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Intro

® Motion-based neural network model for continuous molecular heterogeneity for cryo-EM
data

® 3DFlex exploits conformational variability of a protein which is the result of physical
processes

® From 2D image data, 3DFlex enables the determination of high-resolution 3D density, and
provides an explicit model of a flexible protein’s motion over its conformational landscape

® Unlike local and multi-body refinement methods, 3DFlex exploits correlations between
moving parts, making it possible to infer the position of all parts
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Fig.1| The 3DFlex model represents the flexible 3D structure of a protein network f; converts the latent coordinates into the flow field u and a convection
as deformations of a single canonical 3D density map V. Under the model, a operator then deforms the canonical density to generate a convected map W.

single-particle image is associated with low-dimensional latent coordinates that This map can then be projected along the particle viewing direction determined
encode the conformation for the particle in the image. A neural flow generator by the pose ¢, CTF corrupted and compared against the experimental image.
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* Flexible molecule is represented in terms of
1. A canonical density map
2. Latent coordinate vectors that specify positions over the protein’s conformational landscape

3. A flow generator that converts a latent coordinate vector into a deformation field that convects the
canonical map into the corresponding protein conformation

* Z,V, fy for each particle images are the model parameters — jointly optimized
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Auto-decoder latent inference
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* L =CP@IW; +n=CP(p)D(fe(2),V) +n (2

* C;: CTF operator

Convection

Projection

—>

CTF + noise

End-to-end differentiable

* P(¢;): projection operator for pose ¢;

* D(u; V): convection operator

w; = fo(z;)

1 M
Edata(vae’zl:M) = 5

i=1

- GP@ID (f@ V)| (3)

M: # of particle images

¢;, CTF estimates are known



Method — Latent coordinates & Auto decoder

Auto-decoder latent inference
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End-to-end differentiable

® The latent space in 3DFlex represents the conformational landscape
® Different latent positions correspond to different deformations of the canonical map

® Perform inference by optimizing a point estimate of the latent coordinates independently for each
image — more precise

® Compute gradients of the data likelihood w.r.t the latent coordinates for each image, and then use
gradient optimization to perform inference



Method — Noise injection and prior on latents
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® Directly adding noise to the point estimate during training can regularize the model and encourage
smoothness of the latent space

® Use a Gaussian prior on latent coordinates with unit variance to help control the spread of the latent
embeddings for different particles within a given dataset, and to center the distribution of latent
embeddings at the origin in the latent space



Method — Real vs Fourier Space
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* Working in a Fourier domain reduces the computational cost of CTF modulation and image projection
(via Fourier slice Theorem)

* However, the convection of density between conformations is more naturally expressed in real space
— Fourier space is only for CTF + noise part

* Represent V in real space — voxel array N3



Method — Convection Operator
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* Modeling the physical nature of protein motion, thereby allowing high-resolution structural detail

* One way to construct a convection operator is to express the flow field as a mapping from convected

coordinates (voxel in W;) to canonical coordinates

* Flow in 3DFlex u; is a forward mapping from canonical coordinates in V to the deformed coordinates in

W,

* Naturally conserves density, as every voxel in V has a destination in W;, where it’s contribution is

accumulated through an interpolant function



Method — Convection Operator
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End-to-end differentiable

* Convected density at location x:

* Wi(x) = Zyk(x —u;(7)V(Y)

* Summation is over 3D spatial positions y of the canonical map

* u = fy(2)

* k: interpolation kernel with finite support



Method — Regularization via tetrahedral mesh

Regularization of deformations is critical

® Without it, the deep generative model can easily overfit to noise
in the data and learn unrealistic deformations

The deformation field is parameterized by a 3D flow vector at each
vertex of the tetrahedral mesh

The deformation field is then interpolated using linear finite-element
method shape functions within each mesh element
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Method — Regularization via tetrahedral mesh

* The deformation field within the jth tetrahedral element for image i
can be written as a linear mapping:

° uij(x) = Ai]-x + bl]

* Matrix A, vector b: uniquely determined from 3D flow vectors at
the element vertices

Erigia = Zizjijf::l(sfj — 1)2 : Local rigidity regularization loss
* sf;: ¢th singular value of A;;

w;;: weights defining the strength of the prior within each mesh
element, based on the density present within the jth mesh element

ig. 1 Mesh Topologi can ion of domai
provided to 3DFlex for the SARS-CoV-2spike protein (see Fig. 4). a:aregular
i ir neighbors. Thi

* The densest elements have weight 1.0 / empty elements have a e . St o f»;ri:w
lower weight, by default 0.5

* The weighting ensures that deformation fields are encouraged to
compress and expand empty space around the protein

* L=Ejaa + AErigid I = CP@) W +n

2
h-cre | CiP@DDSFo@), V) + n.

