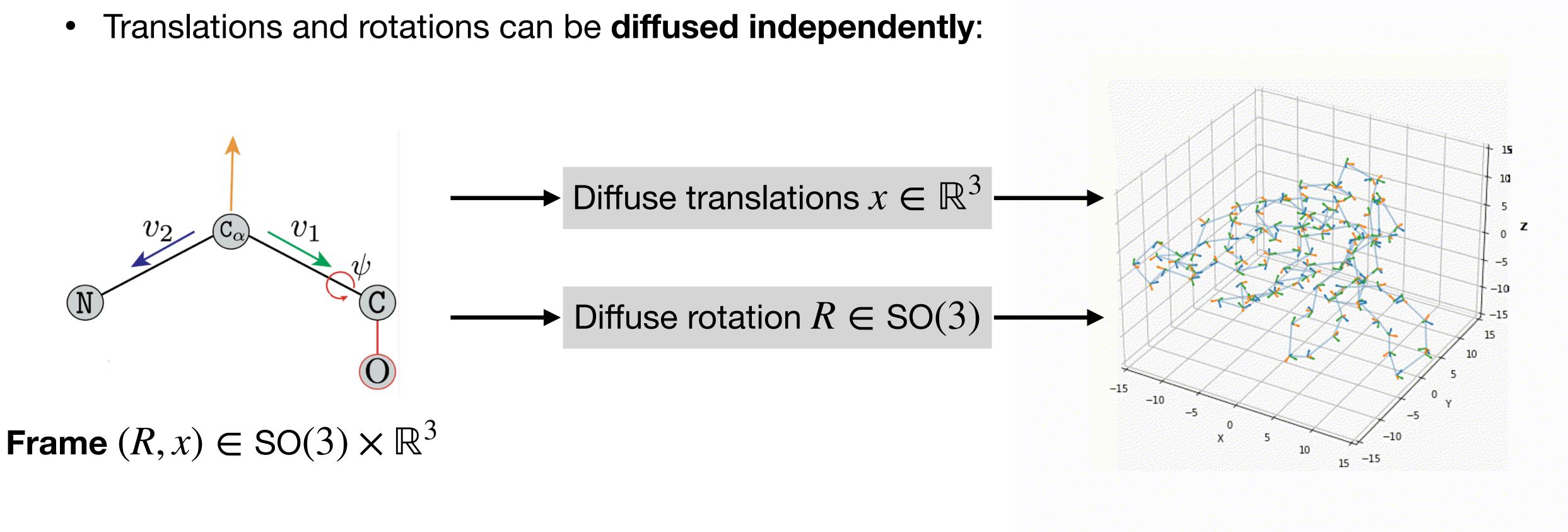


Independence! Also crucial for invariance of measure on  $SE(3)^N$ (see Prop 3.5)



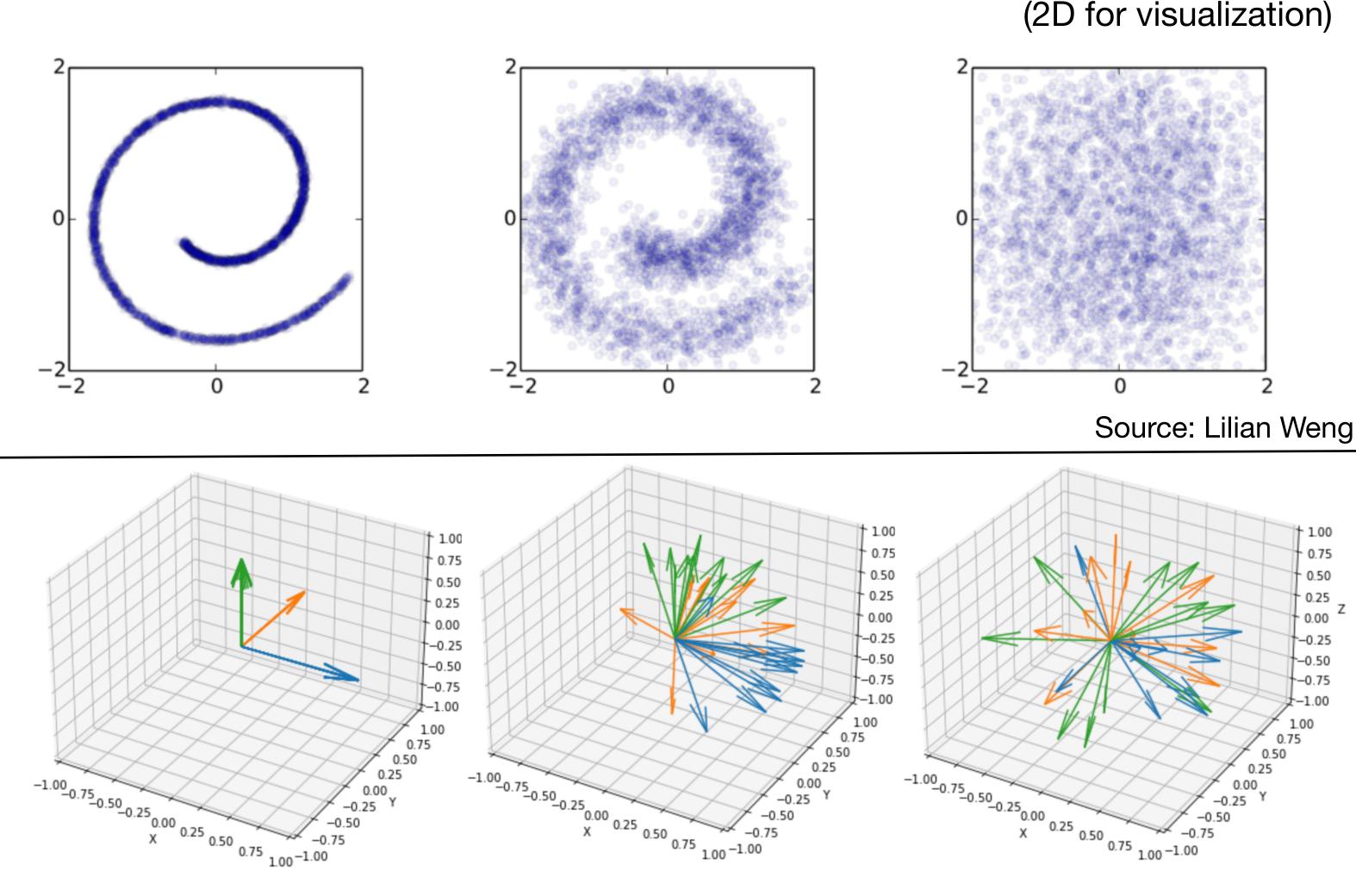
### Structured diffusion on frames How to diffuse a frame?

- As a Riemannian manifold,  $SE(3) = SO(3) \times \mathbb{R}^3$ .



### Structured diffusion on frames How to diffuse a frame?

Diffuse translations  $x \in \mathbb{R}^3$ Brownian motion on  $\mathbb{R}^3$  $p_{t|0}\left(x^{(t)} | x^{(0)}\right) = \mathcal{N}(x^{(t)}; \beta(t)x^{(0)}, \sigma(t))$ 



Diffuse rotation  $R \in SO(3)$ 

Brownian motion on SO(3) $p_{t|0}\left(R^{(t)} | R^{(0)}\right) = \mathsf{IGSO}_3(r^{(t)}; r^{(0)}, t)$ where  $r^{(t)} = Log(R^{(t)}), r^{(0)} = Log(R^{(0)})$ 

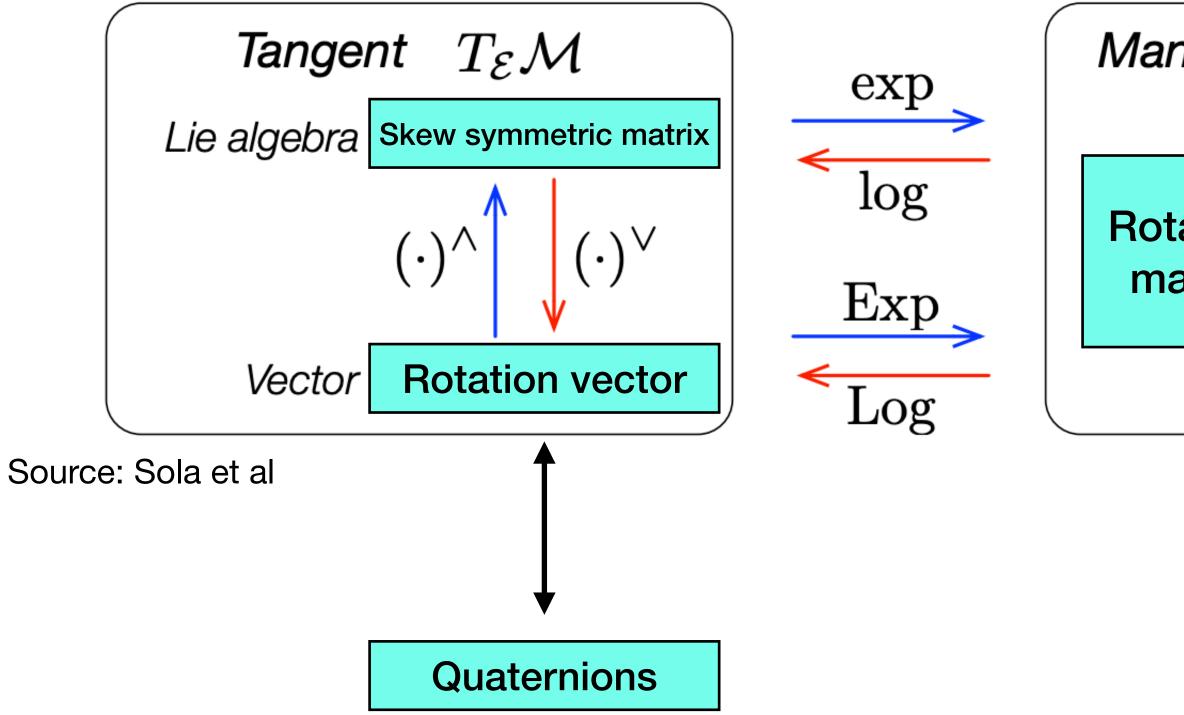
t = 0.0

t = 0.5

t = T

# **Background on SO(3)**

### Mappings in SO(3)

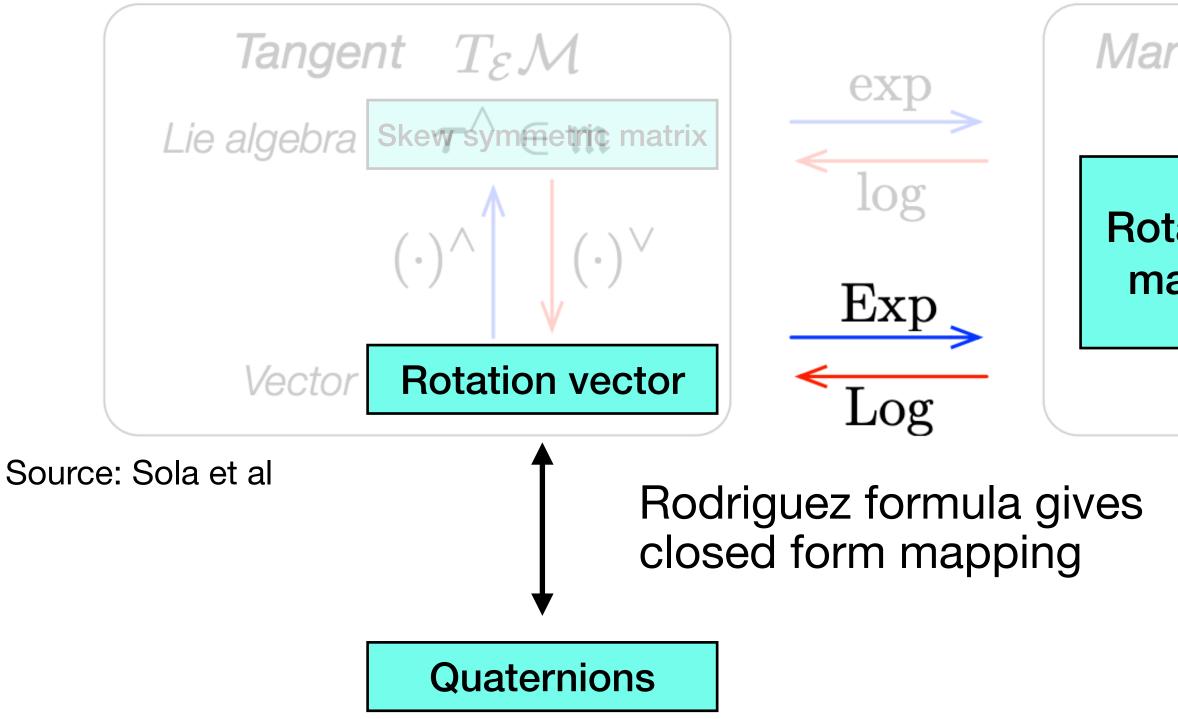




| nifold         |  |
|----------------|--|
| ation<br>atrix |  |
|                |  |

# **Background on SO(3)**

### Mappings in SO(3)





| 7 | if | 0 | 10 | d |  |
|---|----|---|----|---|--|
|   |    |   |    |   |  |

**Rotation** matrix

### Use cases

- **Rotation matrix**: orthogonal  $3 \times 3$  matrices lacksquare
  - Form for multiplication.
  - Cons: can't add.
- **Rotation vector**: vectors in  $\mathbb{R}^3$ 
  - Allows addition and brownian motion.
  - Cons: degenerate.
- Quaternion:  $\mathbb{R}^4$  $\bullet$ 
  - Numerically stable. Representation of neural network output.
  - Cons: can't add or multiply.



