Illuminating protein space with a programmable generative model

Paper Presentation COS597N, Fall '23 November 16, 2023 Alkin Kaz

Generate: Chroma

Ingraham, J.B., Baranov, M., Costello, Z. et al. Illuminating protein space with a programmable generative model. Nature (2023).

Prologue — The Stanford Bunny

(Image taken from https://doi.org/10.1109/TIFS.2008.2011081)

Prologue — The Stanford Bunny

(Image taken from https://doi.org/10.1109/TIFS.2008.2011081)

Introducing... Generate: Chroma

Outline

- → Motivation
- → Background
- \rightarrow Research Question
- → Method
- → Results
- → Conclusions
- → Future Directions
- → Discussion Questions

Motivation

- → Modeling the joint, all-atom likelihood of sequences and three-dimensional structures of full protein complexes,
- → Achieving this with computation that scales sub-quadratically with the size of the protein system,
- → Enabling conditional sampling under diverse design constraints without retraining.

Background

- → Inverse Design:
 - From: Backbone Coordinates
 - To: Sequence
- → Diffusion Models:
 - Photorealistic images at inference time
 - Can introduce multi-modal constraints

Research Question

Can we introduce a diffusive model for protein design that can design large complexes with conditions given at inference time?

YES!

Method: Overview

(Nature paper, Fig. 1)

Method: Diffusion Primer

(https://yang-song.net/blog/2021/score/)

Method: Correlated Diffusion

Forward-Time SDE

$$\mathrm{d}\mathbf{x} = -\frac{1}{2}\beta_t \mathbf{x} \,\mathrm{d}t + \sqrt{\beta_t} \mathbf{R} \,\mathrm{d}\mathbf{w}.$$

Reverse-Time SDE

$$d\mathbf{x} = \left(-\frac{1}{2}\,\mathbf{x} - \,\mathbf{R}\mathbf{R}^{\mathsf{T}}\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x})\right)\beta_{t}\,dt + \sqrt{\beta_{t}}\,\mathbf{R}\,d\mathbf{\bar{w}}.$$
$$= \left(\frac{\alpha_{t}+1}{2(1-\alpha_{t}^{2})}\mathbf{x} - \frac{\alpha_{t}}{1-\alpha_{t}^{2}}\hat{\mathbf{x}}_{\theta}(\mathbf{x},t)\right)\beta_{t}\,dt + \sqrt{\beta_{t}}\,\mathbf{R}\,d\mathbf{\bar{w}}.$$

Reverse-Time SDE (Conditional on Auxiliary Constraints)

$$d\mathbf{x} = \left(-\frac{1}{2}\,\mathbf{x} - \,\mathbf{R}\mathbf{R}^{\mathsf{T}}\left(\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x}) + \nabla_{\mathbf{x}}\log p_{t}(\mathbf{y}|\mathbf{x})\right)\right)\beta_{t}\,dt + \sqrt{\beta_{t}}\,\mathbf{R}\,d\mathbf{\bar{w}}$$
$$= \left(\frac{\alpha_{t}+1}{2(1-\alpha_{t}^{2})}\mathbf{x} - \frac{\alpha_{t}}{1-\alpha_{t}^{2}}\hat{\mathbf{x}}_{\boldsymbol{\theta}}(\mathbf{x},t) - \,\mathbf{R}\mathbf{R}^{\mathsf{T}}\nabla_{\mathbf{x}}\log p_{t}(\mathbf{y}|\mathbf{x})\right)\beta_{t}\,dt + \sqrt{\beta_{t}}\,\mathbf{R}\,d\mathbf{\bar{w}}.$$

Method: Correlated Diffusion

(Hybrid Langevin) Reverse-Time SDE

$$d\mathbf{x} = h_t \, \mathbf{x} - g_t^2 \, \left(\lambda_t + \frac{\lambda_0 \psi}{2} \right) \mathbf{R} \mathbf{R}^{\mathsf{T}} \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) \, \mathrm{d}t + g_t \sqrt{(1 + \psi)} \, \mathbf{R} \, \mathrm{d}\mathbf{\bar{w}}.$$