1 M
Edata(v’ e’ZI:M) = E Z ‘
i=1




Method — Mesh generation

Auto-decoder latent inference
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® Tetrahedral mesh is defined by:
® A set of vertices

® A set of tetra cells, each connecting four
vertices

® A “tetra index map”, which is an NxNxN map
of indices indicating for each voxel, which
tetra cell that voxel belongs to

® Th e C o n VeCt i o n O p e rato r u S eS t h e tet ra i n d eX Extended DataFig. 1| Mesh Topologies. Examples of mesh topology that can b: coarse separation of domains. c: an irregula; mesh constructed by fusing

. provided to 3DFlex for the SARS-CoV-2 spike protein (see Fig. 4).a: aregular sub-meshes for each domain at the interfaces where density is to be continuous.
n |ap to d eterl nine h ow to coO nVeCt th e V based O mesh,withallmeshelements connected to their neighbors. This does not allow 3DFlexstill learns motion at all mesh nodes jointly and from scratch, but is now
adjacent protein domains to easily separate or move in different directions. able to model adjacent domains that move in different directions easily.

the movement of the mesh vertices



Results: large snRNP Spliceosome complex

Resolves 5 dimensions of motion while improving map resolution from 5.7 to 3.8A locally (head region)

3DFlex learned deformation
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Results: large snRNP Spliceosome complex

Resolves 5 dimensions of motion while improving map resolution from 5.7 to 3.8A locally (head region)
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http://www.youtube.com/watch?v=l49visBQ_ys

Results: smaller membrane TRPV1 ion channel

2D latent space Improves resolution of peripheral helices from 4 to 3.2A by explicitly modeling motion
1. Ist dimension reveals inward and outward coordinated bending of opposite flexible subunits in the
soluble domain
2. 2nd dimension reveals twisting of the subunits around the pore axis

3D Flexible Refinerment

IRV lon Chanre
EMPAR-I00SY

Latent coordinmte 1



http://www.youtube.com/watch?v=M8k_MnRMqGQ

Results: smaller membrane TRPV1 ion channel

2D latent space Improves resolution of peripheral helices from 4 to 3.2A by explicitly modeling motion
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Results: translocating ribosome

Learned coordinated motion of multiple parts (e.g., large and small subunits, elongation factor, etc.)
including the overall ratcheting motion of the ribosome
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http://www.youtube.com/watch?v=LH7y6dQ_tPc

More results

aV B8 integrin: 84,266 particle images, 2D latent SARS-CoV-2 spike protein: 113,511 particle images, 3D
space — learns large bending motions of the latent space — learns a combination of motions of
flexible arm of the integrin particle, as well as the RBD (esp. the dynamic up-RBD) and NTD
flexibility in the Fabs that are bound domains with separate deformation

3D Flexible Refinerment 3D Flexible Refinement

SARS CoV.2 spke (pre fuson}

aVPE integnn
EMPAR-10514

EMPAR- 10345

Latent coordinate 1 Latent coordingte 1



http://www.youtube.com/watch?v=C-Huld0J744
http://www.youtube.com/watch?v=TGQI0k8HfsM

Validation by FSC

e 3DFlex is optimized at a small box size — converges, freeze flow
generator parameters 6 and latent coordinates z — transfer to new
model at full resolution

e For each half set, initialize canonical density V = 0 and re-optimize at

full box size

o Full-batch L-BFGS in real space (more expensive than Fourier space reconstruction)
but resolves all flexible parts simultaneously w/o assumptions

e Compare the 2 resulting half-majps with FSC
e Correlation beyond the training time Nyquist resolution limit
indicates consistent signal recovery from separate particle sets