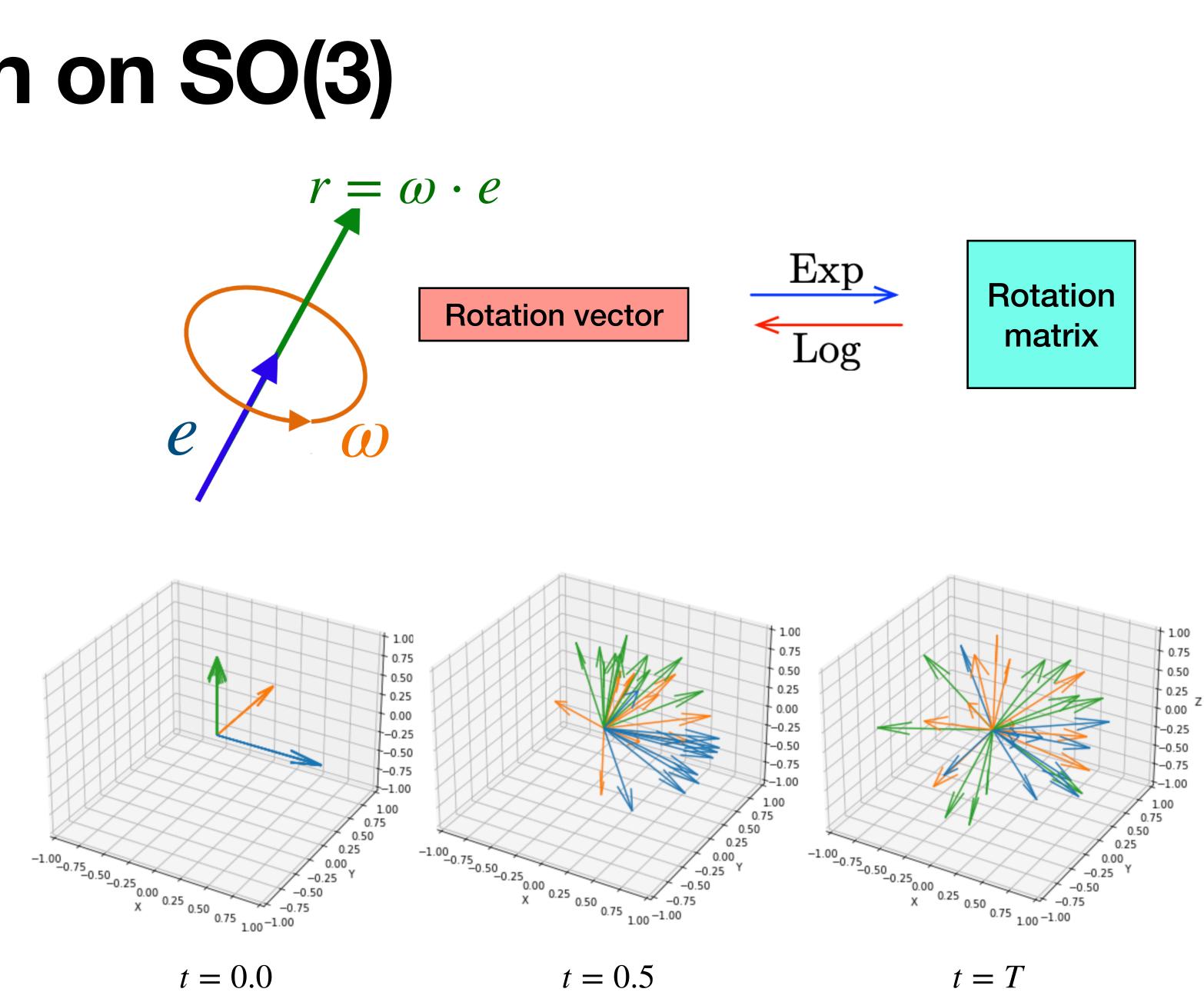
# **Brownian motion on SO(3)**

Diffuse rotation  $R \in SO(3)$ Brownian motion on SO(3) $p_{t|0}\left(\begin{matrix} R^{(t)} & R^{(0)} \\ R^{(t)} & R^{(0)} \end{matrix}\right) = IGSO_3\left(\begin{matrix} r^{(t)} & r^{(0)} \\ r^{(0)} & R^{(t)} \\ r^{(t)} & R^{(t)} \\ r^{$ 

**IGSO(3) density**: heat kernel (brownian motion) on SO(3)

$$f(\omega, t) = \sum_{\ell \in \mathbb{N}} (2\ell + 1) \mathrm{e}^{-\ell(\ell+1)t/2} \frac{\sin((\ell+1/2)\omega)}{\sin(\omega/2)}$$

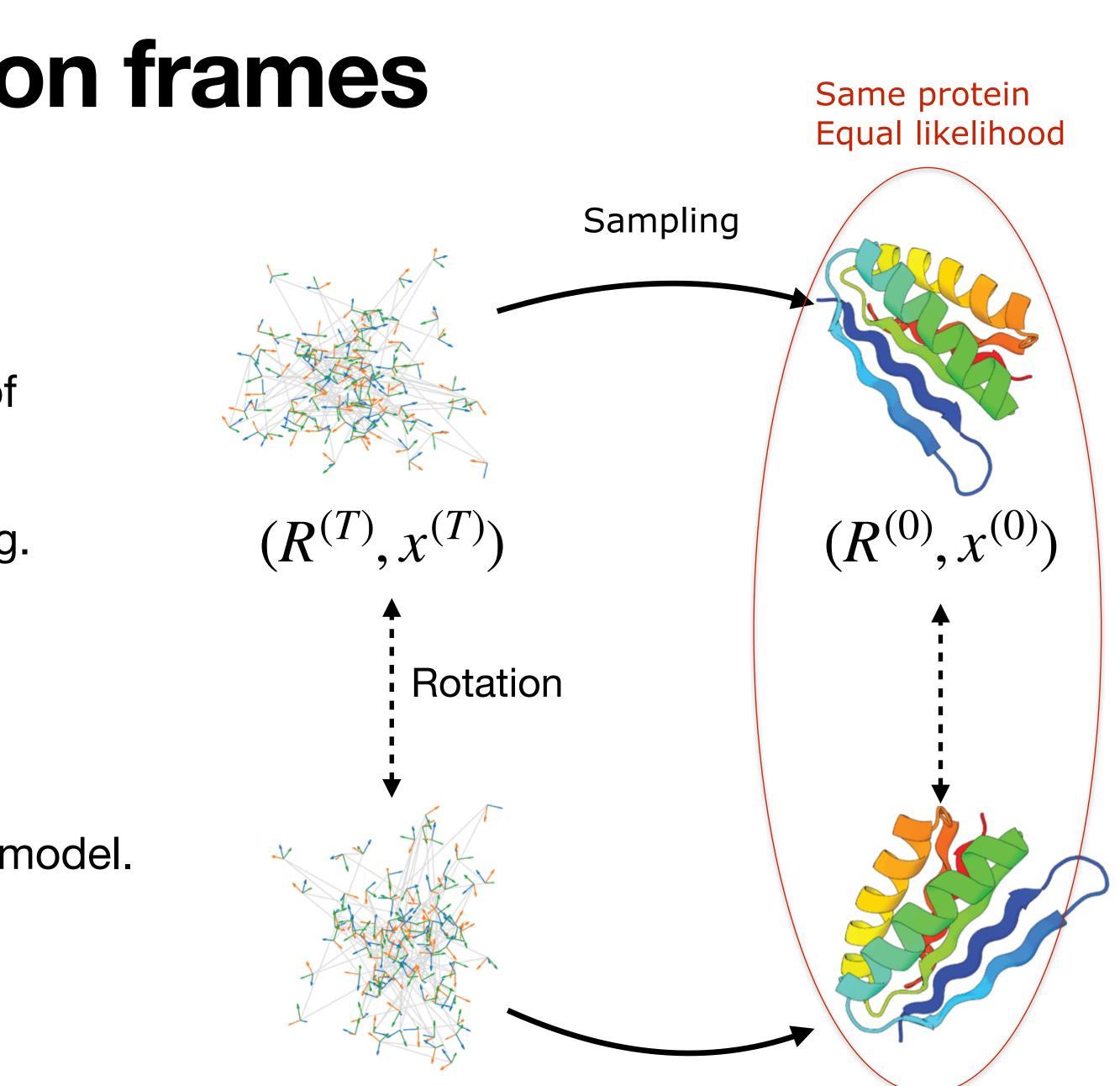
Axis *e* sampled uniformly over unit sphere.



# **Structured diffusion on frames** $SE(3)^N$ invariance

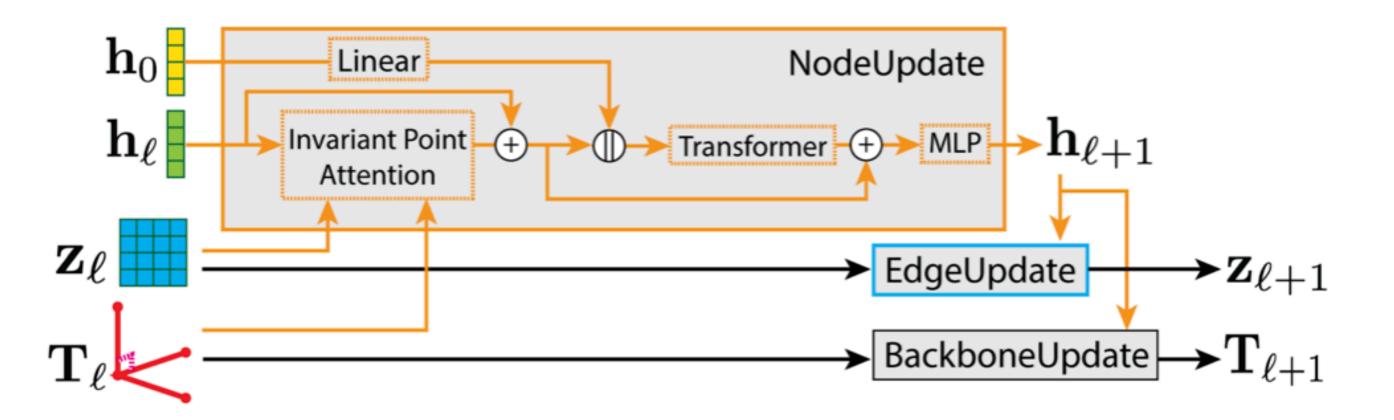
- Forward process
  - Rotational invariance: by construction of distributions.
  - Translation invariance: by zero-centering.

- Reverse process
  - By learning a  $SE(3)^N$  equivariant score model.
  - We use Invariant Point Attention (IPA).



## FrameDiff

SO(3) equivariant architecture leveraging IPA



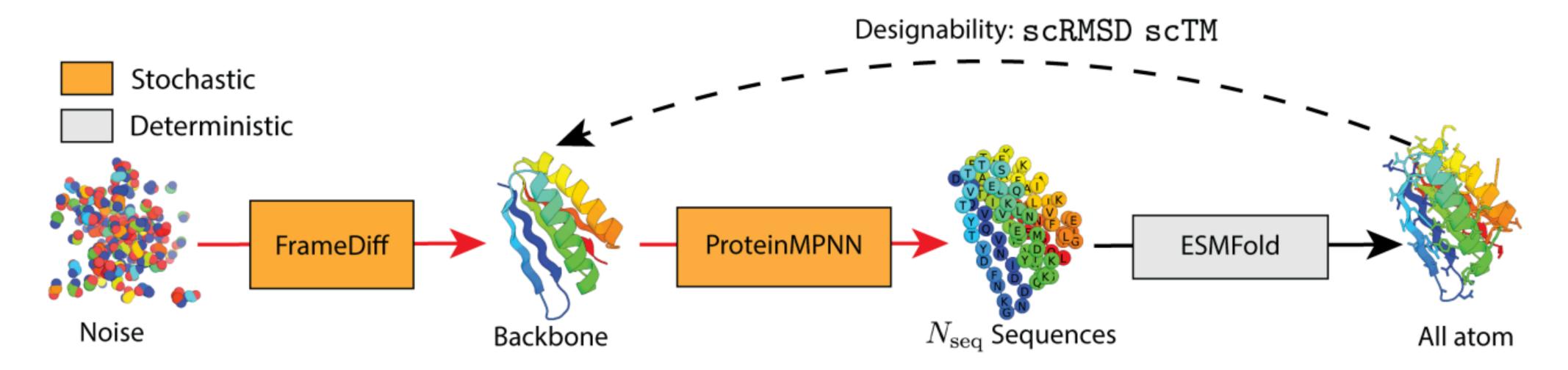
matching predicted and actual scores

$$s_{\theta}(T^{(t)},t) := \nabla_T$$

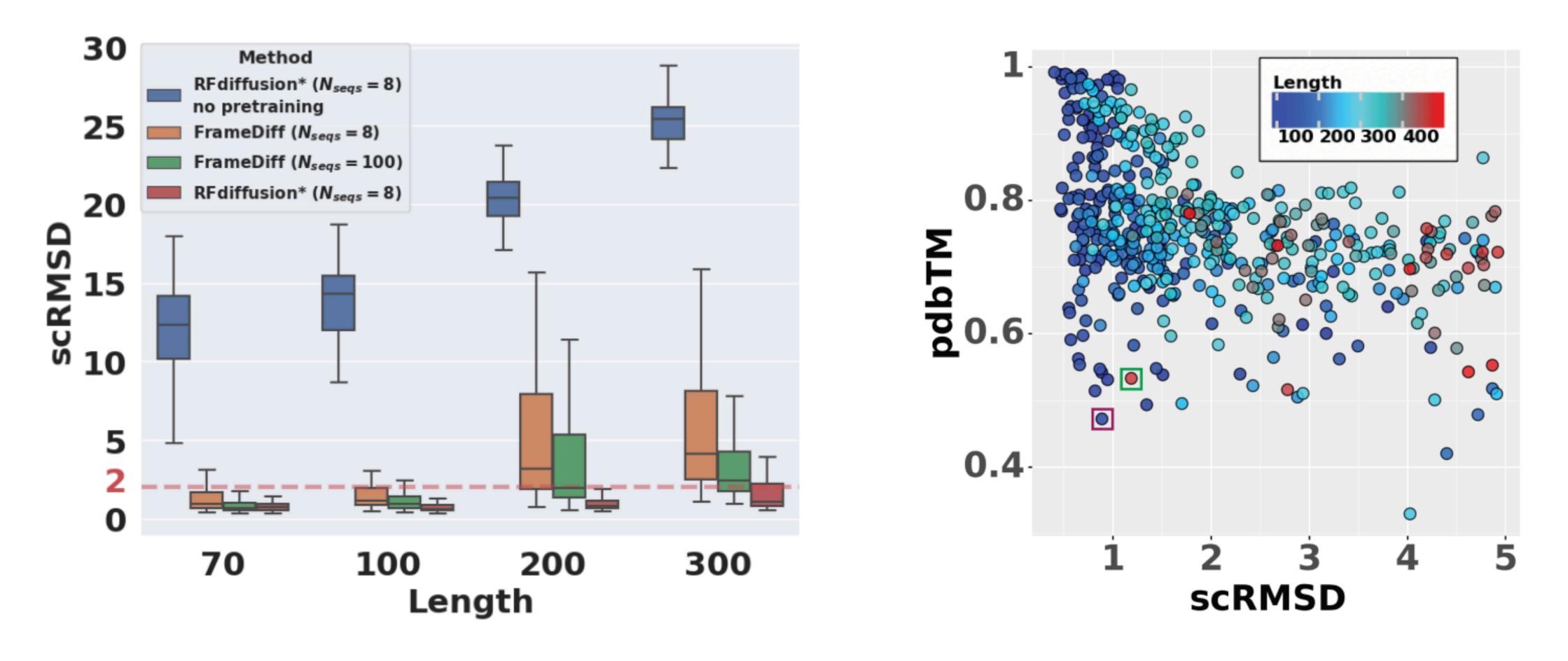
• Model predicts  $\hat{T}^{(0)} = \text{FrameDiff}(T^{(t)})$  and its parameters are learned by score redicted frames  $T^{(t)}\log p_{t|0}(T^{(t)})$ actual frames minimize  $\mathbb{E}_{T^{(0)},t,T^{(t)}} \left[ \| s_{\theta}(T^{(t)},t) - \nabla_{T^{(t)}} \log p_{t|0}(T^{(t)} \| T^{(0)}) \|^2 \right]$ 

