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Outline

• Why do we need structure search ? 

• Is sequence search not enough?

• Structure Search research landscape.

• 3D-BLAST, TM-Al ign, Dal i .  

• FoldSeek as a fast, yet accurate search solution.

• Foldseek Pipel ine (3Di, MMseqs2, Al ignment Scoring).

• Evaluation Results (SCOPe, AlphaFoldDB).



Protein Search

• Finding the proteins that have functional or evolutionary 
similarities to the query protein.

• Homologous proteins can be used to infer molecular and 
cellular functions and structures.



Is sequence similarity search not 
enough ?

• Sequence alone does not provide enough sensitivity for identifying 
distant evolutionary relationships between proteins. 

• 3D Structure based similarity provides higher sensitivity to 
homologous protein search.

• The availabil ity of high-quality structures for any protein of 
interest allows us to use structure comparison to improve 
homology inference and structural, functional and evolutionary 
analyses.



Credits: ISCB Talk, Johannes Söding, Youtube



Sequence vs Structure

• Sequence search is fast. 

• All-vs-all comparison for 100 
mil l ion protein sequence search 
using MMseqs2 (widely used 
sequence search tool) one 
week on 1000 cpu cluster.

• Eff ic ient and sensit ive pre-
f i l ter ing algorithms.

• Fast Al ignment algorithms.

• Protein sequence searches 
have lower sensitivity 
compared to structure 
searches.

• Structure search is slow.

• All-vs-al l  comparison for 100 mil l ion 
protein structures search using TM-
Align (widely used structure search 
tool) on same cluster wil l  take 10^4 
years. 

• Similar Pre-f i l ter ing algorithms not 
avai lable. 

• Alignment algorithms are s low.



Protein Search at Scale

• European Bioinformatics 
Institute = more than 214 
mill ion structures 
(AlphaFold2).

• ESM Atlas = more than 617 
mill ion metagenomic 
structures (ESMFold).

• 1000x increased scale of these 
databases cal ls for a faster 
protein structure search 
algorithm.

Source : https://www.nature.com/articles/s41592-021-01362-6



Existing Structure Aligners

• Dali (Holm et. al.  1995)

• Uses a  res idue-res idue d is tance matr ix  for  a l ignment us ing Monte Car lo  search.   

• CE (Shindyalov et. al.  1998)

• Speed :  5x Dal i

• Select ive ly extend or  d iscard A l ignment Fragment Pa irs  to bui ld a  s ing le opt imal  
a l ignment.

• TM-Align( Zhang et. al.  2005)

• Speed :  20x Dal i

• In i t ia l  s tructure a l ignment us ing Dynamic  Programming fo l lowed by DP and TM-
Score rotat ion i terat ions.



Credits: ISCB Talk, Johannes Söding, Youtube



Key idea : To speed up search, reduce 
structures to sequences and use fast sequence 
searches

Credits: ISCB Talk, Johannes Söding, Youtube

Each residue sub-sequence is 
represented by a ʻstructural stateʼ letter



Structure Search to Sequence Search : 
Design Components

• Representation.



Structure Search to Sequence Search : 
Design Components

Representation

Alphabets corresponding to 
5-residue sub-structure 
patterns.

Source : http://3d-blast.life.nctu.edu.tw



Structure Search to Sequence Search : 
Design Components

• Representation.

• Sequence alignment heuristics.



Structure Search to Sequence Search : 
Design Components

Sequence Alignment 
Heuristics.

Define a substitution matrix 
for approximate sequence 
match scoring.

Source : http://3d-blast.life.nctu.edu.tw



Structure Search to Sequence Search : 
Design Components

• Representation.

• Sequence alignment heuristics.

• Search.

• Output scores with high sensitivity.



Structure Search to Sequence Search : 
Design Components

Search and Output 
Scores.

Use BLAST for search and 
for producing al ignment 
scores, E-values.

Source : http://3d-blast.life.nctu.edu.tw



3D-BLAST

Our proposed scheme is
basically an overview of the
internal components of 3D-
BLAST



Structure Search as Sequence Search

• These methods convert local structure features (usually 
secondary structure) to discrete alphabets and use sequence 
search. 