Results Summary

e Validation by FSC shows improved alignment beyond training
resolution
e Results show 3DFlex can uncover intricate, biologically relevant

motions

o Resolves high-resolution detail in canonical map by aggregating signal across
conformations

o Delineates motions that improve map quality beyond conventional refinement

e Applicable across range of complexities and sizes from 1,200 kDa
spliceosome to 380 kDa ion channel

e Provides interpretable visualization of conformational landscape



Method — Flow generator
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e 3DFlex complements 3D classification and multi-body refinement

methods
o Applicable in cases where 3D classification requires large data and multi-body
rigid subunits
o Provides interpretable latent space to facilitate particle selection
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changes



Discussion

e 3DFlex complements 3D classification and multi-body refinement
methods
o Applicable in cases where 3D classification requires large data and multi-body
rigid subunits
o Provides interpretable latent space to facilitate particle selection
e Limitations: not designed to handle compositional heterogeneity
o Learns transitions between discrete states, but guided by rigidity priors

o Captures large-scale motions relevant to function, but may miss subtle sidechain
changes

e Future work: validate deformation fields, incorporate
structurally-aware priors

o Extend model to handle compositional variability
o Explore alternatives like neural fields for motion and density representation
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Abstract

1. ModelAngelo uses ML for automated atomic model building and
protein identification from cryo-EM maps

2. How? It combines information from the cryo-EM map, protein
sequences, and local geometry using a graph neural network (GNN)

3. So, does it work? How well?
a. For proteins, it builds models of similar quality as human experts
b. Using predicted amino acid probabilities in HMM searches, it outperforms experts in
identifying unknown proteins
c. For nucleotides, it builds accurate backbones

4. Why? ModelAngelo aims to “help remove bottlenecks and increase

objectivity in cryo-EM structure determination”
a. Error-checking and refinement remain necessary



Introduction: Cryo-EM

1. 3D atomic models of proteins and nucleic acids are pivotal for
understanding molecular processes

2. Cryo-EM can now determine near-atomic resolution structures
a. Current trend in the EMDB predicts that ~100k cryo-EM structures will be determined
in the next 5 years
b. Automation is key to remove bottlenecks and increase objectivity as cryo-EM grows
exponentially

3. Over two-thirds of 2022's cryo-EM structures were better than 4A

a. Atomic modeling in 2-4A maps uses sequence information but is laborious and
expert-dependent
b. Errors in atomic models can have serious consequences



Motivation

1. Atomic model building in cryo-EM typically done manually using 3D

visualization software followed by refinement
a. Difficult for maps of resolution >4A
b. Still very tedious, time consuming, and requires high expertise for resolutions <3A
c. Inweak density areas, sequences have to be used to identify residues
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Motivation

1. Atomic model building in cryo-EM typically done manually using 3D

visualization software followed by refinement

a. Difficult for maps of resolution >4A

b. Still very tedious, time consuming, and requires high expertise for resolutions <3A
c. Inweak density areas, sequences have to be used to identify residues

2. Automated atomic model building from X-ray crystallography

applied to cryo-EM: incomplete & w/ large residuals
a. PHENIX package: 47% completeness for resolutions >3A
b. MAINMAST: RMSD in the ~10-19A range

3. More recently, DeepTracer (2021) faces limitations

a. Uses U-Nets, no sequence integration, no graph representation
i. Segmentation + classification only, so cannot refine built models or recycle
ii. Builds atoms for main chains only
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a. Conformation changes in complex can lead to propagating errors
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b. Since torsion angle representation require known residue ordering and connectivity,
use backbone frame representation (AF2) instead



Motivation

. Attempts to dock and morph structure predictions to cryo-EM also

face limitations
a. Conformation changes in complex can lead to propagating errors

2. GNNs to model proteins
a. Since relative orientation is important to model building, use SE(3) equivariant (not
invariant) approach
b. Since torsion angle representation require known residue ordering and connectivity,
use backbone frame representation (AF2) instead

3. With <13,000 sub-4A maps available, multimodal ML is highly

advantageous (and necessary)
a. ModelAngelo combines map, sequence, and geometry information, much like
human experts



Methods

Overview of building atomic models:

1. Graph initialization: CNN predicts residue positions

a. Feature pyramid network predicts whether each voxel in
cryo-EM map contains the C-alpha atom of an amino acid
(or phosphor atom of a nucleotide)

2. Graph optimization: GNN refines residue

positions/orientations

a. Also predicts residue identities + torsion angles of side chains
(or bases)

3. Post-processing: build full atomic model from
optimized graph
Also..identify proteins by building profile HMMs

@ ModelAngelo pipeline
( Step |

Step
<~‘1~ b

( {\

r {-{‘ ~ T

Initialize graph with
eeeeeee t neighbours

L '\
w..‘.‘

Amv“’
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Postprocessed model




Graph Initialization

1. Min distance between 2 Ca’s is 3.84, so resampling cryo-EM voxel maps with
pixel size of 1.5A ensures that no voxel contains >1 Ca
2. Residues (defined by Ca) = Nodes, Neighbors = Edges
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Graph Initialization

1. Since # true Ca's (M*) << # voxels (N), focal loss over binary CE loss
a. Upweight voxels containing Ca for best P/R balance
b. Ensures % of map loss from empty voxels and % from Ca-voxels

N — M*
Wy = TX(QT) + (1 = x(z))
wennt X = Womteins oy
® ® o 0 li"ﬁ,.le.,_
@ a . ] ] 1
* o °* B BEE Eus mmEm
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Graph Optimization

GNN comprised of 3 modules that take residue feature vector as input
and gradually updates it with new information in 8 layers

Pretrained
Language

Model

Sequence
Embedding

883 VSETTFGRDFNEALY L

] Cryo-EM |....

Sequence |...

Module

[ Module
]

Cryo-EM module: map densities

Sequence module (optional):
protein sequences only

IPA module (invariant point
attention from AF2): local
geometry



Graph Optimization

Graph representation: Training Objective:
X(n): Ca positions at iteration n 9o (X(n), Fn) vy, S) ~ (X*, F*,G*, P*)
F: affine frames defined by Ca, C, N

X*: set of Ca positions in training data

backbone _ _ F*,G* computed from atom coords of
G: torsion angles of side chains all residues in training data

P: per-residue probability vector for all P* (M* x 20 vector of Os, Is): one-hot
20 a.as encoding of a.a. Classes in training

S: ESM-1b embeddings of all residues in data

input sequence
O: per-residue confidence prediction

- F,G similar to AF2
- (X, F, G, P) computes all-atom coords



Cryo-EM Module
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Graph neural network

Feature
Previous . step 2 - i
o extraction (step 2) Graph-based attention
5] | ]
Concatenate ., Cryo-EM Module
(_( B distance features” - I ] . Y
Node softmax(QK )V
features Q ¥ I
Rectangles f/'j. — — I [ | ' l
sampled . . u _
along edges K Output residue
Cube =S - - _’-—>I‘ feature vector
sampled . o 7 " .
on center = C Residue Identit
> redic-- I
¥ '-Ptions ' y
. /|| prediction
¢ ] - -_,I Sequence Module
B \




b Graph neural network
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a. Connectivity: peptide bonds or
sidechain interactions

3. Cube density around residue

a. Orientation determined by F
‘. ' b. Concatenated w/ attention
s output



Cross-Attention: Query, Key, Value
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Graph neural network
(step 2)

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the

query with the corresponding key.



Sequence Module
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IPA Module
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IPA Module

1.

MLP computes 4 query points
per residue and Euclidean
distances between query

points

a. Location of neighbors replace
cosine similarity of attention
between Q, K

Ablating IPA led to incorrect
secondary structure
geometry
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Post-processing
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Post-processing

After each layer, the output residue feature vector is used to..
. Predict & update new per-residue positions and orientations
2. Predict torsion angles for side chains/bases
3. Predict per-residue confidence score (= backbone RMSD against
deposited PDB structure)
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Post-processing

After each layer, the output residue feature vector is used to..