# **FrameDiff evaluation**

- **Data:** filtered backbone structures from PDB
  - Monomer (single chain)
  - Length between 60 to 512 residues
  - High secondary structure content (<50% loops)
  - Total: 19777 structures
- Benchmarking:



### **FrameDiff results**



### Pseudo-benchmarking since each diffusion model trains on different dataset.

## FrameDiff sampling

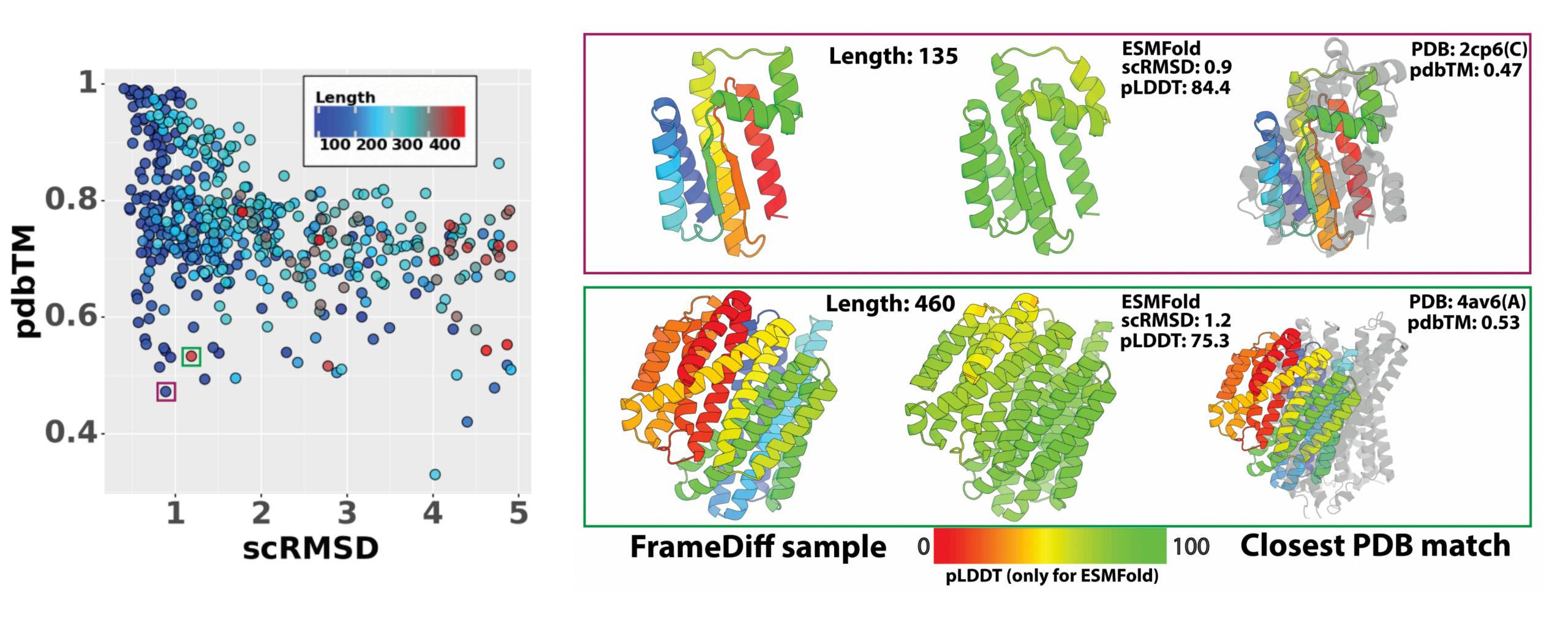


Animation: Ian Haydon, Institute for Protein Design



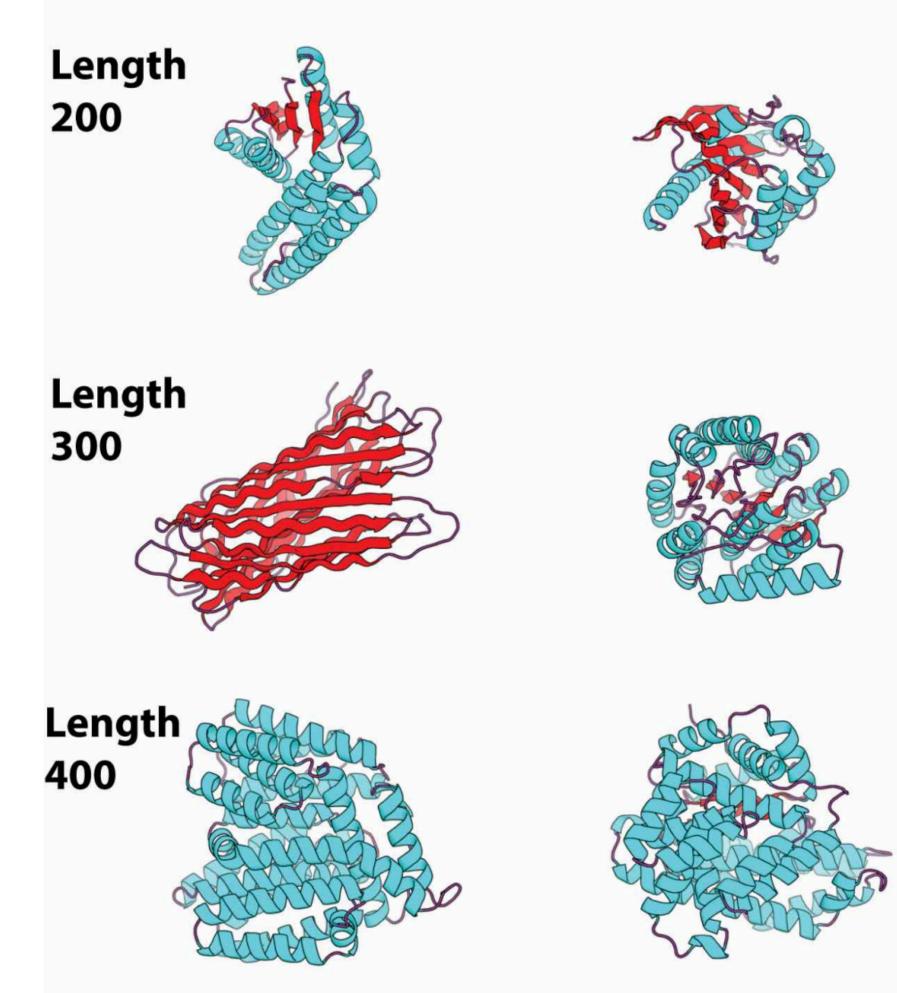
### **FrameDiff results**

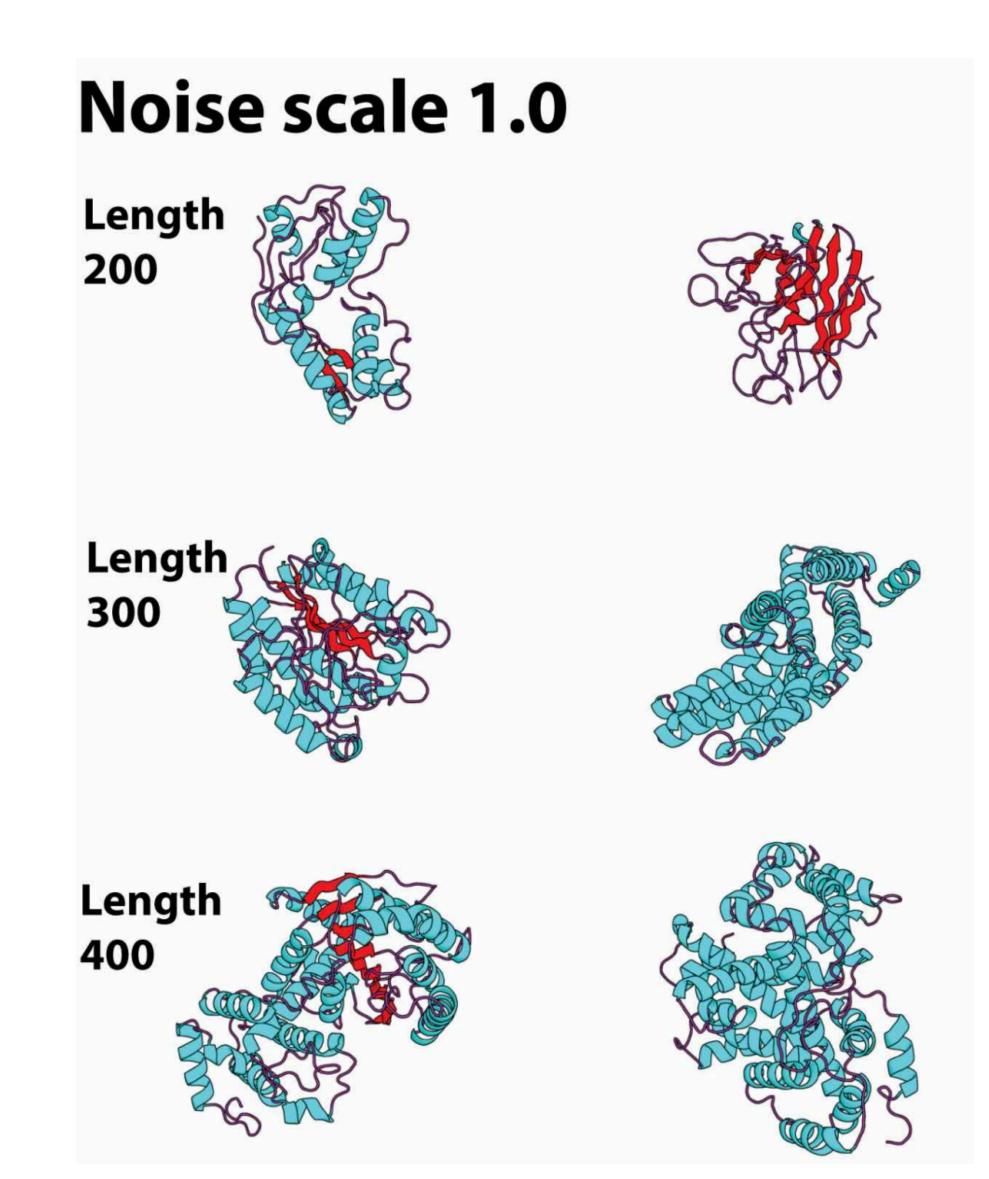
• In-silico evidence of generalizing beyond PDB



# Samples at noise scales

### Noise scale 0.1





# Conclusion

- FrameDiff rigorously develops SE(3) diffusion.

### Limitations:

- Jointly generating sequence and side chains.
- Conditional generation, i.e. motif-scaffolding.

• FrameDiff follows best practices in protein modeling from AF2 (frames, IPA).