• Examples : CLE, 3D-Blast, Protein Blocks.

• Speed : 50x to more that 1000x compared to DALI

• These methods tend to have reduced sensitivity compared to 
structure-aligner based search methods like Dali, TM-Align.



Structure Search as Sequence Search

Foldseek converts 3D-structure search to sequence 
search without losing sensitivity.



Structure Search as Sequence Search

3D-BLAST FoldSeek

2

A C D E F G H I K L M N P Q R S T V W Y X
A 6 -3 1 2 3 -2 -2 -7 -3 -3 -10 -5 -1 1 -4 -7 -5 -6 0 -2 0
C -3 6 -2 -8 -5 -4 -4 -12 -13 1 -14 0 0 1 -1 0 -8 1 -7 -9 0
D 1 -2 4 -3 0 1 1 -3 -5 -4 -5 -2 1 -1 -1 -4 -2 -3 -2 -2 0
E 2 -8 -3 9 -2 -7 -4 -12 -10 -7 -17 -8 -6 -3 -8 -10 -10 -13 -6 -3 0
F 3 -5 0 -2 7 -3 -3 -5 1 -3 -9 -5 -2 2 -5 -8 -3 -7 4 -4 0
G -2 -4 1 -7 -3 6 3 0 -7 -7 -1 -2 -2 -4 3 -3 4 -6 -4 -2 0
H -2 -4 1 -4 -3 3 6 -4 -7 -6 -6 0 -1 -3 1 -3 -1 -5 -5 3 0
I -7 -12 -3 -12 -5 0 -4 8 -5 -11 7 -7 -6 -6 -3 -9 6 -12 -5 -8 0
K -3 -13 -5 -10 1 -7 -7 -5 9 -11 -8 -12 -6 -5 -9 -14 -5 -15 5 -8 0
L -3 1 -4 -7 -3 -7 -6 -11 -11 6 -16 -3 -2 2 -4 -4 -9 0 -8 -9 0
M -10 -14 -5 -17 -9 -1 -6 7 -8 -16 10 -9 -9 -10 -5 -10 3 -16 -6 -9 0
N -5 0 -2 -8 -5 -2 0 -7 -12 -3 -9 7 0 -2 2 3 -4 0 -8 -5 0
P -1 0 1 -6 -2 -2 -1 -6 -6 -2 -9 0 4 0 0 -2 -4 0 -4 -5 0
Q 1 1 -1 -3 2 -4 -3 -6 -5 2 -10 -2 0 5 -2 -4 -5 -1 -2 -5 0
R -4 -1 -1 -8 -5 3 1 -3 -9 -4 -5 2 0 -2 6 2 0 -1 -6 -3 0
S -7 0 -4 -10 -8 -3 -3 -9 -14 -4 -10 3 -2 -4 2 6 -6 0 -11 -9 0
T -5 -8 -2 -10 -3 4 -1 6 -5 -9 3 -4 -4 -5 0 -6 8 -9 -5 -5 0
V -6 1 -3 -13 -7 -6 -5 -12 -15 0 -16 0 0 -1 -1 0 -9 3 -10 -11 0
W 0 -7 -2 -6 4 -4 -5 -5 5 -8 -6 -8 -4 -2 -6 -11 -5 -10 8 -6 0
Y -2 -9 -2 -3 -4 -2 3 -8 -8 -9 -9 -5 -5 -5 -3 -9 -5 -11 -6 9 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supplementary Table 2: Substitution scores for 3Di states The scores are log-odd scores in half-bits,
and were trained on SCOPe40 with TM-align alignments.



Credits: ISCB Talk, Johannes Söding, Youtube



Credits: ISCB Talk, Johannes Söding, Youtube



FoldSeek



FoldSeek Algorithm Overview

• 3Di alphabet design and database creation.

• Efficient pre-filtering of 3Di database sequences.

• Alignment score computation.



FoldSeek: 
3Di alphabet design



3Di Alphabets

3Di alphabets are designed to encode tertiary (and sometimes 
secondary) structure. 

