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Molecular dynamics - Basic idea

Mimic what atoms do in real life, assuming a given potential energy function

e The energy function allows us to calculate the force experienced by any atom,
given the positions of the other atoms
e Newton’s laws tell us how those forces will affect the motions of the atoms
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Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



Relationship between energy and force

e A potential energy function U(x) specifies the total potential energy of a
system of atoms as a function of all their positions (x)

e Force on atom iis given by derivatives of U with respect to the atom’s
coordinates xi, yi, and zi

F(x) = -V U(x)

e At local minima of the energy U, all forces are zero
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Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



Molecular dynamics - Basic algorithm

e Divide time into discrete time steps, no more than a few femtoseconds each
(1 fs=10-155s)
e At each time step:
1. Compute the forces acting on each atom, using a molecular mechanics
force field
2. Move the atoms a little bit: update position and velocity of each atom
using Newton'’s laws of motion

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



Understanding the process of protein folding

e How does the protein get from its unfolded state to its folded state (i.e.,
how does it “find” its folded structure)?
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Lindorff-Larsen et al., Science 2011

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf



What is the probability of a protein to be folded as a
function of the temperature?

Molecular Dynamics:
1. Initialization: The initial positions and velocities of all the atoms in the protein are set. The

velocities are usually assigned randomly according to the Boltzmann distribution at a given
temperature.

2. Force Calculation: The forces acting on each atom are calculated using a potential energy
function, which describes the interactions between the atoms.

3. Integration: The equations of motion are integrated over a small time step to update the
positions and velocities of the atoms.

4. Iteration: Steps 2 and 3 are repeated many times to simulate the dynamics of the protein over
a certain period of time.

5. Analysis: The trajectory of the protein (i.e., the sequence of its configurations over time) is
analyzed to calculate the probability of the protein being in a folded state as a function of
temperature. This can be done by counting the number of times the protein is in a folded state
and dividing by the total number of configurations.

Note: Generated by GPT4



How to sample from the Boltzmann distribution?

The Boltzmann distribution:
gives the probability of a system being in a particular state as a function of its
energy and temperature

Metropolis Monte Carlo:
e Arandom move is proposed (e.g., changing the position of an atom), and the
energy difference between the new and old states is calculated.
e |If the energy is lower in the new state, the move is accepted.
e [f the energy is higher, the move is accepted with a probability given by the
Boltzmann factor, exp(-AE/KT), where AE is the energy difference, k is the
Boltzmann constant, and T is the temperature.



Why MD needs to sample from the Boltzmann
distribution in many steps?

Complex systems like proteins have many metastable states, which are states that
the system can stay in for a long time before transitioning to another state.

These transitions are rare events, so many sampling steps are needed to
accurately capture the dynamics of the system.

Remark: 1079 to 10715 MD simulation steps are needed to fold or unfold a protein.
MCMC and MD methods are extremely expensive and consume much of the
worldwide supercomputing resources.



Idea: Learn to sample directly

Energy funktion E(x)

Direct Sampling
without MD-Simulation

Boltzmann-Verteilung e-E(x) i i

Reference: https://www.youtube.com/watch?v=WuXJRswYlaA&t=1169s



Glow: Generative Flow with Invertible 1x1 Convolutions

Generative
Model

Reference: https://arxiv.org/abs/1807.03039



Comparison with traditional Machine Learning

e The focus is not on learning the probability distribution from given data points,
but rather on generating a distribution that closely approximates the
Boltzmann distribution.

e There is a re-weighting step involved in the process to ensure that the
generated distribution is unbiased and suitable for sampling unbiased
expectation values in physics.

Reference: https://www.youtube.com/watch?v=WuXJRswYlaA&t=1169s
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Invertible Neural Networks (INN)

Inverse: predict the latent variables based on g el (Eolafion)s by
measured values.
. . . -l X .
The inverse process is a one-to-one mapping. » < (Bayesian) NN Y
. D i ——
The featu res Of INN: — inverse (prediction): y - x
Standard (Bayesian) Neural Network |

e Theshape of input (C x H x W) matches the

output in the network. ) Forward (simulation): x 2y —
e The Jacobian determinant is not equal to zero : ly }«7')
in the network. ZRES < L >
e The mapping from the input to the outputis a e g }§
bijection. — inverse (sampling): [y,z] = x
Invertible Neural Network

Reference: https://arxiv.org/abs/1808.04730


https://arxiv.org/abs/1808.04730

Invertible Neural Networks (INN)