# **RFdiffusion** Paper: Broadly applicable protein design with RFdiffusion

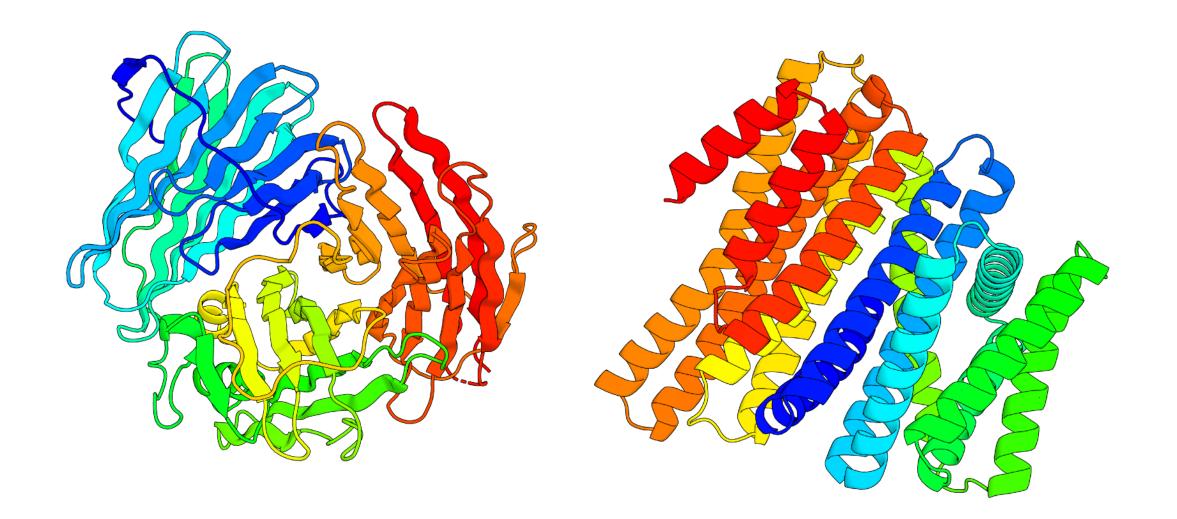
Joseph Watson\*, David Juergens\*, Nathaniel Bennett\*, Brian Trippe\*, Jason Yim\* Helen Eisenach\*, Woody Ahern\*, and others

Preprint

(see previous recorded talks of RFdiffusion)

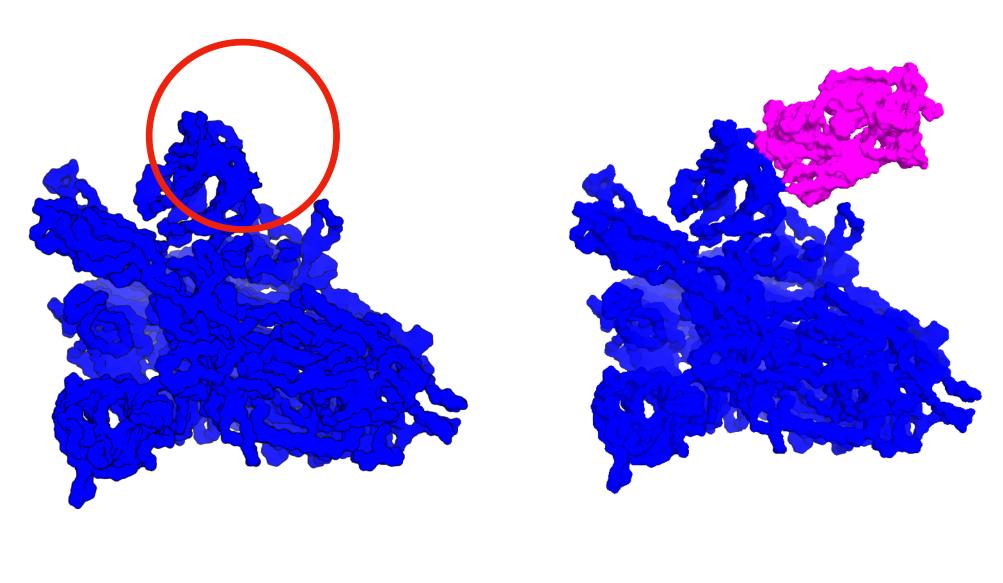
### **RosettaFold diffusion**

# **FrameDiff**: *unconditional* SE(3) diffusion model



P(x)

# **RFdiffusion**: *unconditional* and *conditional* SE(3) diffusion model

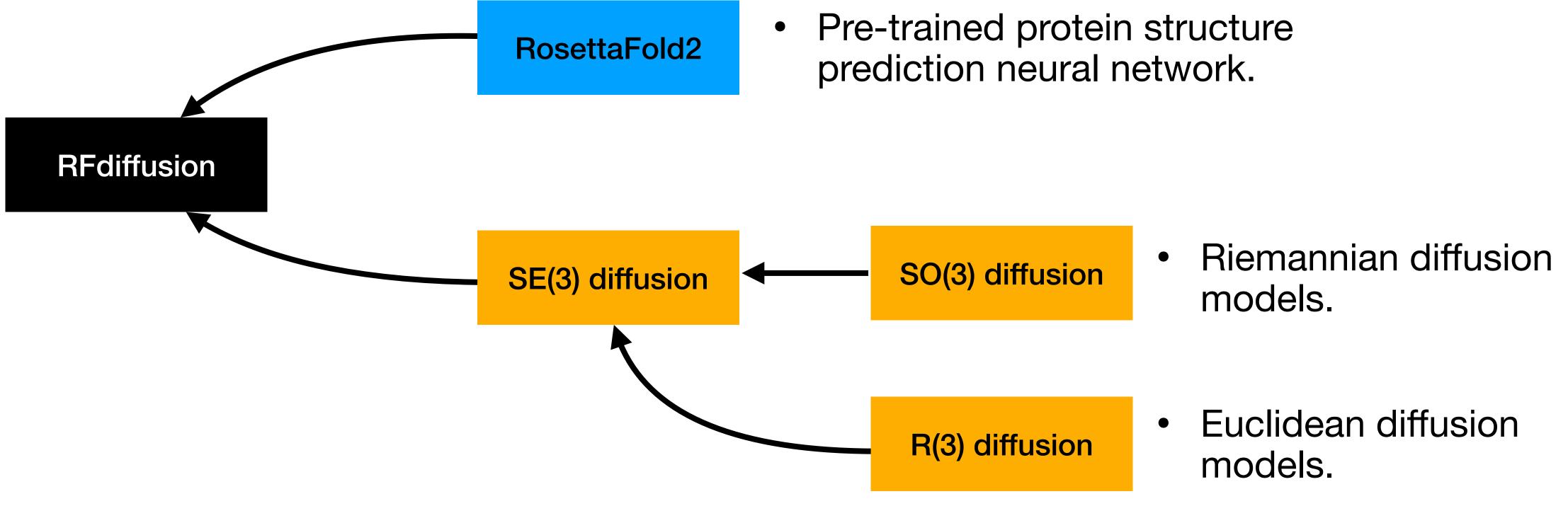


### Condition $\mathcal{Y}$

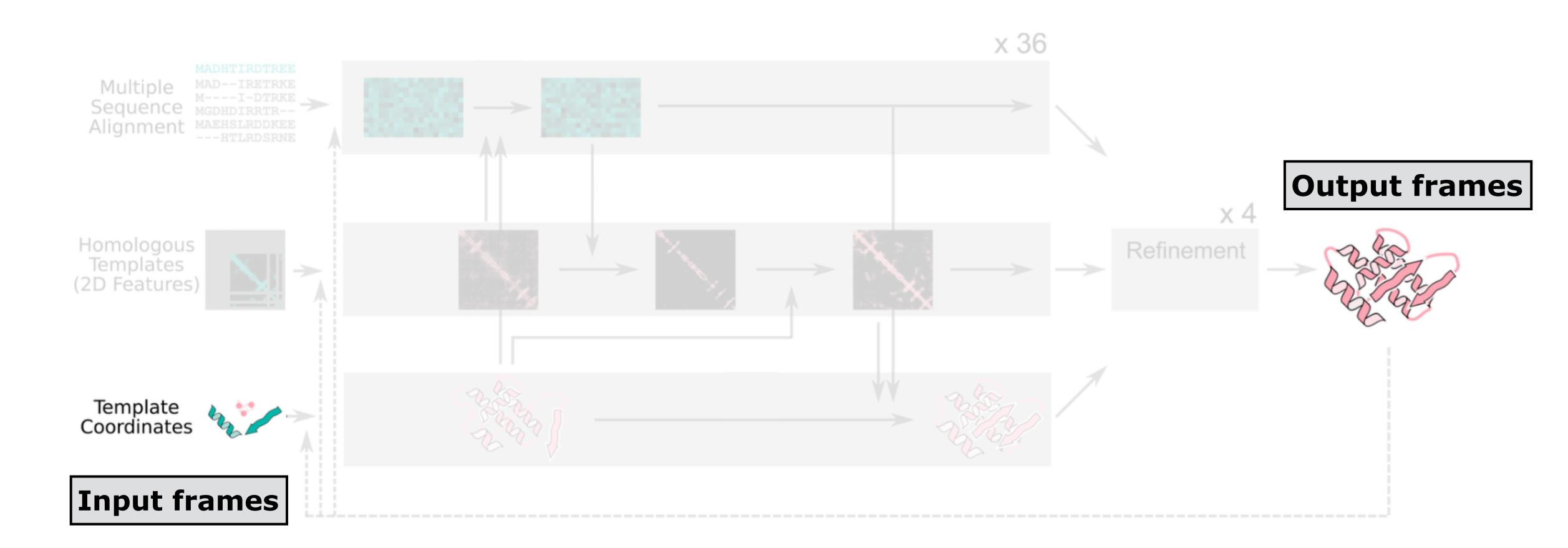
 $P(x \mid y)$ 

# **RosettaFold diffusion**

RosettaFold diffusion is a culmination of multiple ideas.



# RosettaFold diffusion Improvement #1: pre-training with RoseTTAFold Compatibility: RosettaFold uses SE(3) frames as input and output.



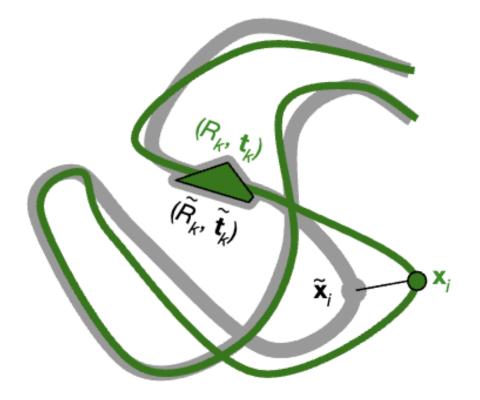
# **RosettaFold diffusion**

- Improvement #1: pre-training with RoseTTAFold
  - Compatibility: RosettaFold uses SE(3) frames as input and output.
  - Learning: structure prediction and SE(3) diffusion share similar objectives.

### Structure prediction loss:

Frame aligned point error (FAPE)

$$\sum_{i,j} \|\hat{T}_i^{-1}\hat{x}_j - T_i^{-1}x_j\|^2$$



### SE(3) Diffusion loss:

Denoising score matching (DSM)

$$\|\nabla_{T^{(t)}} \log p_{t|0}(T^{(t)} | \hat{T}^{(0)}) - \nabla_{T^{(t)}} \log p_{t|0}(T^{(t)} | T^{(0)})\|$$

Predicted frames

True frames

Functions share the same minimizer but different gradients during training.



### **RosettaFold diffusion** • Training pipeline. Sampling follows FrameDiff procedure.

### Training with FAPE loss

**RosettaFold** 

# $\|\nabla_{T^{(t)}} \log p_{t|0}(T^{(t)} | \hat{T}^{(0)}) - \nabla_{T^{(t)}} \log p_{t|0}(T^{(t)} | T^{(0)})\|_{2}^{2} \quad \Leftrightarrow \quad \|\hat{x}^{(0)} - x^{(0)}\|_{2}^{2} + \|\hat{R}^{(0)} - R^{(0)}\|_{F}^{2}$

### Denoising score matching (DSM).

### \* additional auxiliary losses are used. See supplementary section 4.

### SE(3) diffusion training\*

RFdiffusion SE(3) diffusion base model

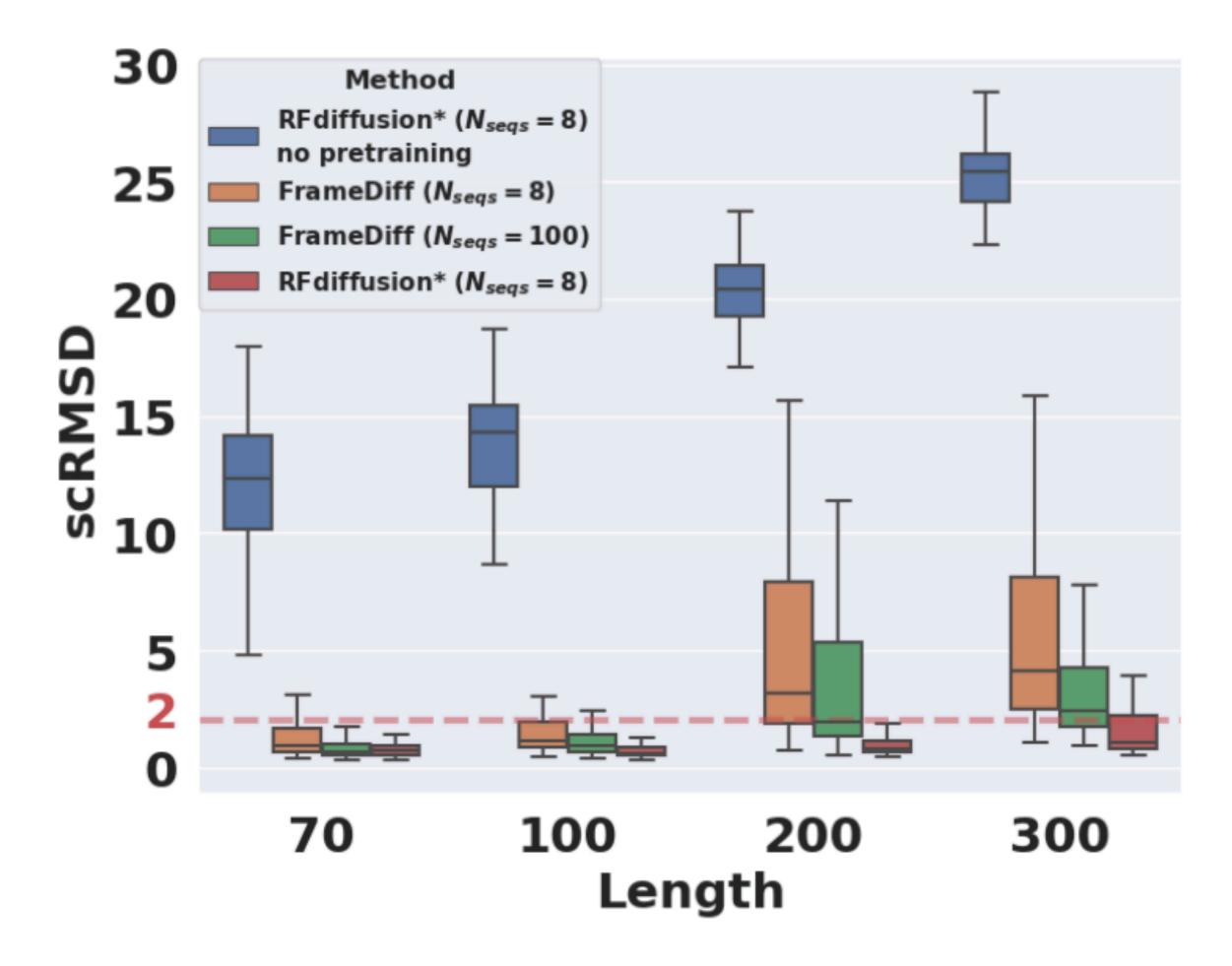
> DSM approximation used in training. Better agreement with FAPE loss.



