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Intro

• Motion-based neural network model for continuous molecular heterogeneity for cryo-EM 
data

• 3DFlex exploits conformational variability of a protein which is the result of physical 
processes 

• From 2D image data, 3DFlex enables the determination of high-resolution 3D density, and 
provides an explicit model of a flexible protein’s motion over its conformational landscape

• Unlike local and multi-body refinement methods, 3DFlex exploits correlations between 
moving parts, making it possible to infer the position of all parts
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Method — Latent coordinates & Auto decoder

• The latent space in 3DFlex represents the conformational landscape

• Different latent positions correspond to different deformations of the canonical map

• Perform inference by optimizing a point estimate of the latent coordinates independently for each 
image → more precise

• Compute gradients of the data likelihood w.r.t the latent coordinates for each image, and then use 
gradient optimization to perform inference



Method — Noise injection and prior on latents

• Directly adding noise to the point estimate during training can regularize the model and encourage 
smoothness of the latent space

• Use a Gaussian prior on latent coordinates with unit variance to help control the spread of the latent 
embeddings for different particles within a given dataset, and to center the distribution of latent 
embeddings at the origin in the latent space



Method — Real vs Fourier Space
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Method — Regularization via tetrahedral mesh

• Regularization of deformations is critical

• Without it, the deep generative model can easily overfit to noise 
in the data and learn unrealistic deformations

• The deformation field is parameterized by a 3D flow vector at each 
vertex of the tetrahedral mesh

• The deformation field is then interpolated using linear finite-element 
method shape functions within each mesh element

• Smoothness is a function of the size of mesh elements and is 
enforced implicitly through interpolation and the fact that adjacent 
elements can share vertices



Method — Regularization via tetrahedral mesh



Method — Mesh generation

• Tetrahedral mesh is defined by:

• A set of vertices

• A set of tetra cells, each connecting four 
vertices

• A “tetra index map”, which is an NxNxN map 
of indices indicating for each voxel, which 
tetra cell that voxel belongs to

• The convection operator uses the tetra index 
map to determine how to convect the V based on 
the movement of the mesh vertices



Results: large snRNP Spliceosome complex 
Resolves 5 dimensions of motion while improving map resolution from 5.7 to 3.8Å locally (head region)



Results: large snRNP Spliceosome complex 
Resolves 5 dimensions of motion while improving map resolution from 5.7 to 3.8Å locally (head region)

http://www.youtube.com/watch?v=l49visBQ_ys


Results: smaller membrane TRPV1 ion channel
 2D latent space Improves resolution of peripheral helices from 4 to 3.2Å by explicitly modeling motion

1. 1st dimension reveals inward and outward coordinated bending of opposite flexible subunits in the 
soluble domain

2. 2nd dimension reveals twisting of the subunits around the pore axis

http://www.youtube.com/watch?v=M8k_MnRMqGQ
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Results: translocating ribosome
Learned coordinated motion of multiple parts (e.g., large and small subunits, elongation factor, etc.) 
including the overall ratcheting motion of the ribosome

http://www.youtube.com/watch?v=LH7y6dQ_tPc


More results
αV β8 integrin: 84,266 particle images, 2D latent 
space → learns large bending motions of the 
flexible arm of the integrin particle, as well as 
flexibility in the Fabs that are bound

SARS-CoV-2 spike protein: 113,511 particle images, 3D 
latent space → learns a combination of motions of 
the RBD (esp. the dynamic up-RBD) and NTD 
domains with separate deformation

http://www.youtube.com/watch?v=C-Huld0J744
http://www.youtube.com/watch?v=TGQI0k8HfsM


Validation by FSC

● 3DFlex is optimized at a small box size → converges, freeze flow 
generator parameters θ and latent coordinates z → transfer to new 
model at full resolution

● For each half set, initialize canonical density V = 0 and re-optimize at 
full box size

○ Full-batch L-BFGS in real space (more expensive than Fourier space reconstruction) 
but resolves all flexible parts simultaneously w/o assumptions

● Compare the 2 resulting half-maps with FSC
● Correlation beyond the training time Nyquist resolution limit 

indicates consistent signal recovery from separate particle sets



Results Summary

● Validation by FSC shows improved alignment beyond training 
resolution

● Results show 3DFlex can uncover intricate, biologically relevant 
motions

○ Resolves high-resolution detail in canonical map by aggregating signal across 
conformations

○ Delineates motions that improve map quality beyond conventional refinement
● Applicable across range of complexities and sizes from 1,200 kDa 

spliceosome to 380 kDa ion channel
● Provides interpretable visualization of conformational landscape



Method — Flow generator
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methods

○ Applicable in cases where 3D classification requires large data and multi-body 
rigid subunits
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Discussion

● 3DFlex complements 3D classification and multi-body refinement 
methods

○ Applicable in cases where 3D classification requires large data and multi-body 
rigid subunits

