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Molecular dynamics - Basic idea

Mimic what atoms do in real life, assuming a given potential energy function

● The energy function allows us to calculate the force experienced by any atom, 
given the positions of the other atoms 

● Newton’s laws tell us how those forces will affect the motions of the atoms

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



Relationship between energy and force
● A potential energy function U(x) specifies the total potential energy of a 

system of atoms as a function of all their positions (x)
● Force on atom i is given by derivatives of U with respect to the atom’s 

coordinates xi, yi, and zi 

F(x) = −∇U(x)

●  At local minima of the energy U, all forces are zero

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



Molecular dynamics - Basic algorithm

● Divide time into discrete time steps, no more than a few femtoseconds each 
(1 fs = 10–15 s) 

● At each time step: 
1. Compute the forces acting on each atom, using a molecular mechanics 

force field 
2. Move the atoms a little bit: update position and velocity of each atom 

using Newton’s laws of motion

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



Understanding the process of protein folding

● How does the protein get from its unfolded state to its folded state (i.e., 
how does it “find” its folded structure)?

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



What is the probability of a protein to be folded as a 
function of the temperature?
Molecular Dynamics:
1. Initialization: The initial positions and velocities of all the atoms in the protein are set. The 
velocities are usually assigned randomly according to the Boltzmann distribution at a given 
temperature.
2. Force Calculation: The forces acting on each atom are calculated using a potential energy 
function, which describes the interactions between the atoms.
3. Integration: The equations of motion are integrated over a small time step to update the 
positions and velocities of the atoms.
4. Iteration: Steps 2 and 3 are repeated many times to simulate the dynamics of the protein over 
a certain period of time.
5. Analysis: The trajectory of the protein (i.e., the sequence of its configurations over time) is 
analyzed to calculate the probability of the protein being in a folded state as a function of 
temperature. This can be done by counting the number of times the protein is in a folded state 
and dividing by the total number of configurations.

Note: Generated by GPT4



How to sample from the Boltzmann distribution?

The Boltzmann distribution: 
gives the probability of a system being in a particular state as a function of its 
energy and temperature

Metropolis Monte Carlo:
● A random move is proposed (e.g., changing the position of an atom), and the 

energy difference between the new and old states is calculated. 
● If the energy is lower in the new state, the move is accepted. 
● If the energy is higher, the move is accepted with a probability given by the 

Boltzmann factor, exp(-ΔE/kT), where ΔE is the energy difference, k is the 
Boltzmann constant, and T is the temperature.



Why MD needs to sample from the Boltzmann 
distribution in many steps?
Complex systems like proteins have many metastable states, which are states that 
the system can stay in for a long time before transitioning to another state.

These transitions are rare events, so many sampling steps are needed to 
accurately capture the dynamics of the system. 

Remark: 10^9 to 10^15 MD simulation steps are needed to fold or unfold a protein. 
MCMC and MD methods are extremely expensive and consume much of the 
worldwide supercomputing resources. 



Idea: Learn to sample directly

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s



Glow: Generative Flow with Invertible 1x1 Convolutions

Reference: https://arxiv.org/abs/1807.03039



Comparison with traditional Machine Learning

● The focus is not on learning the probability distribution from given data points, 
but rather on generating a distribution that closely approximates the 
Boltzmann distribution. 

● There is a re-weighting step involved in the process to ensure that the 
generated distribution is unbiased and suitable for sampling unbiased 
expectation values in physics.

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s
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Invertible Neural Networks (INN)

Inverse: predict the latent variables based on 
measured values.

The inverse process is a one-to-one mapping.

The features of INN: 

● The shape of input (C × H × W) matches the 
output in the network.

● The Jacobian determinant is not equal to zero 
in the network.

● The mapping from the input to the output is a 
bijection.

Reference: https://arxiv.org/abs/1808.04730 

https://arxiv.org/abs/1808.04730


Invertible Neural Networks (INN)

Advantages: 

● The model is lightweight because encoding and decoding use the same 
parameters.

● It remains the detailed information of the input data because the invertible 
network is information lossless.

● INN use a constant amount of memory to compute the gradient regardless of the 
depth of the network.

● Reduce memory consumption

Reference: https://arxiv.org/abs/1707.04585 The Reversible Residual Network: Backpropagation Without Storing Activations

https://arxiv.org/abs/1707.04585


Jacobian matrix and determinant

The relationship?