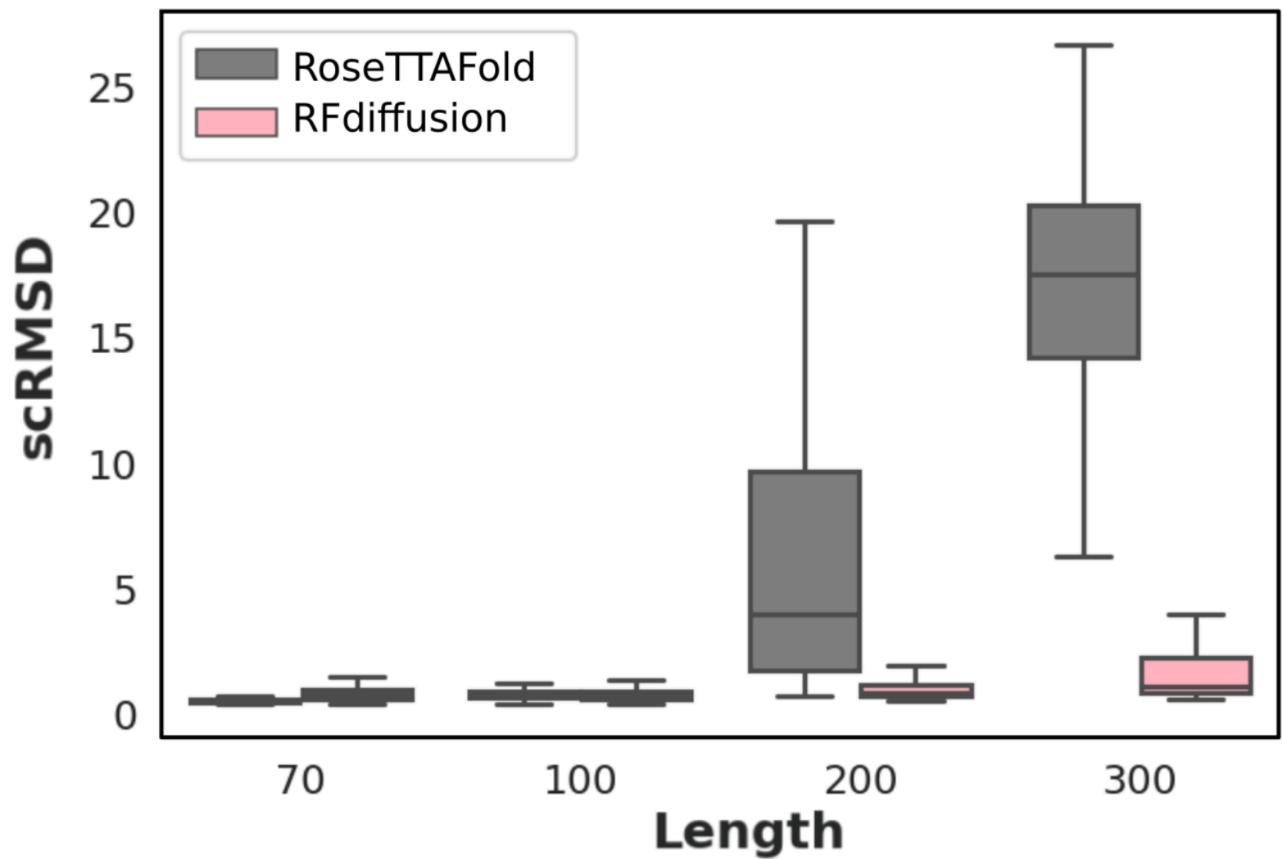


## **RosettaFold diffusion**

### Improved unconditional sampling



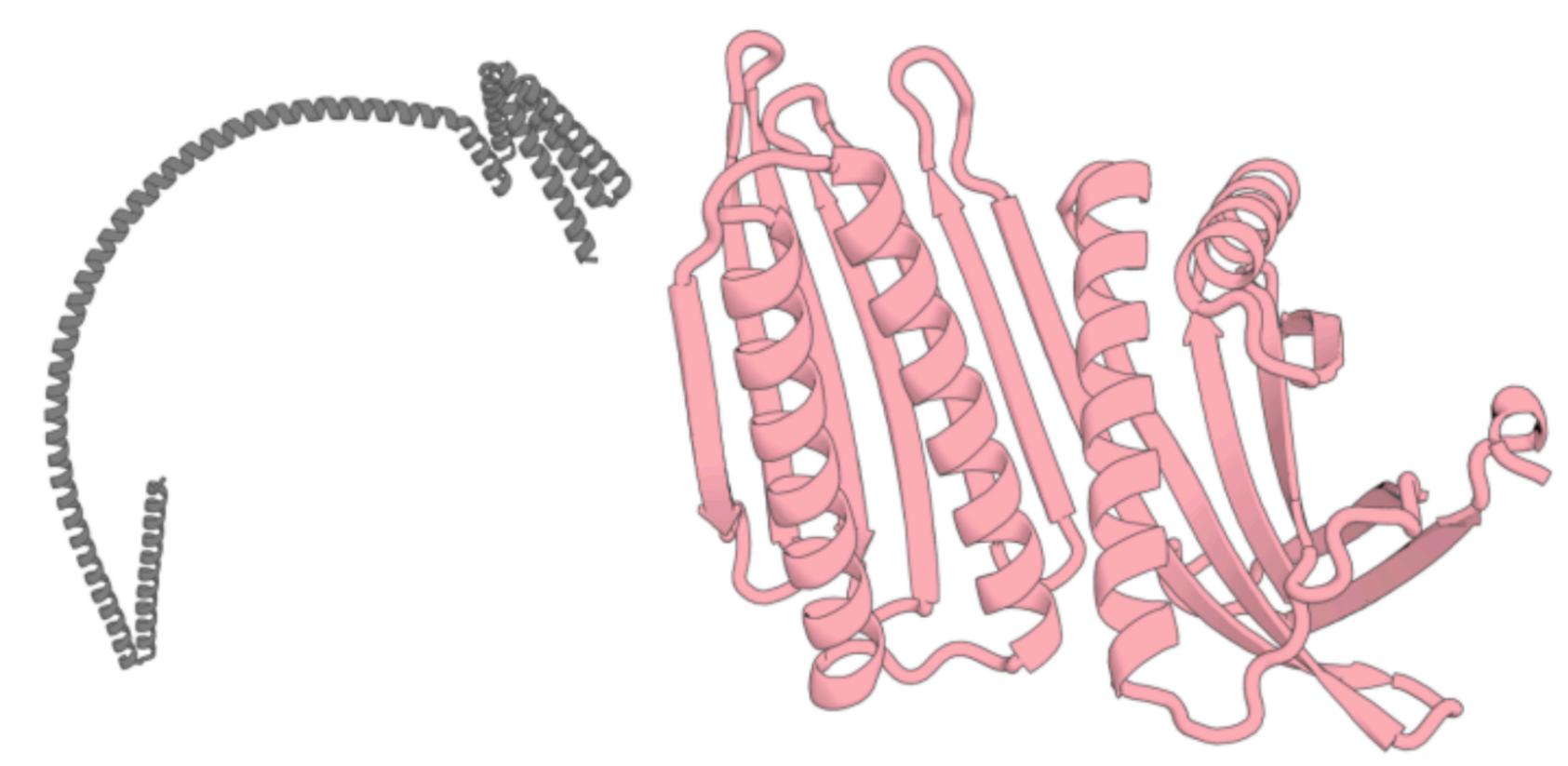
Diffusion training is necessary





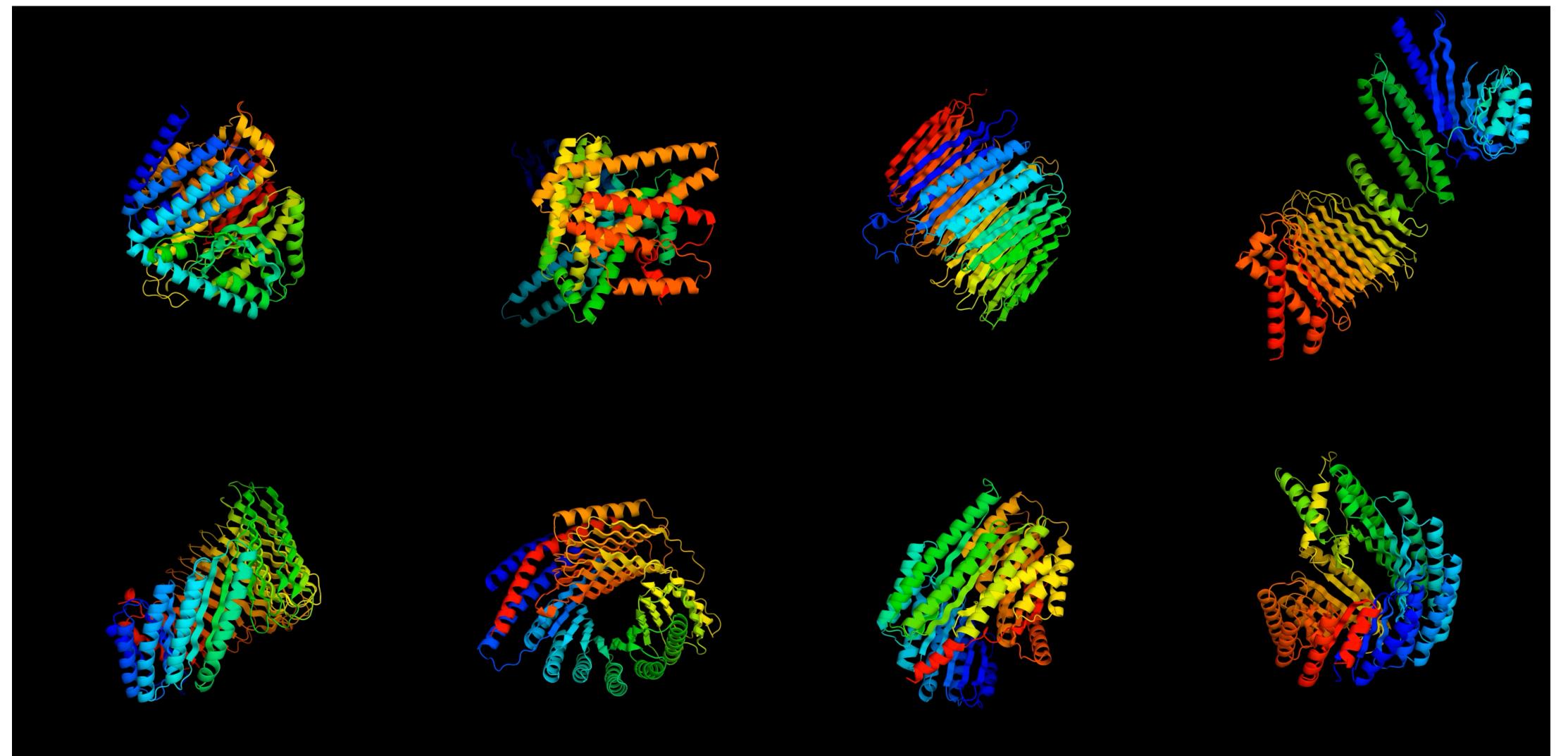
# Importance of pre-training RF

Without pre-training RF on protein folding



### With pre-training

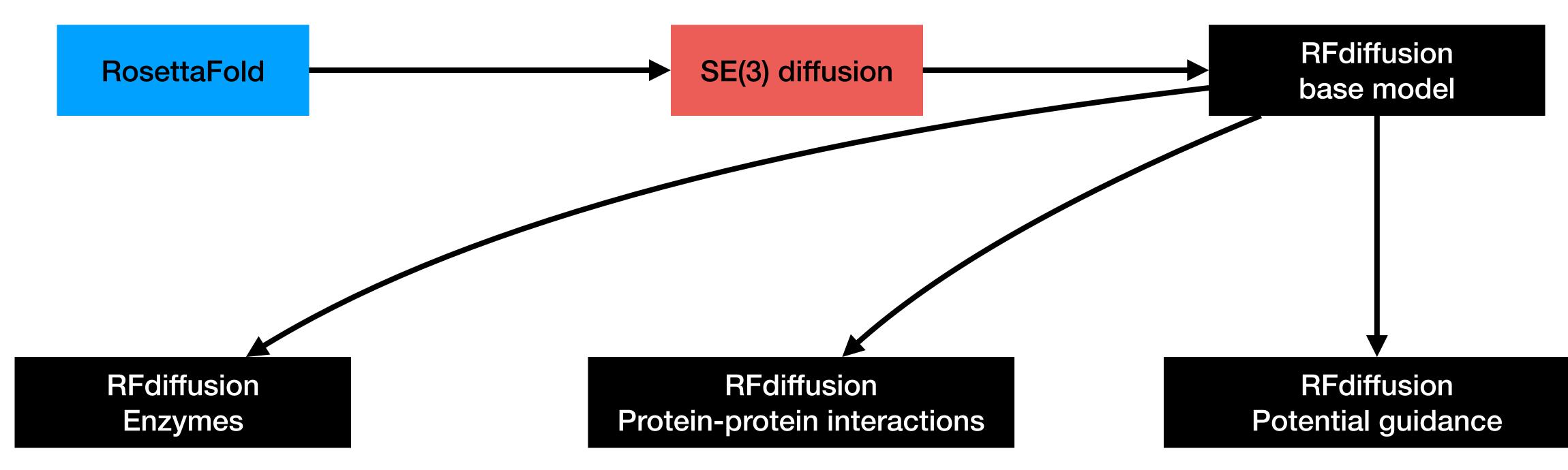
### Creative generation of large and diverse proteins



## **RosettaFold diffusion**

## • Improvement #2: conditional training

- Fine tune base model for different capabilities.