• Reduces redundant information between consecutive positions (less 
mutual information between representations of neighboring 
positions).

• Encodes tertiary interactions that may represent longer range 
structure patterns. 

It is a discrete representation of 3D tertiary/secondary structure 
information for each residue, produced based on VQ-VAE clustering.

Text Source : https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure



Tertiary Structures

Image Source : https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure



3Di Alphabets

3Di alphabets are designed to encode tertiary (and sometimes 
secondary) structure. 

• Reduces redundant information between consecutive positions 
(less mutual information between representations of neighboring 
positions).

• Encodes tertiary interactions that may represent longer range 
structure patterns. 

It is a discrete representation of 3D tertiary/secondary structure 
information for each residue, produced based on VQ-VAE clustering.

Text Source : https://www.khanacademy.org/science/biology/macromolecules/proteins-and-amino-acids/a/orders-of-protein-structure



3Di : Neighboring residue

• For each residue i, pick a 
neighboring residue with the 
closest virtual center.

• In the absence of 
neighboring tertiary 
structures, this defaults to 
i+1 or i-1.



3Di : Virtual Center

• Define a center for each residue that can be used to 
determine interacting residues.



3Di : Why Virtual Center ?

• To optimize conservation of interactions.

• Why exactly this virtual center ? = Virtual center positions 
were optimized for maximum search sensitivity.



3Di : Residue Representation

Project the residue features to a discrete representation.

Residue to encode

Nearest 3D neighbor

Extract angles 
and distances

Discretize into 20 
letters



3Di : Discretization of Descriptors 

• Cluster the input feature 
vectors into 20 discrete 
clusters. 

• FoldSeek uses VQ-VAE that 
is trained on structurally 
aligned residues.



3Di : VQ-VAE

• VQ-VAE is trained using  
descriptors (𝑥 , 𝑦) from 
structurally aligned residues 
in SCOPe protein 
classif ication database.

242 parameters 40 parameters 352 parameters



3Di: SCOPe

Classif ication of protein structural domains into hierarchical 
schema based on structural and functional similarity. 

• Family

• SuperFamily

• Folds

• Classes

Structural Classification of Proteins - extended



3Di : Training the VQ-VAE 

𝒙 𝒚

𝑥, 𝑦 are pairs of structurally aligned residues from within family/superfamily proteins in SCOPe. 

Aligned the structures using TM-align

Latent 3Di state



3Di : VQ-VAE

• Structurally aligned residues 
(𝑥 , 𝑦) are mostly from 
conserved sections of 
homologous proteins.

• So, the learned 
representation prioritizes 
structural variations 
present in maximally 
conserved parts of protein. 



3Di : Discretization of Representation 4

Supplementary Figure 2: Latent space representation learned by encoder network The encoder
network of the VQ-VAE encodes the 3Di descriptor of a residue into a two-dimensional representation. Here,
we show this latent space representation of 3000 sampled residues. Each circle represents a residue and is
colored according to its nearest centroid (x), which discretizes the residue to a 3Di state.





3Di : Database Creation

• After the VQ-VAE is trained, 
the decoder is discarded 
and the encoder + cluster 
centers are used for 
creating the 3Di sequence 
database. 
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and TM-align, higher than the structural aligner CE and much above 
the structural alphabet-based search tools 3D-BLAST and CLE-SW 
(Fig. 2a). In a precision-recall analysis, Foldseek-TM and Foldseek have 
the highest and third-highest area under the precision-recall curve on 
each of the three levels (Fig. 2b and Supplementary Fig. 4). Notably, 
Foldseek-TM improves over TM-align because its prefilter suppresses 
high-scoring FPs. Both sort hits by the average query and target length 
normalized TM-scores for best performance in the SCOPe benchmark.

Foldseek’s performance is similar across all six secondary struc-
ture classes in SCOPe (Supplementary Fig. 5). On this small SCOPe40 
benchmark set, Foldseek is more than 4,000 times faster than TM-align 
and Dali and over 21,000 times faster than CE (Fig. 2c). On the much 
larger AlphaFoldDB (version 1), where Foldseek approaches its full 
speed, it is around 184,600 and 23,000 times faster than Dali and 
TM-align, respectively (see below).

