
Boltzmann generators

Sampling equilibrium states of many-body systems with deep learning

Author: Noé, F., Olsson, S., Köhler, J. and Wu, H.

Presenter: Yihao Liang, Jiahao Qiu
Nov 2, 2023

Outline

● Background
○ MD Simulation

■ What is MD Simulation?
■ Current Problem

○ Intro to Boltzmann Generator
● Method
● Results

○ Illustration on model systems
○ Exploring configuration space
○ Complex Molecules

● Limitation

Outline - Background

● MD Simulation
○ Basic Idea
○ Relationship between energy and force
○ Basic algorithm

● Example: understanding the process of protein folding
● Two Questions:

○ How to sample from from the Boltzmann distribution?
○ Why MD needs to sample from the Boltzmann distribution in

many steps?
● Introduction to Boltzmann Generator

○ Ideas behind Boltzmann Generator
○ Comparison with traditional Machine Learning

Molecular dynamics - Basic idea

Mimic what atoms do in real life, assuming a given potential energy function

● The energy function allows us to calculate the force experienced by any atom,
given the positions of the other atoms

● Newton’s laws tell us how those forces will affect the motions of the atoms

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf

Relationship between energy and force
● A potential energy function U(x) specifies the total potential energy of a

system of atoms as a function of all their positions (x)
● Force on atom i is given by derivatives of U with respect to the atom’s

coordinates xi, yi, and zi

F(x) = −∇U(x)

● At local minima of the energy U, all forces are zero

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf

Molecular dynamics - Basic algorithm

● Divide time into discrete time steps, no more than a few femtoseconds each
(1 fs = 10–15 s)

● At each time step:
1. Compute the forces acting on each atom, using a molecular mechanics

force field
2. Move the atoms a little bit: update position and velocity of each atom

using Newton’s laws of motion

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf

Understanding the process of protein folding

● How does the protein get from its unfolded state to its folded state (i.e.,
how does it “find” its folded structure)?

Reference: https://web.stanford.edu/class/cs279/lectures/lecture4.pdf

What is the probability of a protein to be folded as a
function of the temperature?
Molecular Dynamics:
1. Initialization: The initial positions and velocities of all the atoms in the protein are set. The
velocities are usually assigned randomly according to the Boltzmann distribution at a given
temperature.
2. Force Calculation: The forces acting on each atom are calculated using a potential energy
function, which describes the interactions between the atoms.
3. Integration: The equations of motion are integrated over a small time step to update the
positions and velocities of the atoms.
4. Iteration: Steps 2 and 3 are repeated many times to simulate the dynamics of the protein over
a certain period of time.
5. Analysis: The trajectory of the protein (i.e., the sequence of its configurations over time) is
analyzed to calculate the probability of the protein being in a folded state as a function of
temperature. This can be done by counting the number of times the protein is in a folded state
and dividing by the total number of configurations.

Note: Generated by GPT4

How to sample from the Boltzmann distribution?

The Boltzmann distribution:
gives the probability of a system being in a particular state as a function of its
energy and temperature

Metropolis Monte Carlo:
● A random move is proposed (e.g., changing the position of an atom), and the

energy difference between the new and old states is calculated.
● If the energy is lower in the new state, the move is accepted.
● If the energy is higher, the move is accepted with a probability given by the

Boltzmann factor, exp(-ΔE/kT), where ΔE is the energy difference, k is the
Boltzmann constant, and T is the temperature.

Why MD needs to sample from the Boltzmann
distribution in many steps?
Complex systems like proteins have many metastable states, which are states that
the system can stay in for a long time before transitioning to another state.

These transitions are rare events, so many sampling steps are needed to
accurately capture the dynamics of the system.

Remark: 10^9 to 10^15 MD simulation steps are needed to fold or unfold a protein.
MCMC and MD methods are extremely expensive and consume much of the
worldwide supercomputing resources.

Idea: Learn to sample directly

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s

Glow: Generative Flow with Invertible 1x1 Convolutions

Reference: https://arxiv.org/abs/1807.03039

Comparison with traditional Machine Learning

● The focus is not on learning the probability distribution from given data points,
but rather on generating a distribution that closely approximates the
Boltzmann distribution.

● There is a re-weighting step involved in the process to ensure that the
generated distribution is unbiased and suitable for sampling unbiased
expectation values in physics.

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s

Outline - Method

● Invertible Neural Networks
● Math Background

○ Jacobian matrix and determinant
○ Change of Variable Theorem

● Flow-based Generative Model
○ Generative Models & Generator
○ Flow-based model
○ Normalizing Flow

● Boltzmann Generator

Invertible Neural Networks (INN)

Inverse: predict the latent variables based on
measured values.

The inverse process is a one-to-one mapping.

The features of INN:

● The shape of input (C × H × W) matches the
output in the network.

● The Jacobian determinant is not equal to zero
in the network.

● The mapping from the input to the output is a
bijection.

Reference: https://arxiv.org/abs/1808.04730

https://arxiv.org/abs/1808.04730

Invertible Neural Networks (INN)

Advantages:

● The model is lightweight because encoding and decoding use the same
parameters.

● It remains the detailed information of the input data because the invertible
network is information lossless.

● INN use a constant amount of memory to compute the gradient regardless of the
depth of the network.

● Reduce memory consumption

Reference: https://arxiv.org/abs/1707.04585 The Reversible Residual Network: Backpropagation Without Storing Activations

https://arxiv.org/abs/1707.04585

Jacobian matrix and determinant

The relationship?