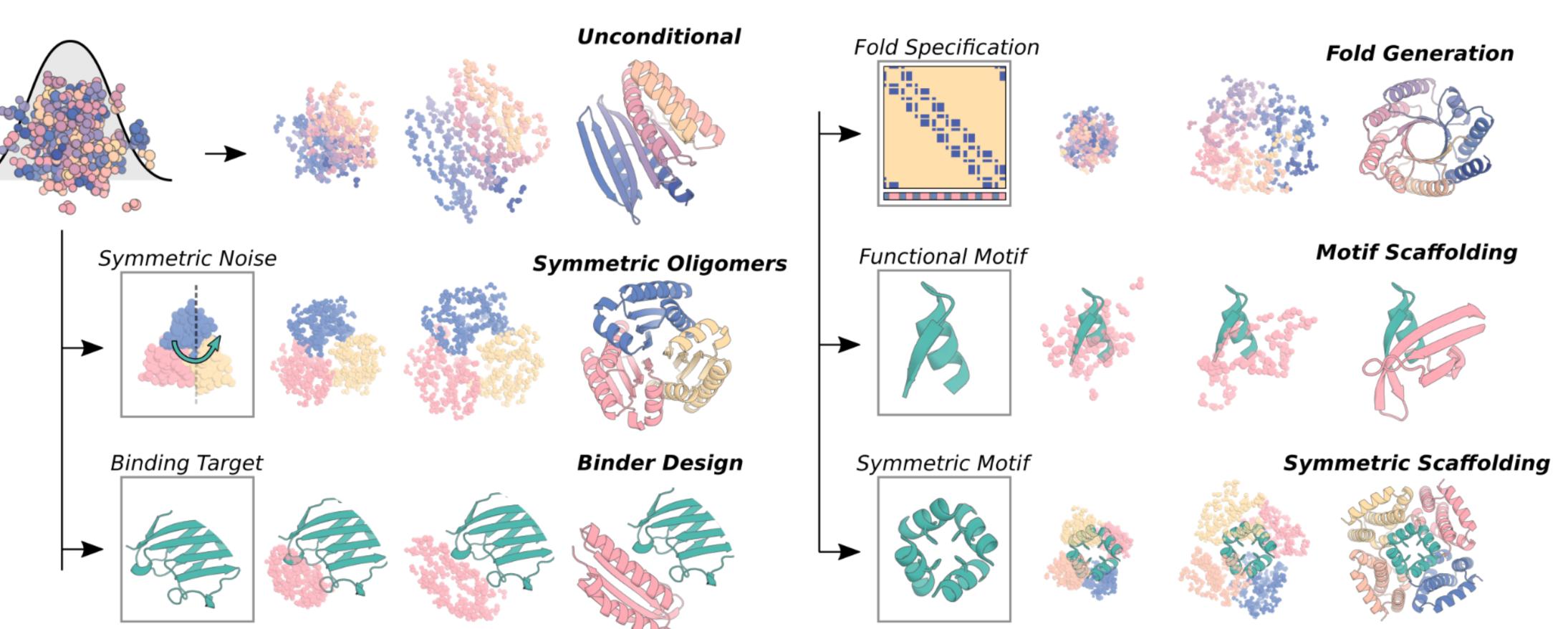


For fine-tuning details see supplementary section 4.2-4.4.

## **n** ing ilities

# RFdiffusion can be used across many tasks

 $X_0$ 



# **Conditional diffusion guidance**

How to guide structures towards specific functions and higher quality?

> **Solution**: Inspired by classifier guidance, guide with potentials.

Classifier guidance:

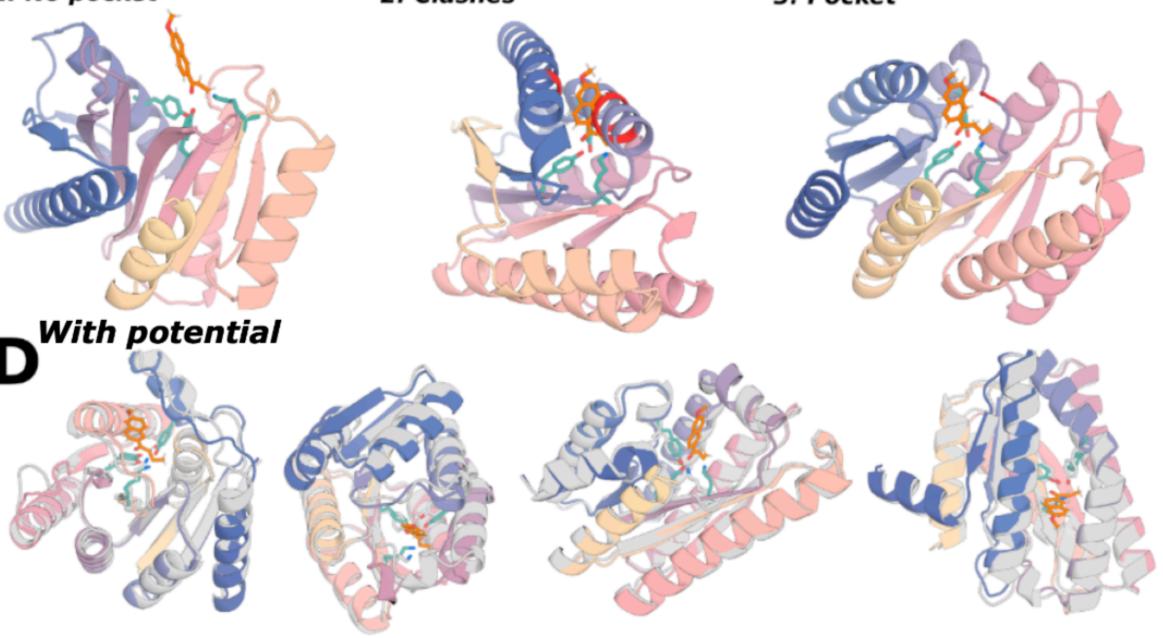
 $\nabla_{\mathbf{x}^{(t)}} \log p(\mathbf{x}^{(t)}) + \omega \nabla_{\mathbf{x}^{(t)}} \log p(\mathbf{y} = 1 | \mathbf{x}^{(t)})$ 

Potential guidance:

 $\nabla_{x^{(t)}} \log p(x^{(t)}) + \omega \nabla_{x^{(t)}} P(x^{(t)})$ 

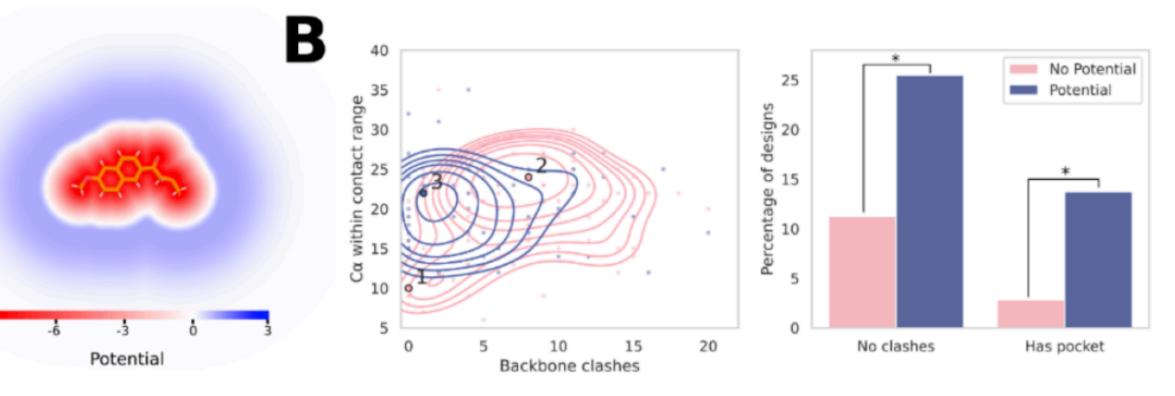


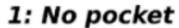
Α







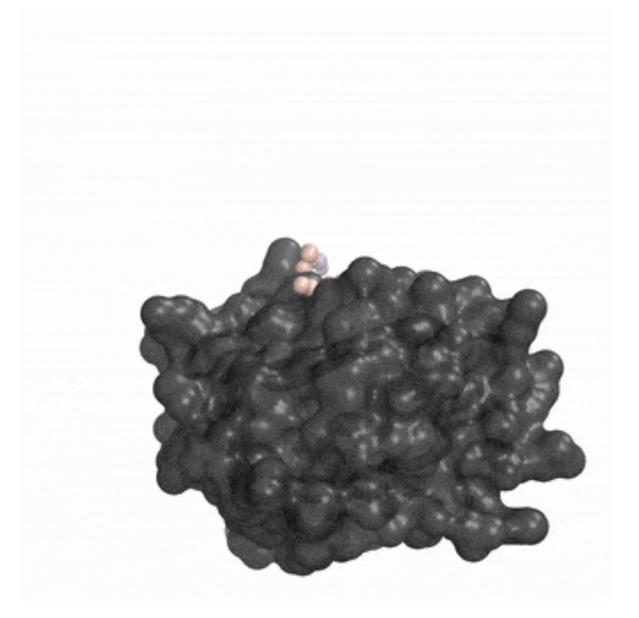


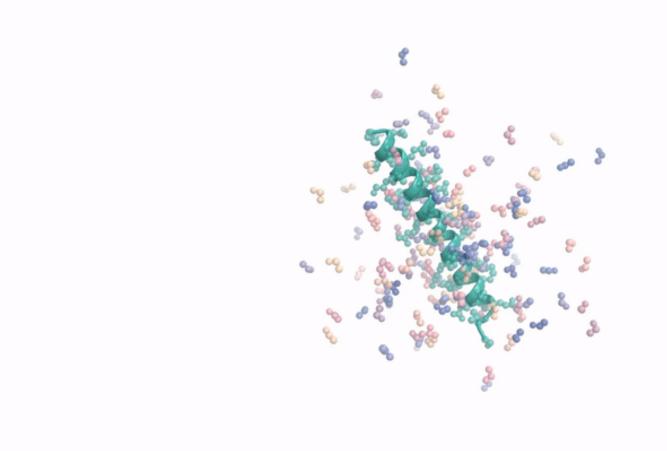


2: Clashes

3: Pocket

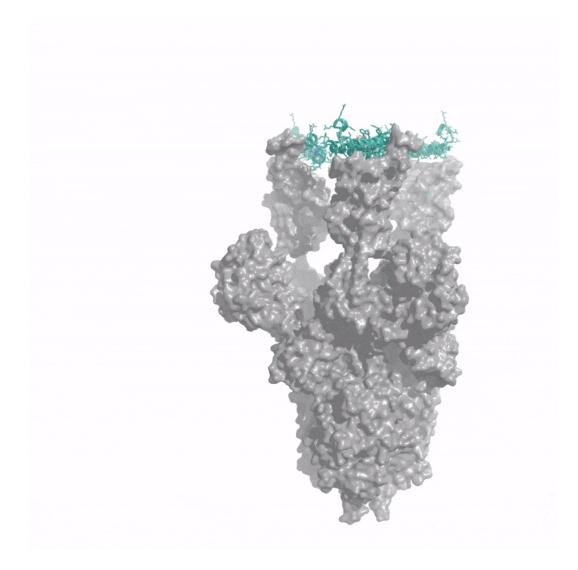
## Versatility across important applications