. Predict & update new per-residue positions and orientations

2. Predict torsion angles for side chains/bases

3. Predict per-residue confidence score (= backbone RMSD against
deposited PDB structure)

Predicted residue identities from Cryo-EM and Sequence modules are

4. Averaged to generate probabilities — Hidden Markov Model (HMM)
profile — search against input sequences using HMMER

Finally,

5. Separate chains are connected, chains of <4 residues are pruned



Overview: Atomic Model Building

a ModelAngeIo pipeline
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Algorithm 9 GNN Forward Pass

1: function GNN_FORWARD_PASS(x, F', V', S, num_recycling_steps)
2: for k in range(num_recycling_steps) do

3: f < zeros(batch_size, 256)

4: for ¢ in range(num_layers=8) do

5: f < cryo_em_attention(x, f, F, V)

6: f < sequence_attention(f, S)

7: f < spatialiipa(x, f, F)

8: f < transition_layer(f)

9: P <« amino_acid _classification(f)
10: O < local_confidence_prediction(f)
11: x, F < backbone_frame_module(f, F')
12: G < torsion_angle network(f)

13: return x, F, P, 0, G

With the model built..
Now we identify the protein by
building a profile HMM



Profile HMM Building

1. Parameters usually derived from MSA — now derived from ModelAngelo
2. Probabilistic search against the input sequence > assigning the most probable
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Profile HMM Building

1. Transition probabilities between match (M), insert (1) and delete (D)
states

a. Higher confidence residues have higher probability of staying in the match state
b. Confidence metric c(i) for residue i

PJEZ,)_)M = max(c(i) d,0.5) P[()Z)_,M =1—-d PI(—>M =1-d
- 1_p(7') ]
Pg\/f)—m:$ Pz()—m—d P()D_O
(%)
i 1-p : )
p = 1= Puon PY =0 Pl =d

2
2. Emission probabilities of each amino acid is predicted
3. By using predicted probabilities rather than a true MSA, ModelAngelo
can search sequences it has no prior knowledge of



Training & Inference

1. Recycle the post-processed model (like AF2) for the next round of

graph optimization 1-3 times (randomly)
a. Inference: 3 times, after which performance plateaus
2. Training Data: EMDB + PDB — 3715 map-model pairs

a. Before 4/1/2022 (test split after this date)

b. Resolutions <4A

c. Augmented w/ color noise & random sharpening/dampening/rotations(90°)
3. Special version trained for structures with unknown sequences

a. Seqguence module is removed

b. ModelAngelo still predicts probability distribution

c. Larger proteome (no inputs) searched in HMMER



Training Losses

1. CaRMSD

1
Loo = Z RMSD(x;, go(xi + €;))

= %zl: J % ; |[%ila — [g0(x +ei)]d|2

Backbone RMSD

Amino acid classification
Local confidence score
Torsion angles

Full atom

a. Physical restraints-based
relaxation

o 0k wN

1. Training loop:

a.
.
C.
d

e.

take a PDB structure

extract Ca’s (x)

distort them with noise (e)
initialize backbones for each
node/residue/Ca randomly
predict the original structure

2. Missing/adding residues

a.

o}

10% of residues are replaced
with random residues
predicts whether a node
actually exists in the model



Results

ModelAngelo builds protein models of comparable quality to those built by humans

a)

b)

c)

Backbone RMSD between the protein models built by
ModelAngelo and those deposited (pink)

® | ower RMSDs for residues with higher (better) Q-scores

® Completeness improves for residues with higher Q-scores (blue)

Residues not built by ModelAngelo have lower Q-scores
than those that are built

Models built by ModelAngelo are of similar quality to the
deposited ones

Q-scores measures the resolvability of individual atoms in cryo-EM maps

3 b d
10
o 08
g 9]
? 05 4
. lod 5 06
03 3 )
3 &
< 00 S 04
S k]
3 2
= 02
00 0.0 05 R?0.982
02 04 06 08 04 00 04 ro 04 00 04 10
Deposited Q-score Deposited Q-score Deposited Q-score Deposited FSC
TR —— 10| s Removed IPA and Sequence
s |mDemo-EM % Removed Sequence
§ Buccaneer § |mmRemovedi
§ |mmDeepTracer H ModelAngelo
8 ModelAngelo 8
205 20.
£ £
5 5
(V) (V)

Local resolution (A) Local resolution (A)