○ Provides interpretable latent space to facilitate particle selection
● Limitations: not designed to handle compositional heterogeneity

○ Learns transitions between discrete states, but guided by rigidity priors
○ Captures large-scale motions relevant to function, but may miss subtle sidechain 

changes
● Future work: validate deformation fields, incorporate 

structurally-aware priors
○ Extend model to handle compositional variability
○ Explore alternatives like neural fields for motion and density representation
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Abstract

1. ModelAngelo uses ML for automated atomic model building and 
protein identification from cryo-EM maps

2. How? It combines information from the cryo-EM map, protein 
sequences, and local geometry using a graph neural network (GNN)

3. So, does it work? How well?
a. For proteins, it builds models of similar quality as human experts
b. Using predicted amino acid probabilities in HMM searches, it outperforms experts in 

identifying unknown proteins
c. For nucleotides, it builds accurate backbones

4. Why? ModelAngelo aims to “help remove bottlenecks and increase 
objectivity in cryo-EM structure determination” 
a. Error-checking and refinement remain necessary



Introduction: Cryo-EM

1. 3D atomic models of proteins and nucleic acids are pivotal for 
understanding molecular processes

2. Cryo-EM can now determine near-atomic resolution structures
a. Current trend in the EMDB predicts that ~100k cryo-EM structures will be determined 

in the next 5 years
b. Automation is key to remove bottlenecks and increase objectivity as cryo-EM grows 

exponentially
3. Over two-thirds of 2022's cryo-EM structures were better than 4Å

a. Atomic modeling in 2-4Å maps uses sequence information but is laborious and 
expert-dependent

b. Errors in atomic models can have serious consequences



Motivation

1. Atomic model building in cryo-EM typically done manually using 3D 
visualization software followed by refinement
a. Difficult for maps of resolution >4Å
b. Still very tedious, time consuming, and requires high expertise for resolutions <3Å
c. In weak density areas, sequences have to be used to identify residues
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Motivation 

1. Atomic model building in cryo-EM typically done manually using 3D 
visualization software followed by refinement
a. Difficult for maps of resolution >4Å
b. Still very tedious, time consuming, and requires high expertise for resolutions <3Å
c. In weak density areas, sequences have to be used to identify residues

2. Automated atomic model building from X-ray crystallography 
applied to cryo-EM: incomplete & w/ large residuals
a. PHENIX package: 47% completeness for resolutions >3Å
b. MAINMAST: RMSD in the ~10-19Å range

3. More recently, DeepTracer (2021) faces limitations
a. Uses U-Nets, no sequence integration, no graph representation

i. Segmentation + classification only, so cannot refine built models or recycle
ii. Builds atoms for main chains only



Motivation

1. Attempts to dock and morph structure predictions to cryo-EM also 
face limitations
a. Conformation changes in complex can lead to propagating errors
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Motivation

1. Attempts to dock and morph structure predictions to cryo-EM also 
face limitations
a. Conformation changes in complex can lead to propagating errors

2. GNNs to model proteins
a. Since relative orientation is important to model building, use SE(3) equivariant (not 

invariant) approach
b. Since torsion angle representation require known residue ordering and connectivity, 

use backbone frame representation (AF2) instead 
3. With <13,000 sub-4Å maps available, multimodal ML is highly 

advantageous (and necessary)
a. ModelAngelo combines map, sequence, and geometry information, much like 

human experts



Methods

Overview of building atomic models:
1. Graph initialization: CNN predicts residue positions 

a. Feature pyramid network predicts whether each voxel in 
cryo-EM map contains the C-alpha atom of an amino acid 
(or phosphor atom of a nucleotide) 

2. Graph optimization: GNN refines residue 
positions/orientations 
a. Also predicts residue identities + torsion angles of side chains 

(or bases)
3. Post-processing: build full atomic model from 

optimized graph
Also…identify proteins by building profile HMMs



Graph Initialization

1. Min distance between 2 Cɑ’s is 3.8Å, so resampling cryo-EM voxel maps with 
pixel size of 1.5Å ensures that no voxel contains >1 Cɑ

2. Residues (defined by Cɑ) = Nodes, Neighbors = Edges



Graph Initialization

1. Since # true Cɑ’s (M*) << # voxels (N), focal loss over binary CE loss
a. Upweight voxels containing Cɑ for best P/R balance
b. Ensures ½ of map loss from empty voxels and ½ from Cɑ-voxels



Graph Optimization

GNN comprised of 3 modules that take residue feature vector as input 
and gradually updates it with new information in 8 layers 

1. Cryo-EM module: map densities

2. Sequence module (optional): 
protein sequences only

3. IPA module (invariant point 
attention from AF2): local 
geometry 



Graph Optimization

Graph representation: 
X(n): Ca positions at iteration n
F: affine frames defined by Ca, C, N 
backbone
G: torsion angles of side chains
P: per-residue probability vector for all 
20 a.a.s 
S: ESM-1b embeddings of all residues in 
input sequence
O: per-residue confidence prediction