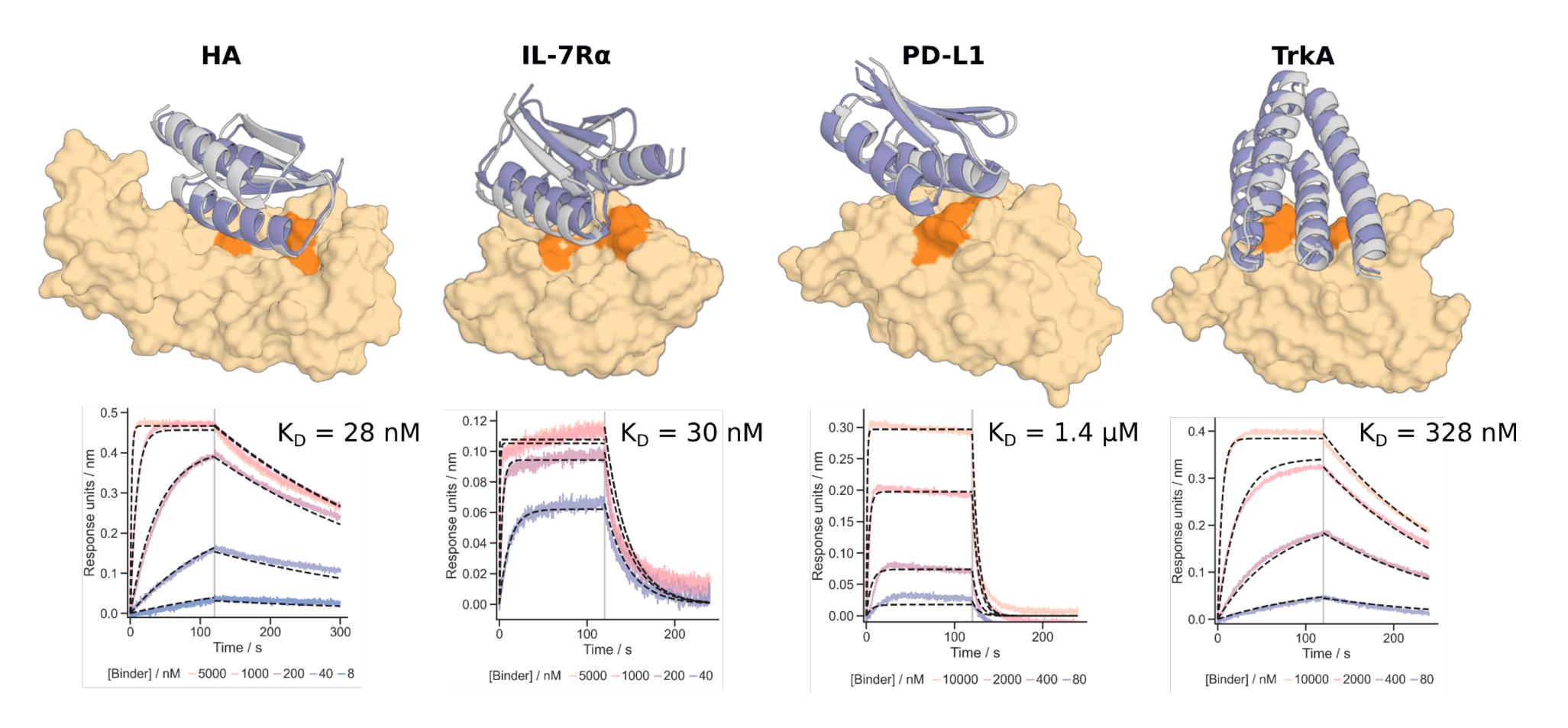
## Binder generation

Scaffolding

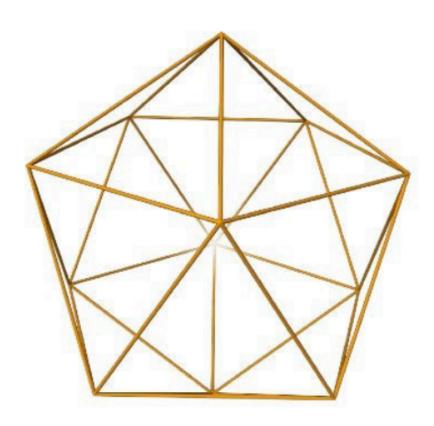


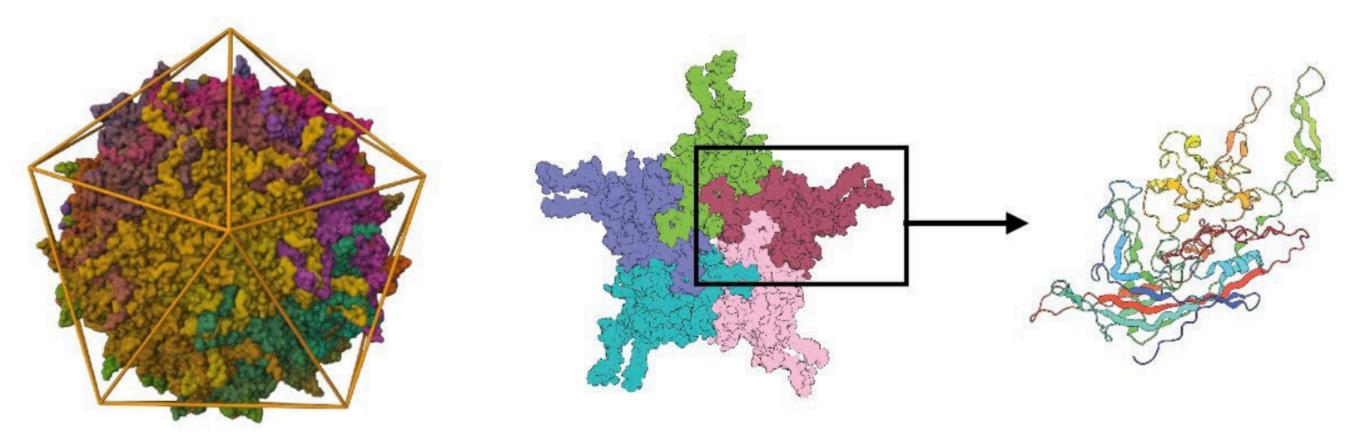
# Symmetric complex binder and scaffolding

## Wet-lab validation De novo binder design



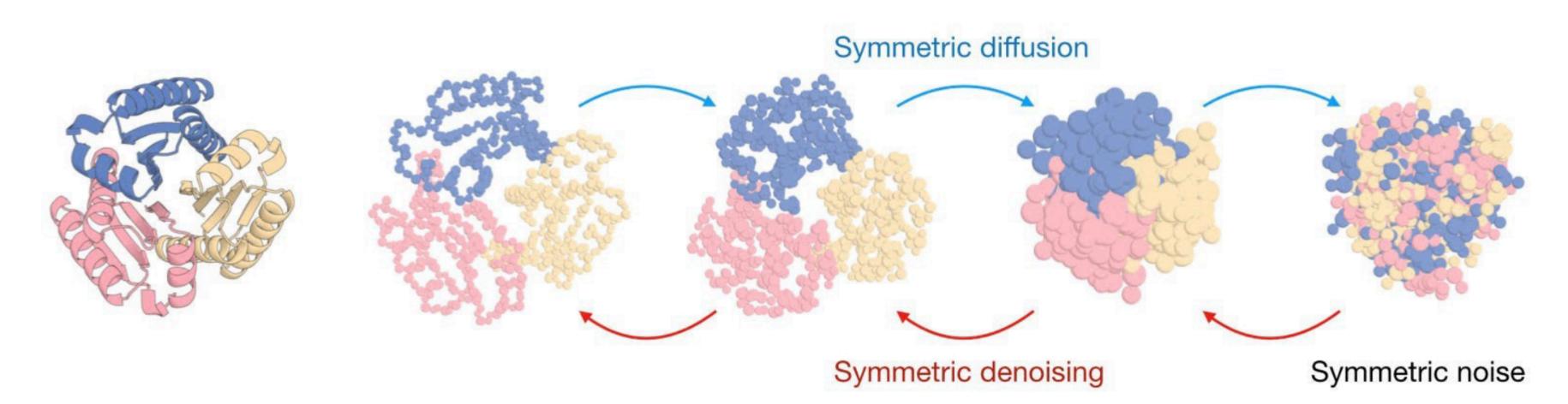
## Symmetric complex design





(a) Regular icosahedron

(b) AAV-DJ structure PDB: 3J1Q



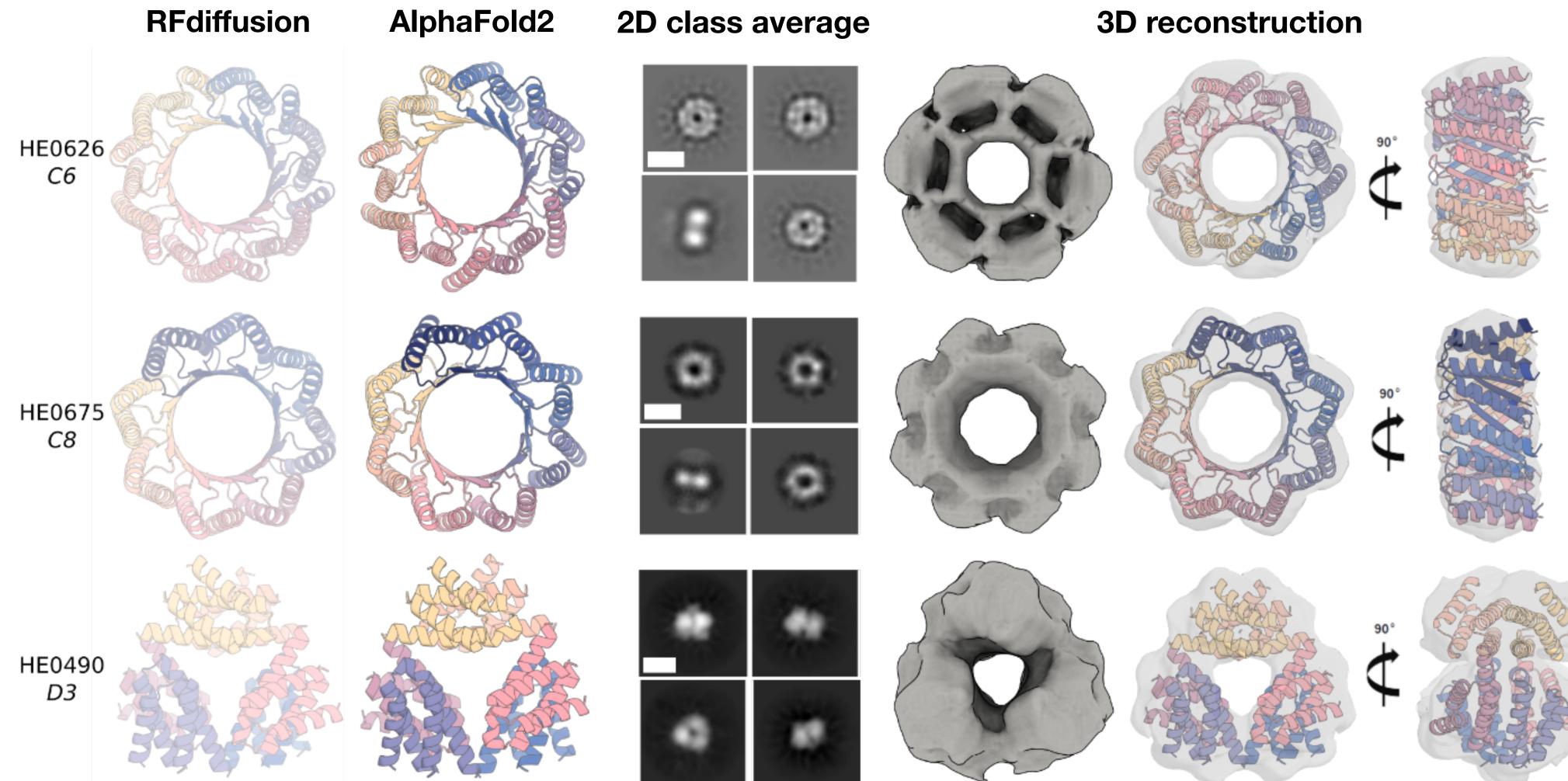
(e) C3 symmetric complex

(c) 1 of 12 pentamer faces on AAV-DJ

(d) Asymmetric unit of AAV-DJ

(f) Symmetric noising with SDE and symmetric denoising with neural network

## Wet-lab validation Symmetric complex design



## **Future directions**

• All-atom: data, architecture, generative framework.

• Lightweight, faster, tunable: pre-training? fine-tuning? 1-step generation?

# FrameFlow

# Paper: Fast protein backbone generation with SE(3) flow matching

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, Jose Jimenez-Luna, Sarah Lewis, Victor Garcias Satorras, Bastiaan S. Veiling, Regina Barzilay, Tommi Jaakkola, Frank Noe

## **Flow matching** Lipman et al 2022

• Learn a Continuous Normalizing Flow (CNF)  $\phi_t$  by learning a time-dependent vector field  $v_t$ .

$$\frac{d}{dt}\phi_t(x) = v_t(\phi_t(x))$$
$$\phi_0(x) = x$$

• Parameterizes a probability density path

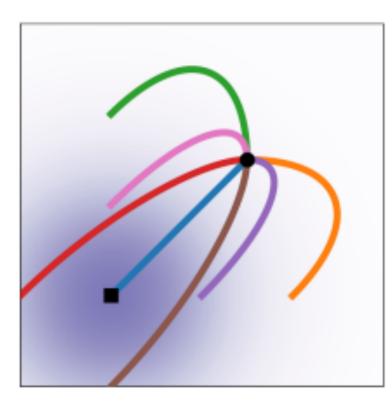
$$p_t = [\phi_t]_* p_0$$
$$[\phi_t]_* p_0(x) = p_0(\phi_t^{-1}(x)) \det \left[\frac{\partial \phi_t^{-1}}{\partial x}(x)\right]$$

• Flow matching objective

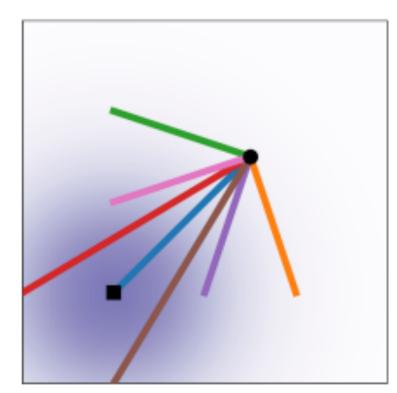
$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t,p_t(x)} \| v_t(x) - u_t(x) \|^2$$

### Connection with diffusion.

- Probability flow ODE is a CNF.
- VP / VE diffusion have CNF equivalent.
- Each instance corresponds to different path/schedule.



Diffusion path

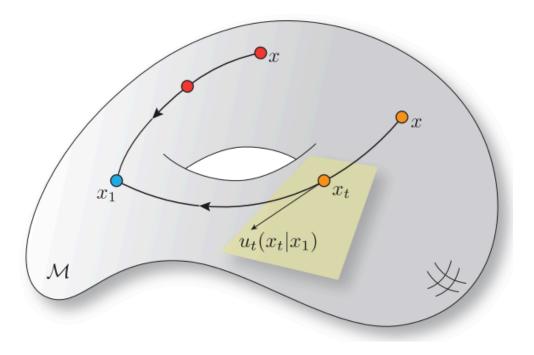


Straight (optimal transport) flow matching path

t. nt

## **Riemannian flow matching** Chen et al 2023

• Flow matching over general manifolds.



|                              | Simulation-free on simple geo. | Closed-form<br>target vector field | Does not require divergence |
|------------------------------|--------------------------------|------------------------------------|-----------------------------|
| Ben-Hamu et al. [5]          | ✓                              | -                                  | ×                           |
| De Bortoli et al. [15] (DSM) | ×                              | ×                                  | ✓                           |
| De Bortoli et al. [15] (ISM) | ×                              | -                                  | ×                           |
| Huang et al. [28]            | ×                              | -                                  | ×                           |
| Riemannian FM (Ours)         | ✓                              | 1                                  | ✓                           |

- Practical differences to diffusion.
  - No need to solve SDE and define heat kernel.
  - Only requires solving geodesic.

$$x_t = \exp_{x_0}(t \log_{x_0}(x_1)), \quad t \in [0, 1].$$

• And vector field.

$$u_t(x|x_1) = \frac{d\log\kappa(t)}{dt} \mathsf{d}(x, x_1) \frac{\nabla \mathsf{d}(x, x_1)}{\left\|\nabla \mathsf{d}(x, x_1)\right\|_g^2}$$

## **Relative schedule**

• SE(3) flow matching is flow matching on  $R^3$  and SO(3).