Figure 2: Performance of ModelAngelo for atomic modelling of proteins. a, Backbone
root-mean-square deviation (RMSD) and model completeness plotted as a function of the target
model Q-scores. b, Q-score distribution of residues in the deposited models, comparing those
built by ModelAngelo with those not built. ¢, Q-score comparison between ModelAngelo pre-
dicted models and the deposited models. d, Model-to-map Fourier shell correlation (FSC), as
calculated by Servalcat (38), after refining both models and using only residues present in both
ModelAngelo and deposited models. e, Model completeness for various automated model-
building softwares for different local resolution ranges in the maps. f, Model completeness
for ModelAngelo and versions of ModelAngelo where its Sequence and/or IPA modules were
ablated. Panels a-d relate to the test set of 177 structures; panels e and f to the subset of 27
structures.

Completeness: the fraction of residues that are built with their Ca atom within 34 of the deposited model and with the correct amino

acid assignment



Results

ModelAngelo outperforms alternative approaches
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Figure 2: Performance of ModelAngelo for atomic modelling of proteins. a, Backbone
root-mean-square deviation (RMSD) and model completeness plotted as a function of the target
model Q-scores. b, Q-score distribution of residues in the deposited models, comparing those
built by ModelAngelo with those not built. ¢, Q-score comparison between ModelAngelo pre-
dicted models and the deposited models. d, Model-to-map Fourier shell correlation (FSC), as
calculated by Servalcat (38), after refining both models and using only residues present in both
ModelAngelo and deposited models. e, Model completeness for various automated model-
building softwares for different local resolution ranges in the maps. f, Model completeness
for ModelAngelo and versions of ModelAngelo where its Sequence and/or IPA modules were
ablated. Panels a-d relate to the test set of 177 structures; panels e and f to the subset of 27
structures.

Res. Calpha Backbone  Backbone Backbone Aminoacid Complete-

Ll (A) RMSD(A) RMSD (A) Recall Precision Accuracy  ness
sbe2 26 MA:013 MA:0.13 MA:1.00 MA:100 MA:100  MA: 100
DT:035 DT:050 DT:1.00 DT:1.00 DT:099 DT 0.98
MA:0.10 MA:011 MA:0.99 MA:0.97 MA:1.00 MA: 0.99
8csw 2.5

DT: 0.39 DT: 0.53 DT:0.95 DT:0.95 DT:0.93 DT: 0.89

5 55, MAI038 MA:043 MAI078 MA:0.99 MA:0.96 MA: 075
V2 2% D080 DT:131 DT:0.87 DT:087 DT:055  DT:0.47

8dh7  2.99 MA:0.17 MA:0.19 MA:0.99 MA:1.00 MA:1.00 MA:0.99
i DT: 0.47 DT: 0.66 DT:0.99 DT:0.99 DT:0.87 DT: 0.85

8dnm 276 MA: 014 MA:0.17 MA:1.00 MA:1.00 MA:1.00 MA:1.00
) DT: 0.44 DT: 0.74 DT:0.99 DT:0.99 DT:0.97 DT: 0.96

MA:0.57 MA:0.61 MA:0.96 MA:0.96 MA:0.94 MA:0.90
DT: 0.83 DT: 1.11 DT:0.96 DT:0.96 DT:0.56 DT: 0.54
MA:0.56 MA:0.62 MA:035 MA:0.99 MA:0.94 MA:0.33
DT: 0.95 DT: 1.73 DT: 0.39 DT:0.39 DT:045 DT: 0.18

8650  3.67 MA: 034 MA:040 MA:0.93 MA:1.00 MA:0.98 MA: 091
i DT: 0.80 DT:1.21 DT:0.96 DT:0.96 DT:0.49 DT: 0.47

MA: 0.68 MA:0.77 MA:034 MA:0.99 MA:091 MA:0.31

DT:097 DT:157 DT:0.66 DT:066 DT:021 DT:0.14
" 55 MA:010 MA:0.12 MA:100 MA:0.99 MA:1.00 MA: 100
VU “9% DT.054 DT:0.84 DT:098 DT:098 DT:0.89 DT 0387