We devised a reference-free benchmark to assess search sensitivity 
and alignment quality of structural aligners (Fig. 2d) on a realistic set 
of full-length, multi-domain proteins. We clustered the AlphaFoldDB 
(version 1) to 34,270 structures using BLAST and SPICi22. We randomly 
selected 100 query structures from this set and aligned them against 
the remaining structures. TP matches are those with an LDDT score23 
of at least 0.6 and FPs below 0.25, ignoring matches in between. We set 
the LDDT thresholds according to the median inter-fold and intra-fold 
superfamily and family LDDT scores of SCOPe40 alignments (Sup-
plementary Fig. 6). For other thresholds, see Supplementary Fig. 7. A 
domain-based sensitivity assessment would require a reference-based 
prediction of domains. To avoid it, we evaluated the sensitivity per resi-
due. Figure 2d shows the distribution of the fraction of query residues 
that were part of alignments with at least x TP targets with better scores 
than the first FP match. Again, Foldseek has similar sensitivity as Dali, CE 
and TM-align and much higher sensitivity than CLE-SW and MMseqs2.

We analyzed the quality of alignments produced by the top five 
matches per query. We computed the alignment sensitivity as the num-
ber of TP residues divided by the query length and the precision as the 
number of TP residues divided by the alignment length. TP residues are 
those with residue-specific LDDT score above 0.6; FP residues are below 
0.25; and residues with other scores are ignored. Figure 2e shows the 
average sensitivity versus precision of the 100 × 5 structure alignments. 

cores and the lowest in non-conserved coil/loop regions, whereas the 
opposite is true for backbone structural alphabets.

Foldseek (https://foldseek.com/) (Fig. 1a) (1) discretizes the 
query structures into sequences over the 3Di alphabet and then uses 
a pre-trained 3Di substitution matrix (Supplementary Table 2) to 
search through the 3Di sequences of the target structures using the 
double-diagonal k-mer-based prefilter and gapless alignment prefilter 
modules from MMseqs2, our open-source sequence search software6. 
(2) High-scoring hits are aligned locally using 3Di (default) or globally 
with TM-align (Foldseek-TM). The local alignment stage combines 
3Di and amino acid substitution scores. The construction of the 3Di 
alphabet is summarized in Fig. 1b and Supplementary Figs. 1–3.

To reduce high-scoring FPs and provide reliable E values, we sub-
tracted the reversed query alignment score from the original score 
and applied a compositional bias correction within a local 40-residue 
sequence window (see the ‘Pairwise local structural alignments’ subsec-
tion). E values are calculated using an extreme-value score distribution, 
with parameters predicted by a neural network based on 3Di sequence 
composition and query length (see the ‘E values’ subsection). Ranking 
of hits is determined by alignment bit score multiplied by the geometric 
mean of alignment TM-score and local distance difference test (LDDT). 
Foldseek also reports the probability for each match to be homologous, 
based on a fit of true and false matches on SCOPe.

We measured the sensitivity and speed of Foldseek, six pro-
tein structure alignment tools, an alignment-free structure search 
tool (Geometricus20) and a sequence search tool (MMseqs2 (ref. 6)) 
on the SCOPe dataset of manually classified single-domain struc-
tures21. Clustering SCOPe 2.01 at 40% sequence identity yielded 11,211 
non-redundant protein sequences (SCOPe40). We performed an 
all-versus-all search and compared the tools’ performance for finding 
members of the same SCOPe family, superfamily and fold (true-positive 
(TP) matches) by measuring for each query the fraction of TPs out of all 
possible correct matches until the first FP, a match to a different fold 
(see the ‘SCOPe benchmark’ subsection).