Reference: https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf 

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf


Change of Variable Theorem



Change of Variable Theorem



Change of Variable Theorem



Change of Variable Theorem

The Jacobian determinant is not equal to zero in the network.



Generative Models & Generator



Generative Models & Generator

Auto-regressive Model: Slow generation

GAN (Generative Adversarial Network): Unstable training

VAE (Variational Auto-encoder): Optimizing a lower bound



Flow-based model

Directly optimizes the objective function



Flow-based model



Flow-based model

Actually, we train G-1 , but we use G for generation.

● NICE
● RealNVP
● Glow

Unbiased estimate method:

● FFJORD
● Residual Flow

Max



Normalizing Flow

Gaussian distribution is often used in latent variable generative models, even though 
most of real world distributions are much more complicated than Gaussian.

A normalizing flow transforms a simple distribution into a complex one by applying 
a sequence of invertible transformation functions. 

Flowing through a chain of transformations, we repeatedly substitute the variable for 
the new one according to the change of variables theorem and eventually obtain a 
probability distribution of the final target variable.

Reference: https://lilianweng.github.io/posts/2018-10-13-flow-models/  

https://lilianweng.github.io/posts/2018-10-13-flow-models/


Normalizing Flow

Normalizing : the change of variables gives a normalized density after applying an 
invertible transformation.

Flow : the invertible transformations can be composed with each other to create more 
complex invertible transformations.



Normalizing Flow



Normalizing Flow



Example invertible:

Reference: https://arxiv.org/abs/2101.08176 

https://arxiv.org/abs/2101.08176


Example



Example[1]

S could be any action, like energy

[1] Introduction to Normalizing Flows for Lattice Field Theory, https://arxiv.org/abs/2101.08176



Problem in training

I have a Gaussian Prior

I have a Double well
Energy field



How to solve the problem? 

Reweight

potential energy entropic contribution 
to the free energy



Training

Train by energy

KL loss:

free-energy difference of transforming the Gaussian prior distribution to the generated distribution

! training by energy alone tends to focus sampling on the most stable metastable state

Reference: https://www.science.org/doi/10.1126/science.aaw1147 

https://www.science.org/doi/10.1126/science.aaw1147


Training

Train by example

ML loss:

Use the standard training method used in other machine learning applications, implemented with 
the maximum likelihood (ML) principle. 



Training

RC loss:

The transformed distribution cover as much as possible the whole of the reaction 
coordinates defined by us.

We do not want to sample from the Boltzmann distribution but promote the sampling 
of high-energy states in a specific direction of configuration space, for example, to 
compute a free-energy profile along a predefined RC.



Training in Boltzmann Generator

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA  

https://www.youtube.com/watch?v=WuXJRswYIaA


Training in Boltzmann Generator
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Results: illustration on model systems
A: double-well potential, featuring two minima separated by a high barrier

B: Latent- space distribution of trajectories

E: Free-energy estimates obtained from Boltzmann generator samples after reweighting

F: Paths generated by linear interpolation in Boltzmann generator latent space (B and H) 
between random pairs of “blue” and “red” MD samples



Results: Exploring configuration space

Evolution of sample distribution over MCMC 
iteration. As soon as sufficient density is 
available in the states of interest, these 
distributions can be reweighted to equilibrium

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s



Adaptive sampling and training

Goal: train a Boltzmann generator while 
simultaneously using it to propose new samples



Results:
Complex Molecules
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Results:
Complex Molecules



Results:
Complex Molecules



Other results

● Thermodynamics of condensed-matter systems
● Thermodynamics between disconnected states



Limitations
● The Boltzmann generator may not sample exactly from the Boltzmann distribution, 

leading to a slightly different output distribution.
● The larger the system, the more differences there will be between the two distributions, 

making it harder to match them.
● The acceptance rate of the reweighting step decreases as the system size increases
● The approach can be inefficient for very large systems as the acceptance of samples 

may eventually stop
● Breaking down a large system into subsystems and applying Boltzmann generators to 

these subsystems may be necessary, which adds complexity to the process.
● The ideal approach is to exploit the sweet spot between MD and Boltzmann generators, 

which may not always be feasible or straightforward to identify.

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s
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