MA:0.54 MA:0.58 MA:0.65 MA:0.97 MA:0.95 MA: 0.62
DT: 2.16 DT: 3.00 DT:0.21 DT:0.21 DT:0.06 DT: 0.01

8dwi 3.4

8dwu 3.4

8efe 3.8

8fma 3.1

Extended Data Table 1: Comparison with alternative approaches for the automated build-
ing of proteins. MA stands for ModelAngelo and DT for DeepTracer. Calpha RMSD is the
root mean squared deviation of the predicted CA atoms against that of the deposition. Back-
bone RMSD is similar but for the CA, C, O and N atoms of the protein backbones. Backbone
recall is the fraction of the deposited residues that were predicted to be within 3 A (as measured
between CA atoms). Backbone precision is the fraction of the predicted residues that have a
corresponding residue present in the deposition within 3 A. Amino acid accuracy is the fraction
of the predicted residues that have a correctly predicted amino acid identity. Finally, complete-
ness is the fraction of deposited residues that were predicted with the correct base annotation.
Numbers indicated in boldface are the best in each metric.
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Figure 3: Performance of ModelAngelo for atomic modelling of nucleic acids. a, Es-
cherichia coli ribosome built by ModelAngelo (with ribosomal RNA in green and proteins in
blue) compared with the deposited model (PDB ID: 7S1G, black outline) (43). b, Zoomed-in
view with nucleotide bases showing high accuracy compared to the deposited model (orange).
¢, ModelAngelo model of the V-K CAST transpososome from Scytonema hofmanni compared
with the deposited model (PDB ID: 8EA4) (44). Sections not built by ModelAngelo (black out-
line) are in regions of low Q-score (see panel g). d, Zoomed-in view comparing the nucleotide
bases of both models showing a sequence incorrectly identified by ModelAngelo. e, Backbone
RMSD, backbone completeness, and sequence completeness plotted against the deposited Q-
score for six ribosome structures. f, g, Deposited models for the structures in a and ¢, coloured
by Q-score, with low Q-score regions boxed.

PDB Res. Phosphor  Backbone Backbone Backbone Base Complete-
(A) RMSD(A) RMSD (A) Recall Precision  Accuracy ness
MA:036 MA:0.48 MA:0.96 MA:0.99 MA:0.80 MA: 0.77
7S1G 248 CR:1.00 CR:1.99 CR:0.68 CR:0.66 CR:0.55 CR:0.37
DT: 0.51 DT: N/A DT:0.86 DT:0.56 DT:N/A DT:N/A
MA: 048 MA:0.61 MA:0.86 MA:0.94 MA:0.66 MA: 0.56
72JX 3.1 CR:124 CR:210 CR:0.72 CR:0.60 CR:0.53 CA:0.38
DT: 0.86 DT: N/A DT:0.61 DT:038 DT:N/A DT:N/A
MA: 042 MA:0.57 MA:0.92 MA:0.98 MA:0.62 MA: 0.57
7ZPQ 347 CR:1.14  CR:2.05 CR:0.72 CR:0.63 CR:0.52 CR:0.38
DT: 0.56 DT: N/A DT:0.76 DT:042 DT:N/A DT:N/A

Extended Data Table 2: Comparison with alternative approaches for the automated build-
ing of nucleotides. MA stands for ModelAngelo, CR for CryoREAD, and DT for DeepTracer.
Phosphor RMSD is the root mean squared deviation of the predicted P atoms against that of the
deposition. Backbone RMSD is similar but for the OP1, P, OP2, and O5’ atoms of the nucleotide
backbones. Backbone recall is the fraction of the deposited residues that were predicted to be
within 3 A (as measured between P atoms). Backbone precision is the fraction of predicted
residues that have a corresponding residue present in the deposition within 3 A. Base accuracy
is the fraction of the predicted residues that have a correctly predicted nucleotide base. Finally,
completeness is the fraction of deposited residues that were predicted with the correct base
annotation. Numbers indicated in boldface are the best in each metric.