Reference: https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf

Change of Variable Theorem

Change of Variable Theorem

Change of Variable Theorem

Change of Variable Theorem

The Jacobian determinant is not equal to zero in the network.

Generative Models & Generator

Generative Models & Generator

Auto-regressive Model: Slow generation

GAN (Generative Adversarial Network): Unstable training

VAE (Variational Auto-encoder): Optimizing a lower bound

Flow-based model

Directly optimizes the objective function

Flow-based model

Flow-based model

Actually, we train G-1 , but we use G for generation.

● NICE
● RealNVP
● Glow

Unbiased estimate method:

● FFJORD
● Residual Flow

Max

Normalizing Flow

Gaussian distribution is often used in latent variable generative models, even though
most of real world distributions are much more complicated than Gaussian.

A normalizing flow transforms a simple distribution into a complex one by applying
a sequence of invertible transformation functions.

Flowing through a chain of transformations, we repeatedly substitute the variable for
the new one according to the change of variables theorem and eventually obtain a
probability distribution of the final target variable.

Reference: https://lilianweng.github.io/posts/2018-10-13-flow-models/

https://lilianweng.github.io/posts/2018-10-13-flow-models/

Normalizing Flow

Normalizing : the change of variables gives a normalized density after applying an
invertible transformation.

Flow : the invertible transformations can be composed with each other to create more
complex invertible transformations.

Normalizing Flow

Normalizing Flow

Example invertible:

Reference: https://arxiv.org/abs/2101.08176

https://arxiv.org/abs/2101.08176

Example

Example[1]

S could be any action, like energy

[1] Introduction to Normalizing Flows for Lattice Field Theory, https://arxiv.org/abs/2101.08176

Problem in training

I have a Gaussian Prior

I have a Double well
Energy field

How to solve the problem?

Reweight

potential energy entropic contribution
to the free energy

Training

Train by energy

KL loss:

free-energy difference of transforming the Gaussian prior distribution to the generated distribution

! training by energy alone tends to focus sampling on the most stable metastable state

Reference: https://www.science.org/doi/10.1126/science.aaw1147

https://www.science.org/doi/10.1126/science.aaw1147

Training

Train by example

ML loss:

Use the standard training method used in other machine learning applications, implemented with
the maximum likelihood (ML) principle.

Training

RC loss:

The transformed distribution cover as much as possible the whole of the reaction
coordinates defined by us.

We do not want to sample from the Boltzmann distribution but promote the sampling
of high-energy states in a specific direction of configuration space, for example, to
compute a free-energy profile along a predefined RC.

Training in Boltzmann Generator

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA

https://www.youtube.com/watch?v=WuXJRswYIaA

Training in Boltzmann Generator

Outline - Results

● illustration on model systems
● Exploring configuration space
● Complex Molecules

Results: illustration on model systems
A: double-well potential, featuring two minima separated by a high barrier

B: Latent- space distribution of trajectories

E: Free-energy estimates obtained from Boltzmann generator samples after reweighting

F: Paths generated by linear interpolation in Boltzmann generator latent space (B and H)
between random pairs of “blue” and “red” MD samples

Results: Exploring configuration space

Evolution of sample distribution over MCMC
iteration. As soon as sufficient density is
available in the states of interest, these
distributions can be reweighted to equilibrium

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s

Adaptive sampling and training

Goal: train a Boltzmann generator while
simultaneously using it to propose new samples

Results:
Complex Molecules

Results:
Complex Molecules

Results:
Complex Molecules

Results:
Complex Molecules

Other results

● Thermodynamics of condensed-matter systems
● Thermodynamics between disconnected states

Limitations
● The Boltzmann generator may not sample exactly from the Boltzmann distribution,

leading to a slightly different output distribution.
● The larger the system, the more differences there will be between the two distributions,

making it harder to match them.
● The acceptance rate of the reweighting step decreases as the system size increases
● The approach can be inefficient for very large systems as the acceptance of samples

may eventually stop
● Breaking down a large system into subsystems and applying Boltzmann generators to

these subsystems may be necessary, which adds complexity to the process.
● The ideal approach is to exploit the sweet spot between MD and Boltzmann generators,

which may not always be feasible or straightforward to identify.

Reference: https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s

References
● Frank Noe’s talk on MLDS2020
● CS 279 Computational Biology: Structure and Organization of Biomolecules and Cells Fall 2023

Lecture 4
● Glow: Generative Flow with Invertible 1x1 Convolutions
● https://deepgenerativemodels.github.io/notes/
● https://arxiv.org/abs/2101.08176
● https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf
● https://arxiv.org/abs/1808.04730
● https://lilianweng.github.io/posts/2018-10-13-flow-models/
● https://arxiv.org/abs/1707.04585

https://www.youtube.com/watch?v=WuXJRswYIaA&t=1169s
https://web.stanford.edu/class/cs279/lectures/lecture4.pdf
https://web.stanford.edu/class/cs279/lectures/lecture4.pdf
https://arxiv.org/abs/1807.03039
https://deepgenerativemodels.github.io/notes/
https://arxiv.org/abs/2101.08176
https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2019/Lecture/FLOW%20(v7).pdf
https://arxiv.org/abs/1808.04730
https://lilianweng.github.io/posts/2018-10-13-flow-models/
https://arxiv.org/abs/1707.04585