Translations ( $\mathbb{R}^3$ 

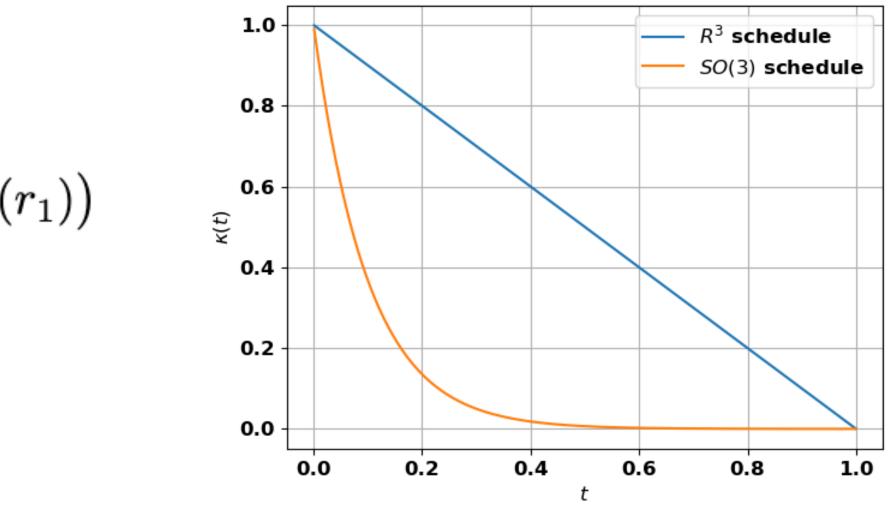
Rotations (SO(3))

- Here both  $R^3$  and SO(3) follow the same linear schedule  $\kappa(t) = 1 t$
- ullet

$$r_{t} = \exp_{r_{0}} \left( \left( 1 - e^{-ct} \right) \log_{r_{0}} (r_{1}^{(n)}) + c \log_{r_{t}^{(n)}} \left( \hat{r}_{1}^{(n)} \right) \right) \right)$$

$$(x_t): x_t = (1-t)x_0 + tx_1$$
  
$$(x_t): r_t = \exp_{r_0} \left( t \log_{r_0}(r_1) \right)$$

We found having a different rotation schedule  $\kappa(t) = e^{-tc}$  to be **crucial** for good performance.



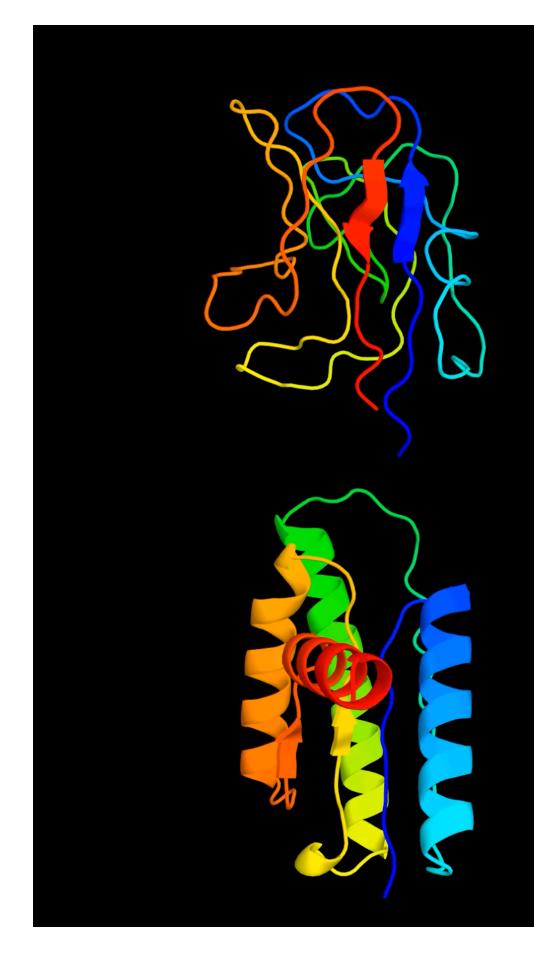
# Sample quality with different schedules

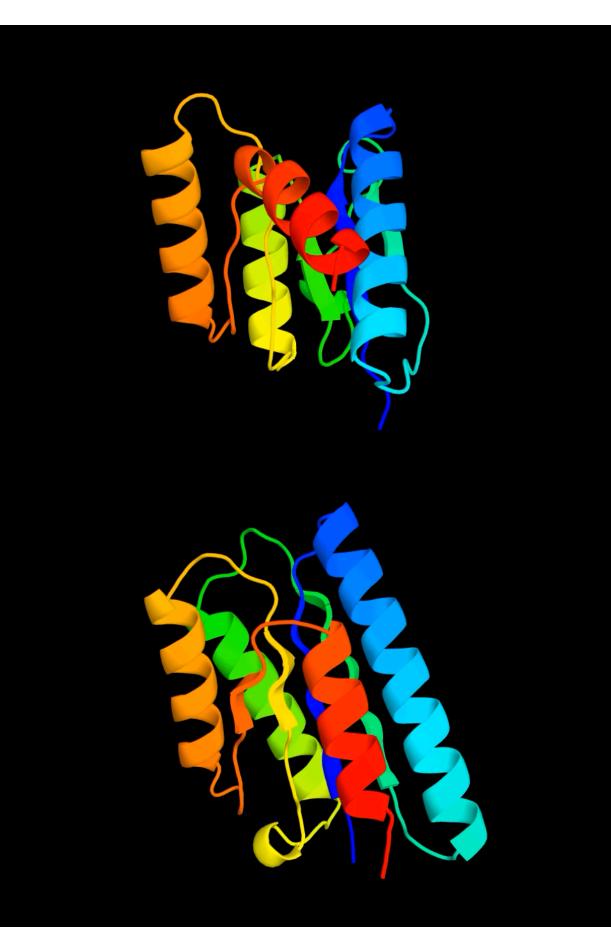
Translations:  $\kappa(t) = 1 - t$ ,

Rotations:  $\kappa(t) = 1 - t$ 

Translations: 
$$\kappa(t) = 1 - t$$
,

Rotations:  $\kappa(t) = e^{-10t}$ 



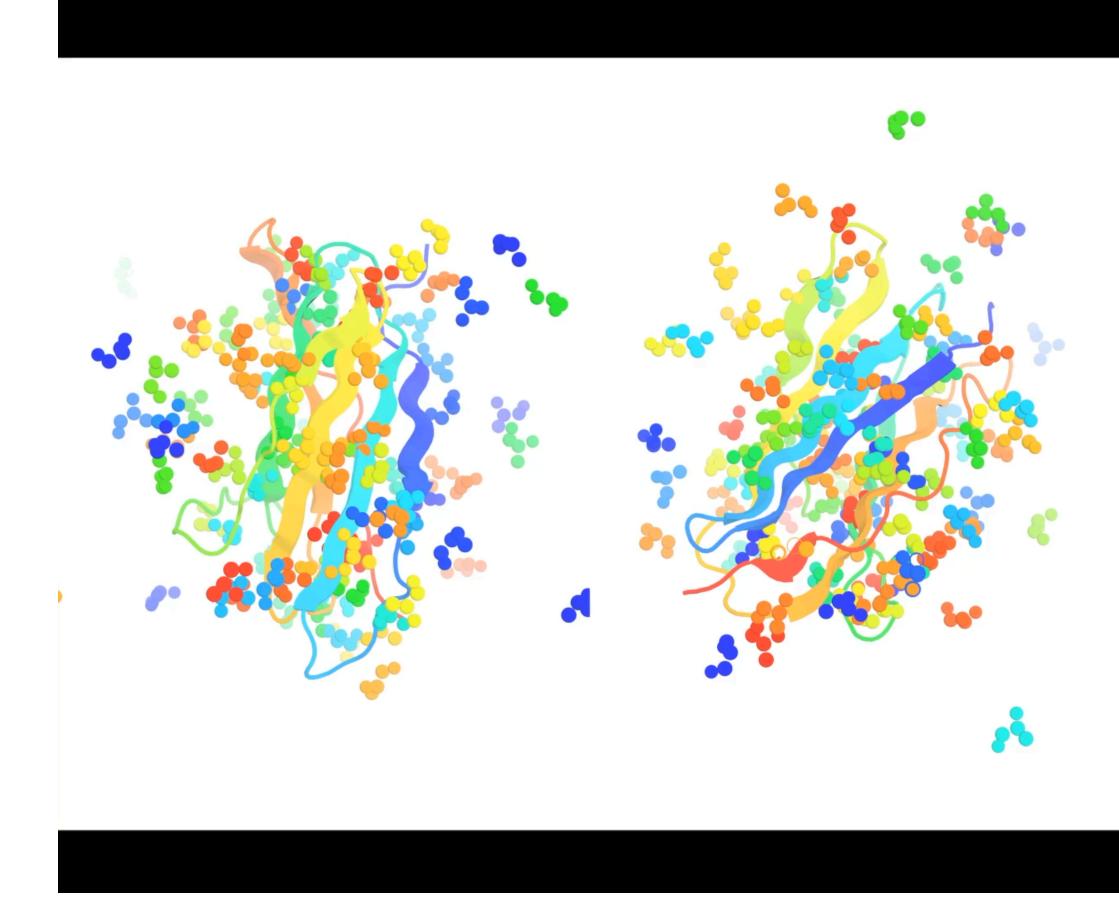


Translations:  $\kappa(t) = 1 - t$ , Rotations:  $\kappa(t) = e^{-5t}$ 

Translations:  $\kappa(t) = 1 - t$ , Rotations:  $\kappa(t) = e^{-100t}$ 

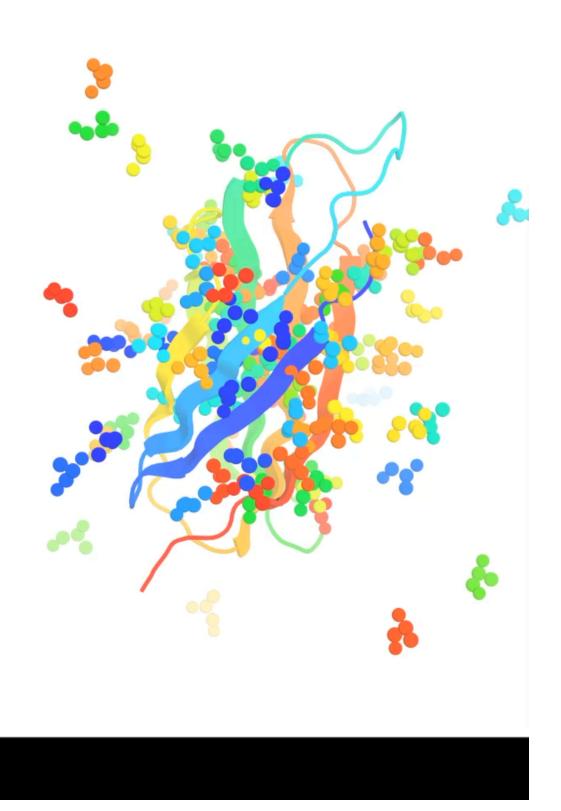


## Trajectories

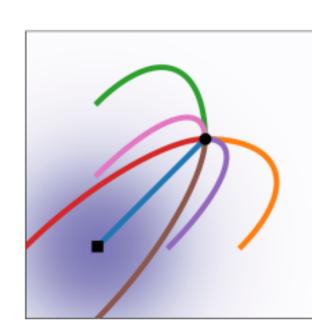


### Diffusion SDE

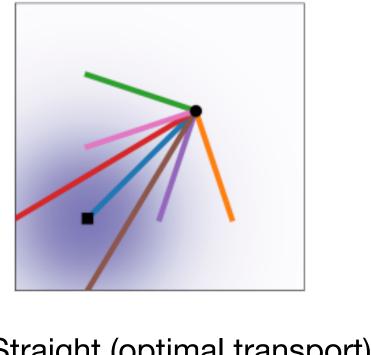
Diffusion ODE



### Flow ODE

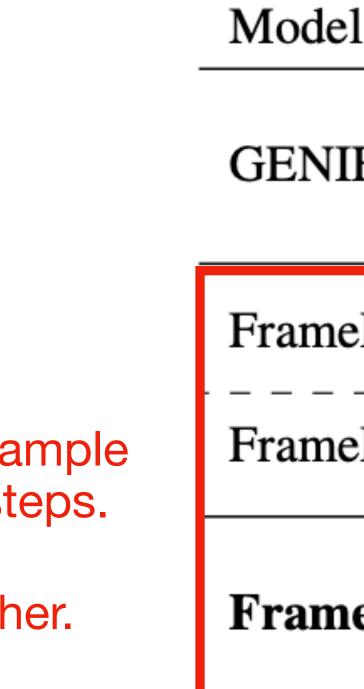


Diffusion path



Straight (optimal transport) flow matching path

## Results



## <u>Takeaways</u>

- 1. Flow matching can sample with 100 or 10 time steps.
- 2. Sample quality is higher.

| el     |     | Timesteps          | Designability (†)    |  |
|--------|-----|--------------------|----------------------|--|
| IE     | SDE | 1000<br>750<br>500 | 0.22<br>0.11<br>0.0  |  |
| neDiff | SDE | 500<br>100         | 0.42<br>0.39         |  |
| neDiff | ODE | $100^{-1}$         | 0.34<br>0.17         |  |
| neFlow | ODE | 500<br>100<br>10   | 0.81<br>0.77<br>0.33 |  |

# **Outstanding questions**

• Learning ODE/SDEs on multimodal data.

• SDE vs. ODE

Scheduling

# Acknowledgements

- Eisenach, Woody Ahern, ..., David Baker.
- Regina Barzilay, Tommi Jaakkola, Frank Noe.
- Advisors: Regina Barzilay, Tommi Jaakkola





• FrameDiff collaborators: Brian Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet. • **RFdiffusion** collaborators: Joseph Watson, David Juergens, Nathaniel Bennett, Helen

• FrameFlow collaborators: Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, Jose Jimenez-Luna, Sarah Lewis, Victor Garcias Satorras, Bastiaan S. Veiling,