Advantages:

e Themodelis lightweight because encoding and decoding use the same
parameters.

e Itremains the detailed information of the input data because the invertible
network is information lossless.

e INN use a constant amount of memory to compute the gradient regardless of the
depth of the network.

e Reduce memory consumption

Reference: https://arxiv.org/abs/1707.04585 The Reversible Residual Network: Backpropagation Without Storing Activations


https://arxiv.org/abs/1707.04585

Jacobian matrix and determinant
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Reference: https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf
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Change of Variable Theorem
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Change of Variable Theorem
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Change of Variable Theorem
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Change of Variable Theorem

d d dx./0 —
PO Jdet [g07 Gman| =7 T
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p(x") = n(z")|det(J;-1)|

det(M 1) = (det(M))~

The Jacobian determinant is not equal to zero in the network.



Generative Models & Generator

GAN: minimax the
classification error loss.

VAE: maximize ELBO.

Flow-based
generative models:
minimize the negative

log-likelihood
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Generative Models & Generator

Auto-regressive Model: Slow generation
GAN (Generative Adversarial Network): Unstable training

VAE (Variational Auto-encoder): Optimizing a lower bound

Normal Pg (%) g Paata(X)
Distribution g
generator A2
G G .
(z) |

as close as possible

m
G* =arg m(?xz logPs(x")  {x!,x2, ..., x™} from Pygeq(x)
i=1



Flow-based model

p(:)|det(J;)| = n(2")

Directly optimizes the objective function
p(x") = m(z")|det(J-1)

Normal pg(x)
Distribution
J (@) ._> generator
100 x 100 x3

=arg maxz logpe (x

’ G has limitation

= =

Pc (xl) = ”(Zl)|det(la-1)| » You can compute det(J;)
= G_l(xi) »You know G~1

logpg(x') = logm (G‘l(xi)) + log|det(J;-1)|




Flow-based model

(z) p1(x) p2(x) p3(x)
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K
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Maximize



Flow-based model

Max logpg (x') = logm (G‘l(xi)) + log|det(J;-1)|
Actually, we train G, but we use G for generation.

e NICE
e RealNVP
e Glow

Unbiased estimate method:

e FFJORD
® Residual Flow



Normalizing Flow
Gaussian distribution is often used in latent variable generative models, even though
most of real world distributions are much more complicated than Gaussian.

A normalizing flow transforms a simple distribution into a complex one by applying
a sequence of invertible transformation functions.

Flowing through a chain of transformations, we repeatedly substitute the variable for
the new one according to the change of variables theorem and eventually obtain a
probability distribution of the final target variable.

Reference: https://lilianweng.github.io/posts/2018-10-13-flow-models/


https://lilianweng.github.io/posts/2018-10-13-flow-models/

Normalizing Flow

Normalizing : the change of variables gives a normalized density after applying an
invertible transformation.

Flow : the invertible transformations can be composed with each other to create more
complex invertible transformations.
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Normalizing Flow
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Normalizing Flow
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Reference: https://arxiv.org/abs/2101.08176
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Example
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Example'®

loss = Elog(q) — log(p) S could be any action, like energy }
log(p) = —S(=z) = —energy(w(Z))
» Ofu(2) |
log(q) = log(q(x)) =log(r(2)) — ) log(Jy)  q(z) =r(2)[J(2)]* =7(2) det B2
loss = E, energy(z(z)) Z log(Jy,)
§1zzz 5 g o A% /,VJW\/\MM/
e e e e T 10 1559"5_739 . 25 ) 2000 Ep:iioidx 6000 8000 0 2000 E p;z;oidx 306E 5700
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[1] Introduction to Normalizing Flows for Lattice Field Theory, https://arxiv.org/abs/2101.08176



Problem in training

Free
Energy ()

-1.0

-3.0




How to solve the problem?