We first measured the sensitivity to detect relationships at family 
and superfamily level by the area under the curve (AUC) of the cumu-
lative receiver operating characteristic (ROC) curve up to the first FP 
(Fig. 2a and Supplementary Fig. 4). Foldseek’s sensitivity is below Dali 
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Fig. 1 | Foldseek workflow. a, Foldseek searches a set of query structures through 
a set of target structures. (1) Query and target structures are discretized into 3Di 
sequences (see b). To detect candidate structures, we apply the fast and sensitive 
k-mer and ungapped alignment prefilter of MMseqs2 to the 3Di sequences, (2) 
followed by vectorized Smith–Waterman local alignment combining 3Di and 
amino acid substitution scores. Alternatively, a global alignment is computed 
with a 1.7-times accelerated TM-align version (Supplementary Fig. 12).  
b, Learning the 3Di alphabet. (1) 3Di states describe tertiary interaction between 
a residue i and its nearest neighbor j. Nearest neighbors have the closest virtual 

center distance (yellow). Virtual center positions (Supplementary Fig. 1) were 
optimized for maximum search sensitivity. (2) To describe the interaction 
geometry of residues i and j, we extract seven angles, the Euclidean Cα distance 
and two sequence distance features from the six Cα coordinates of the two 
backbone fragments (blue and red). (3) These 10 features are used to define  
20 3Di states by training a VQ-VAE28 modified to learn states that are maximally 
evolutionary conserved. For structure searches, the encoder predicts the best-
matching 3Di state for each residue.
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and TM-align, higher than the structural aligner CE and much above 
the structural alphabet-based search tools 3D-BLAST and CLE-SW 
(Fig. 2a). In a precision-recall analysis, Foldseek-TM and Foldseek have 
the highest and third-highest area under the precision-recall curve on 
each of the three levels (Fig. 2b and Supplementary Fig. 4). Notably, 
Foldseek-TM improves over TM-align because its prefilter suppresses 
high-scoring FPs. Both sort hits by the average query and target length 
normalized TM-scores for best performance in the SCOPe benchmark.

Foldseek’s performance is similar across all six secondary struc-
ture classes in SCOPe (Supplementary Fig. 5). On this small SCOPe40 
benchmark set, Foldseek is more than 4,000 times faster than TM-align 
and Dali and over 21,000 times faster than CE (Fig. 2c). On the much 
larger AlphaFoldDB (version 1), where Foldseek approaches its full 
speed, it is around 184,600 and 23,000 times faster than Dali and 
TM-align, respectively (see below).

We devised a reference-free benchmark to assess search sensitivity 
and alignment quality of structural aligners (Fig. 2d) on a realistic set 
of full-length, multi-domain proteins. We clustered the AlphaFoldDB 
(version 1) to 34,270 structures using BLAST and SPICi22. We randomly 
selected 100 query structures from this set and aligned them against 
the remaining structures. TP matches are those with an LDDT score23 
of at least 0.6 and FPs below 0.25, ignoring matches in between. We set 
the LDDT thresholds according to the median inter-fold and intra-fold 
superfamily and family LDDT scores of SCOPe40 alignments (Sup-
plementary Fig. 6). For other thresholds, see Supplementary Fig. 7. A 
domain-based sensitivity assessment would require a reference-based 
prediction of domains. To avoid it, we evaluated the sensitivity per resi-
due. Figure 2d shows the distribution of the fraction of query residues 
that were part of alignments with at least x TP targets with better scores 
than the first FP match. Again, Foldseek has similar sensitivity as Dali, CE 
and TM-align and much higher sensitivity than CLE-SW and MMseqs2.

We analyzed the quality of alignments produced by the top five 
matches per query. We computed the alignment sensitivity as the num-
ber of TP residues divided by the query length and the precision as the 
number of TP residues divided by the alignment length. TP residues are 
those with residue-specific LDDT score above 0.6; FP residues are below 
0.25; and residues with other scores are ignored. Figure 2e shows the 
average sensitivity versus precision of the 100 × 5 structure alignments. 

cores and the lowest in non-conserved coil/loop regions, whereas the 
opposite is true for backbone structural alphabets.