- F,G similar to AF2
- (X, F, G, P) computes all-atom coords

Training Objective: 

X*: set of Ca positions in training data
F*,G* computed from atom coords of 
all residues in training data
P* (M* x 20 vector of 0s, 1s): one-hot 
encoding of a.a. Classes in training 
data



Cryo-EM Module

Identity 
prediction

Output residue 
feature vector

Feature 
extraction Graph-based attention



Cryo-EM Map Data

1. Node feature (query, value) 

2. Edge feature cuboid density (key) 
between residue and its 20 nearest 
neighbors
a. Connectivity: peptide bonds or 

sidechain interactions

3. Cube density around residue
a. Orientation determined by F
b. Concatenated w/ attention 

output



Cross-Attention: Query, Key, Value



Sequence Module

Encoder-only transformer



IPA Module



IPA Module

1. MLP computes 4 query points 
per residue and Euclidean 
distances between query 
points 
a. Location of neighbors replace 

cosine similarity of attention 
between Q, K

2. Ablating IPA led to incorrect 
secondary structure 
geometry



Post-processing
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Post-processing

After each layer, the output residue feature vector is used to…
1. Predict & update new per-residue positions and orientations 
2. Predict torsion angles for side chains/bases
3. Predict per-residue confidence score (= backbone RMSD against 

deposited PDB structure)
Predicted residue identities from Cryo-EM and Sequence modules are
4. Averaged to generate probabilities → Hidden Markov Model (HMM) 

profile → search against input sequences using HMMER
Finally,
5. Separate chains are connected, chains of <4 residues are pruned



Overview: Atomic Model Building

With the model built…
Now we identify the protein by 
building a profile HMM



Profile HMM Building

1. Parameters usually derived from MSA → now derived from ModelAngelo
2. Probabilistic search against the input sequence > assigning the most probable



Profile HMM Building

1. Transition probabilities between match (M), insert (I) and delete (D) 
states
a. Higher confidence residues have higher probability of staying in the match state
b. Confidence metric c(i) for residue i

2. Emission probabilities of each amino acid is predicted
3. By using predicted probabilities rather than a true MSA, ModelAngelo 

can search sequences it has no prior knowledge of



Training & Inference

1. Recycle the post-processed model (like AF2) for the next round of 
graph optimization 1-3 times (randomly)
a. Inference: 3 times, after which performance plateaus

2. Training Data: EMDB + PDB → 3715 map-model pairs
a. Before 4/1/2022 (test split after this date)
b. Resolutions <4Å
c. Augmented w/ color noise & random sharpening/dampening/rotations(90°)

3. Special version trained for structures with unknown sequences
a. Sequence module is removed
b. ModelAngelo still predicts probability distribution 
c. Larger proteome (no inputs) searched in HMMER



Training Losses

1. Ca RMSD 

2. Backbone RMSD
3. Amino acid classification
4. Local confidence score 
5. Torsion angles 
6. Full atom

a. Physical restraints-based 
relaxation

1. Training loop: 
a. take a PDB structure
b. extract Ca’s (x)
c. distort them with noise (e)
d. initialize backbones for each 

node/residue/Ca randomly 
e. predict the original structure

2. Missing/adding residues
a. 10% of residues are replaced 

with random residues
b. predicts whether a node 

actually exists in the model



Results

a) Backbone RMSD between the protein models built by 
ModelAngelo and those deposited (pink)

• Lower RMSDs for residues with higher (better) Q-scores

• Completeness improves for residues with higher Q-scores (blue)

b) Residues not built by ModelAngelo have lower Q-scores 
than those that are built

c) Models built by ModelAngelo are of similar quality to the 
deposited ones

ModelAngelo builds protein models of comparable quality to those built by humans

 



Results
ModelAngelo outperforms alternative approaches



Results
ModelAngelo builds good nucleic acid backbones



Results
ModelAngelo identifies protein chains that were not built by human experts

• To identify ‘unidentified’ chains,

1. Run ModelAngelo without using its sequence module to 
calculate an initial atomic model with HMM profiles for all chains

2. Search these profiles against the proteome

• Construct an input sequence file that included all chains in 
the deposited model plus the six newly identified chains 
and run ModelAngelo again

• For most sections of the unidentified chains, ModelAngelo 
built better models than those in the deposited structure 
(a)



Results
ModelAngelo identifies protein chains that were not built by human experts

• All six unidentified proteins occur more than once in the 
cryo-EM map due to local pseudo-symmetry

• Bootstrap weaker individual hits by cross-referencing their 
matches to the other instances

• For most sections of the unidentified chains, ModelAngelo 
built better models than those in the deposited structure 
(a)



Results
ModelAngelo identifies protein chains that were not built by human experts



Results
ModelAngelo identifies protein chains that were not built by human experts