Results

ModelAngelo identifies protein chains that were not built by human experts

® To identify ‘unidentified’ chains,

1. Run ModelAngelo without using its sequence module to
calculate an initial atomic model with HMM profiles for all chains

2. Search these profiles against the proteome

® (Construct an input sequence file that included all chains in
the deposited model plus the six newly identified chains
and run ModelAngelo again

® For most sections of the unidentified chains, ModelAngelo
built better models than those in the deposited structure

(a)

KAAB492140
o Ll
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a
KAAB500009
PsbW
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Figure 4: Examples of protein identification by ModelAngelo. a, The ModelAngelo model
of the single-PBS-PSII-PSI-LHC’s supercomplex (gray) showing the positions, models, and
map densities of six newly identified proteins (green). Backbone traces in the deposited model
(PDB ID: 7YS5E) are shown in orange. b, Atomic model of the central apparatus microtubule
C1 showing the positions, models, and map densities of two newly identified proteins: FAP92
and FAP374. Orange cartoons represent poly(UNK) chains deposited in the original model
(PDB ID: 7SQC). ¢, An atomic model of radial spokes 1 and 2 (RS1 and RS2) bound to a
doublet microtubule (gray) showing the positions, models, and map densities of four proteins
(RSP24-27, green) newly identified by ModelAngelo. Only RSP27 had a backbone trace in the
deposited model (orange).



Results

ModelAngelo identifies protein chains that were not built by human experts

a
KAAB500009
PsbW

® All six unidentified proteins occur more than once in the 4
cryo-EM map due to local pseudo-symmetry

® Bootstrap weaker individual hits by cross-referencing their
matches to the other instances
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® For most sections of the unidentified chains, ModelAngelo
%)L)Jllt better models than those in the deposited structure
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Figure 4: Examples of protein identification by ModelAngelo. a, The ModelAngelo model
of the single-PBS-PSII-PSI-LHC’s supercomplex (gray) showing the positions, models, and
map densities of six newly identified proteins (green). Backbone traces in the deposited model
(PDB ID: 7YS5E) are shown in orange. b, Atomic model of the central apparatus microtubule
C1 showing the positions, models, and map densities of two newly identified proteins: FAP92
and FAP374. Orange cartoons represent poly(UNK) chains deposited in the original model
(PDB ID: 7SQC). ¢, An atomic model of radial spokes 1 and 2 (RS1 and RS2) bound to a
doublet microtubule (gray) showing the positions, models, and map densities of four proteins
(RSP24-27, green) newly identified by ModelAngelo. Only RSP27 had a backbone trace in the
deposited model (orange).



Results

ModelAngelo identifies protein chains that were not built by human experts
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Extended Data Figure 1: Identified proteins in the phycobilisome Atomic models built by
ModelAngelo (green) for the six proteins that were identified by ModelAngelo. Side chain
densities in the cryo-EM map (transparent grey) are in agreement with those of the atomic

models.
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Extended Data Figure 2: Models by ModelAngelo and AlphaFold for identified proteins
in the phycobilisome. Models built by ModelAngelo (green) are shown next to predictions
of the corresponding sequences by AlphaFold (15) (coloured by AlphaFold’s confidence from

high in blue, to low in red).
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Extended Data Figure 3: Performance around cofactors in the phycobilisome. a, Cartoon

representation of protein backbones (orange) and stick representation of a phycocyanobilin co-
d ili struc-

factor (pink) in the cryo-EM density ( grey) for the deposited p
ture. b, as in panel a, but for the model built by ModelAngelo (green). ModelAngelo leaves the

cofactor density empty. c, d, as in panels a, b but for a phycoerythrobilin cofactor.




Results

ModelAngelo identifies protein chains that were not built by human experts
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AR p / L "y Extended Data Figure 5: Identified proteins in the ciliary axoneme Atomic models built
o it Fullpredicted model Residues 11381474 by ModelAngelo (green) for the six proteins that were identified by ModelAngelo. Side chain
densities in the cryo-EM map (transparent grey) are in agreement with those of the atomic
Extended Data Figure 4: Models by ModelAngelo and AlphaFold for identified proteins models. These are split between a, the radial spoke proteins, and b, the central apparatus
in the ciliary axoneme. Models built by ModelAngelo (green) are shown next to predictions microtubule proteins.
of the corresponding sequences by AlphaFold (15) (coloured by AlphaFold’s confidence from

high in blue, to low in red). These are split between a, the radial spoke proteins, and b, the
central apparatus microtubule proteins.