Reweight loss = E.|energy(z(2))|— ) _ log(J,,)
mm( potential energy entropic contribution
Troes = I, (:n((z) E lg: ]ng ng) to the free energy
Free
Energy (/)

mw 0.0

-20
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Double well

Training

Train by energy

KLloss: Jxr = E, [u(F.: (2)) — logR,, (z)]
free-energy difference of transforming the Gaussian prior distribution to the generated distribution

! training by energy alone tends to focus sampling on the most stable metastable state

Configuration space X Latent space Z BG energies & samples Free Energy Latent interpolation
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Reference: https://www.science.org/doi/10.1126/science.aaw1147



https://www.science.org/doi/10.1126/science.aaw1147

Training
Train by example

1
ML loss: Jurz = Ex 5 | Fpo(x) ||* — logRy (x)

Use the standard training method used in other machine learning applications, implemented with
the maximum likelihood (ML) principle.
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Training

RC loss: Jro — / p(r(x)) log p(r(x))dr(x) = Ex-qy (x) 10g p(r(x))

The transformed distribution cover as much as possible the whole of the reaction
coordinates defined by us.

We do not want to sample from the Boltzmann distribution but promote the sampling
of high-energy states in a specific direction of configuration space, for example, to
compute a free-energy profile along a predefined RC. Free Energy
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Training in Boltzmann Generator

Prior pz(z) L px(x) generated <+—» IJX(X)=Z§16_“(")
match
@ Loss function:
J= wmeIm + wkidki +  wrcIrc.
Skl Ny s N, e’

max likelihood  Kullback —Leibler  reaction coordinate
L3

e KL divergence between generated px(x) and Boltzmann distribution:

KL(px || Hx) = Ex~py (x) [log px(x) — log tix (x)]
= Eznp(2) [ux(Fzx(z)) — ASzx(z)] + const

AS; = log|detJ;(z)|. log determinant / entropy change

@ Reweighting / Importance sampling:

X(x) - “X(x) oc e—Ux(sz(Z))+uZ(Z)+A$zx(Z)
px(x)

Reference: https://www.youtube.com/watch?v=WuXJRswYlaA
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Double well

Results: illustration on model systems

A: double-well potential, featuring two minima separated by a high barrier

B: Latent- space distribution of trajectories

E: Free-energy estimates obtained from Boltzmann generator samples after reweighting

F: Paths generated by linear interpolation in Boltzmann generator latent space (B and H)
between random pairs of “blue” and “red” MD samples
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Results: Exploring configuration space

Adaptive Exploration from one configuration:

N\

Data X
latent-space ’
MCMC train
Boltzmann
Generator

Evolution of sample distribution over MCMC
iteration. As soon as sufficient density is
available in the states of interest, these
distributions can be reweighted to equilibrium
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Reference: https://www.youtube.com/watch?v=WuXJRswYlaA&t=1169s



Adaptive sampling and training

Goal: train a Boltzmann generator while
simultaneously using it to propose new samples

1. Sample batch {x;, ..., xg} from X.

2. Update Boltzmann generator parameters 0
by training on batch.

3. For each x in batch, propose a Metropolis
Monte Carlo step in latent space with step size s:

Zz = Tp(x) + sN(0,I).
4. Accept or reject proposal with probability
min{1, exp(—AE)} using:
AE = u(sz(z’)> — u(X) — logR,,(Z';0) +
logR,.(x;90)

5. For the accepted samples, replace x by X' =
Tou(Z').
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Results:
Complex Molecules

/F)ZK

o O

3C-6 whitened
Backbone crds

3N-3C normalized internal crds

Whiten Tl Unwhiten Normalize Tl Unnormalize

3C backbone crds 3N-3C internal crds
Compute bondlengths,
angles, torsions
Place Atoms
3C backbone crds 3N-3C sidechain crds

All 3N crds




E cC

C-CC

A
R N
"L

|

> -
D <0 0-C-N .
Results: Y WS-\
Complex Molecules .
i - ' C-C-H '

C-N-H

0.05 0.10 0.15 020 025 90 100 110 120 130
Bond length [nm] Angles [degrees]



Results:
Complex Molecules




Other results

e Thermodynamics of condensed-matter systems
e Thermodynamics between disconnected states



Limitations

e The Boltzmann generator may not sample exactly from the Boltzmann distribution,
leading to a slightly different output distribution.

e The larger the system, the more differences there will be between the two distributions,
making it harder to match them.
The acceptance rate of the reweighting step decreases as the system size increases

e The approach can be inefficient for very large systems as the acceptance of samples
may eventually stop

e Breaking down a large system into subsystems and applying Boltzmann generators to
these subsystems may be necessary, which adds complexity to the process.

e The ideal approach is to exploit the sweet spot between MD and Boltzmann generators,
which may not always be feasible or straightforward to identify.

Reference: https://www.youtube.com/watch?v=WuXJRswYlaA&t=1169s
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