Method: Polymer-Structured Diffusion

Method: Chroma Overview

$$\log p(\mathbf{x}, \mathbf{s}, \boldsymbol{\chi}) = \underbrace{\log p(\mathbf{x})}_{\text{backbone likelihood}} + \underbrace{\log p(\mathbf{s}|\mathbf{x})}_{\text{sequence likelihood}} + \underbrace{\log p(\boldsymbol{\chi}|\mathbf{x}, \mathbf{s})}_{\text{side-chain likelihood}}$$

Method: ChromaBackbone

Method: Random Graph Neural Networks

Method: Structure from Inter-Residue Geometry

Algorithm 2 Equivariant Consensus Structure from Inter-residue Geometries

Require: $\{\mathbf{T}_{ij}, w_{ij}\}_{ij \in \mathcal{E}_{\mathcal{G}}(\mathbf{x})}$ > Predicted inter-residue geometries and confidence weightsRequire: $\{\mathbf{t}_{iN}, \mathbf{t}_{iC_{\alpha}}, \mathbf{t}_{iC}, \mathbf{t}_{iO}\}_{i=1}^{N}$ > Predicted local atomic geometriesRequire: $\{\mathbf{T}_i\}_{i=1}^{N}$ > Initial residue posesRequire: M> Number of parallel coordinate descent iterations

 $\begin{array}{ll} \forall i, j, & p_{ij} \leftarrow \frac{w_{ij}}{\sum_j w_{ij}} & \triangleright \text{ Compute confidence weights} \\ \text{for each } m \in 1 \dots M \text{ do} & \\ & \forall i & \mathbf{T}_i \leftarrow \left(\text{Proj}_{\text{SO}(3)} \left(\sum_j p_{ij} \mathbf{O}_j \mathbf{O}_{ji} \right), & \sum_j p_{ij} (\mathbf{O}_j \mathbf{t}_{ji} + \mathbf{t}_j) \right) & \triangleright \text{ Locally optimize poses} \\ \text{end for} & \\ \text{for each ATOM} \in \{ N, C_{\alpha}, C, O \} \text{ do} & \\ & \forall i & (\mathbf{0}, \mathbf{x}_i^{\text{ATOM}}) \leftarrow \mathbf{T}_i \circ (\mathbf{0}, \mathbf{t}_{i\text{ATOM}}) & \triangleright \text{ Build atoms} \\ \text{end for} & \\ \text{return } \mathbf{x} & \triangleright \text{ Output atomic backbone geometry} \end{array}$

Method: ChromaDesign

Potts Decoder (ChromaDesign Potts)

$$p_{\theta}(\mathbf{s}|\mathbf{x}_t,t) = \frac{1}{Z(\mathbf{x}_t,t,\theta)} \exp\left(-\sum_i \mathbf{h}_i(s_i;\mathbf{x}_t,t) - \sum_{i< j} \mathbf{J}_{ij}(s_i,s_j;\mathbf{x}_t,t)\right).$$

Autoregressive Decoder (ChromaDesign Multi)

$$p_{\theta}(\mathbf{s}|\mathbf{x}_t,t) = \prod_i p_{\theta}(s_{\pi_i}|s_{\pi_{i-1}},\ldots,s_{\pi_1},\mathbf{x}_t,t).$$

Method: Conditioners

$$\mathrm{d}\mathbf{\tilde{x}} = -\frac{\beta_t \psi}{2} \lambda_t \mathbf{R} \mathbf{R}^{\mathsf{T}} \nabla_{\mathbf{\tilde{x}}} U(f(\mathbf{\tilde{x}}_t); \mathbf{y}, t) \, \mathrm{d}t + \sqrt{\beta_t \psi} \, \mathbf{R} \, \mathrm{d}\mathbf{\bar{w}}.$$

RECALL: Reverse-Time SDE (Non-Langevin, Conditional on Auxiliary Constraints)

$$d\mathbf{x} = \left(-\frac{1}{2}\,\mathbf{x} - \,\mathbf{R}\mathbf{R}^{\mathsf{T}}\left(\nabla_{\mathbf{x}}\log p_{t}(\mathbf{x}) + \nabla_{\mathbf{x}}\log p_{t}(\mathbf{y}|\mathbf{x})\right)\right)\beta_{t}\,dt + \sqrt{\beta_{t}}\,\mathbf{R}\,d\mathbf{\bar{w}}$$
$$= \left(\frac{\alpha_{t}+1}{2(1-\alpha_{t}^{2})}\mathbf{x} - \frac{\alpha_{t}}{1-\alpha_{t}^{2}}\hat{\mathbf{x}}_{\theta}(\mathbf{x},t) - \,\mathbf{R}\mathbf{R}^{\mathsf{T}}\nabla_{\mathbf{x}}\log p_{t}(\mathbf{y}|\mathbf{x})\right)\beta_{t}\,dt + \sqrt{\beta_{t}}\,\mathbf{R}\,d\mathbf{\bar{w}}.$$