Foldseek (https://foldseek.com/) (Fig. 1a) (1) discretizes the 
query structures into sequences over the 3Di alphabet and then uses 
a pre-trained 3Di substitution matrix (Supplementary Table 2) to 
search through the 3Di sequences of the target structures using the 
double-diagonal k-mer-based prefilter and gapless alignment prefilter 
modules from MMseqs2, our open-source sequence search software6. 
(2) High-scoring hits are aligned locally using 3Di (default) or globally 
with TM-align (Foldseek-TM). The local alignment stage combines 
3Di and amino acid substitution scores. The construction of the 3Di 
alphabet is summarized in Fig. 1b and Supplementary Figs. 1–3.

To reduce high-scoring FPs and provide reliable E values, we sub-
tracted the reversed query alignment score from the original score 
and applied a compositional bias correction within a local 40-residue 
sequence window (see the ‘Pairwise local structural alignments’ subsec-
tion). E values are calculated using an extreme-value score distribution, 
with parameters predicted by a neural network based on 3Di sequence 
composition and query length (see the ‘E values’ subsection). Ranking 
of hits is determined by alignment bit score multiplied by the geometric 
mean of alignment TM-score and local distance difference test (LDDT). 
Foldseek also reports the probability for each match to be homologous, 
based on a fit of true and false matches on SCOPe.

We measured the sensitivity and speed of Foldseek, six pro-
tein structure alignment tools, an alignment-free structure search 
tool (Geometricus20) and a sequence search tool (MMseqs2 (ref. 6)) 
on the SCOPe dataset of manually classified single-domain struc-
tures21. Clustering SCOPe 2.01 at 40% sequence identity yielded 11,211 
non-redundant protein sequences (SCOPe40). We performed an 
all-versus-all search and compared the tools’ performance for finding 
members of the same SCOPe family, superfamily and fold (true-positive 
(TP) matches) by measuring for each query the fraction of TPs out of all 
possible correct matches until the first FP, a match to a different fold 
(see the ‘SCOPe benchmark’ subsection).

We first measured the sensitivity to detect relationships at family 
and superfamily level by the area under the curve (AUC) of the cumu-
lative receiver operating characteristic (ROC) curve up to the first FP 
(Fig. 2a and Supplementary Fig. 4). Foldseek’s sensitivity is below Dali 
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Fig. 1 | Foldseek workflow. a, Foldseek searches a set of query structures through 
a set of target structures. (1) Query and target structures are discretized into 3Di 
sequences (see b). To detect candidate structures, we apply the fast and sensitive 
k-mer and ungapped alignment prefilter of MMseqs2 to the 3Di sequences, (2) 
followed by vectorized Smith–Waterman local alignment combining 3Di and 
amino acid substitution scores. Alternatively, a global alignment is computed 
with a 1.7-times accelerated TM-align version (Supplementary Fig. 12).  
b, Learning the 3Di alphabet. (1) 3Di states describe tertiary interaction between 
a residue i and its nearest neighbor j. Nearest neighbors have the closest virtual 

center distance (yellow). Virtual center positions (Supplementary Fig. 1) were 
optimized for maximum search sensitivity. (2) To describe the interaction 
geometry of residues i and j, we extract seven angles, the Euclidean Cα distance 
and two sequence distance features from the six Cα coordinates of the two 
backbone fragments (blue and red). (3) These 10 features are used to define  
20 3Di states by training a VQ-VAE28 modified to learn states that are maximally 
evolutionary conserved. For structure searches, the encoder predicts the best-
matching 3Di state for each residue.