Method: Conditioners

Conditioner	$f(\mathbf{\tilde{x}}, U, t)$	$U_f(ilde{\mathbf{x}},U,t)$	Examples and applications
Symmetry constraint	Gã	U	Large assemblies
Substructure constraint	$ar{\mathbf{R}}\mathbf{R}^{-1}\mathbf{ ilde{\mathbf{x}}}+ar{\mu}$	$U + \ \mathbf{\hat{x}}_{\theta}(f(\mathbf{\tilde{x}}, U, t), t)^{\mathcal{M}} - \mathbf{x}_{t}^{\mathcal{M}}\ _{2}^{2}$	Substructure grafting
Substructure distances	ĩ	$U - \log p_t(d_{ij} \mathbf{\tilde{x}})$	Interface and contact constraints
Substructure motif	ĩ	$U + \eta \log \left(1 + e^{\zeta \left[\rho(\mathbf{x}_t) - \rho_{max} \right]} \right)$	Motif-conditioned scaffolds
Shape constraint	ã	$U + \text{ShapeLoss}_t(\mathbf{x}, \mathbf{r})$	Molecular shape control
Sequence	ĩ	$U - \log p_t$ (sequence $ \tilde{\mathbf{x}})$	Sequence constraints
Secondary structure	ĩ	$U - \log p_t(ss \tilde{\mathbf{x}})$	Topological constraints
Domain classification	ĩ	$U - \log p_t(\operatorname{domain} \tilde{\mathbf{x}})$	Pfam, CATH, Taxonomy
Text caption	ĩ	$U - \log p_t(\text{caption} \mathbf{\tilde{x}})$	Natural language prompting
Likelihood restraint	ĩ	$U - \log p_t(\cdot \mathbf{\tilde{x}})$	Biasing towards specifications
Linear constraint	$A\tilde{x} + b$	U	Exactly enforcing specifications
Nonlinear constraint	$f(ilde{\mathbf{x}})$	$U + \log \det \frac{\mathrm{d}f}{\mathrm{d}\tilde{\mathbf{x}}}$	Exactly enforcing specifications

Supplementary Table 6: Conditioners for Chroma.

Method: Conditioners

Further networks were developed:

- → ProClass:
 - Trained to label/classify with CATH, PFAM labels.
- \rightarrow ProCap:
 - GPT-Neo 125M, trained on Pile (articles from arXiv and PubMed).
 - Fine-tuned with annotations on PDB.

Results: Reproducing Natural Statistics

Results: Novelty

Results: Conditional Generation

Results: Conditional Generation and Re-Folding

Conclusions

The hypothesized model is possible. The model can...

- → Generate >3,000 residues in a few minutes on a GPU!
- \rightarrow Condition on a variety of modalities!
- → Explore novel but feasible designs!

Future Directions: Try It!

https://github.com/generatebio/chroma

```
class Conditioner(torch.nn.Module):
 """A composable function for parameterizing protein design problems.
 .....
def __init__(self, *args, **kwargs):
    super(). init ()
    # Setup your conditioner's hyperparameters
def forward(
    self,
                              # Input coordinates
    X: torch.Tensor,
    C: torch.LongTensor, # Input chain map (for complexes)
    0: torch.Tensor,
                             # Input sequence (one-hot, not used)
                            # Input energy (one-hot, not used)
    U: torch.Tensor,
    t: Union[torch.Tensor, float], # Diffusion time
):
    # Update the state, e.g. map from an unconstrained to constrained manifold
    X_update, C_update = update_state(X, C, t)
    # Update the energy, e.g. add a restraint potential
    U update = U + update energy(X, C, t)
    return X update, C update, O, U update, t
```

Discussion Questions

How can Chroma be used?

What useful constraints do you see being designed?