3Di: Substitution Score Matrix 

2

A C D E F G H I K L M N P Q R S T V W Y X
A 6 -3 1 2 3 -2 -2 -7 -3 -3 -10 -5 -1 1 -4 -7 -5 -6 0 -2 0
C -3 6 -2 -8 -5 -4 -4 -12 -13 1 -14 0 0 1 -1 0 -8 1 -7 -9 0
D 1 -2 4 -3 0 1 1 -3 -5 -4 -5 -2 1 -1 -1 -4 -2 -3 -2 -2 0
E 2 -8 -3 9 -2 -7 -4 -12 -10 -7 -17 -8 -6 -3 -8 -10 -10 -13 -6 -3 0
F 3 -5 0 -2 7 -3 -3 -5 1 -3 -9 -5 -2 2 -5 -8 -3 -7 4 -4 0
G -2 -4 1 -7 -3 6 3 0 -7 -7 -1 -2 -2 -4 3 -3 4 -6 -4 -2 0
H -2 -4 1 -4 -3 3 6 -4 -7 -6 -6 0 -1 -3 1 -3 -1 -5 -5 3 0
I -7 -12 -3 -12 -5 0 -4 8 -5 -11 7 -7 -6 -6 -3 -9 6 -12 -5 -8 0
K -3 -13 -5 -10 1 -7 -7 -5 9 -11 -8 -12 -6 -5 -9 -14 -5 -15 5 -8 0
L -3 1 -4 -7 -3 -7 -6 -11 -11 6 -16 -3 -2 2 -4 -4 -9 0 -8 -9 0
M -10 -14 -5 -17 -9 -1 -6 7 -8 -16 10 -9 -9 -10 -5 -10 3 -16 -6 -9 0
N -5 0 -2 -8 -5 -2 0 -7 -12 -3 -9 7 0 -2 2 3 -4 0 -8 -5 0
P -1 0 1 -6 -2 -2 -1 -6 -6 -2 -9 0 4 0 0 -2 -4 0 -4 -5 0
Q 1 1 -1 -3 2 -4 -3 -6 -5 2 -10 -2 0 5 -2 -4 -5 -1 -2 -5 0
R -4 -1 -1 -8 -5 3 1 -3 -9 -4 -5 2 0 -2 6 2 0 -1 -6 -3 0
S -7 0 -4 -10 -8 -3 -3 -9 -14 -4 -10 3 -2 -4 2 6 -6 0 -11 -9 0
T -5 -8 -2 -10 -3 4 -1 6 -5 -9 3 -4 -4 -5 0 -6 8 -9 -5 -5 0
V -6 1 -3 -13 -7 -6 -5 -12 -15 0 -16 0 0 -1 -1 0 -9 3 -10 -11 0
W 0 -7 -2 -6 4 -4 -5 -5 5 -8 -6 -8 -4 -2 -6 -11 -5 -10 8 -6 0
Y -2 -9 -2 -3 -4 -2 3 -8 -8 -9 -9 -5 -5 -5 -3 -9 -5 -11 -6 9 0
X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supplementary Table 2: Substitution scores for 3Di states The scores are log-odd scores in half-bits,
and were trained on SCOPe40 with TM-align alignments.

• To use downstream sequence 
alignment tools like 
MMSeqs2, FoldSeek needs to 
define substitution scores. 

• This is also calculated using 
the structurally aligned 
residues obtained from 
SCOPe.



FoldSeek: 
Pre-filtering 



Pre-filtering

• After discretization, a queryʼs k-
mers are used to pre-filter out 
irrelevant candidates. 

• This reduces the computational 
overhead of relatively expensive 
gapped sequence alignment 
downstream.

Expensive



Similar K-mer Matching (BLAST 
Algorithm)

Source : https://bio.libretexts.org/Bookshelves/Computational_Biology/Book%3A_Computational_Biology_-
_Genomes_Networks_and_Evolution



Credits: ISCB Talk, Johannes Söding, Youtube



Bringing it all together



FoldSeek: 
Alignment Scores 



Sequence Alignment Score

• For all sequences that remain after the irrelevant sequences 
are f i ltered out, FoldSeek calculates alignment scores using:

1. Local alignment scores using Smith-Waterman algorithm using 
both 3Di and amino acid substitution scores. 

2. Global alignment score using TM-Align.



Sequence Alignment Score

• Alignment score post-processing for local alignment. 

• Subtract al ignment score of reversed query. 

• Apply composit ional bias correction. 

• Both corrections are recommended in sequence matching 
literature for BLAST. (Schaffer et. al., 2001)

• To reduce high scoring False Posit ives.



FoldSeek Outputs

• Alignment Score

• Structural Bit Score = (Smith-Waterman score) x TM−score × avg. LDDT

• TM-Align score

• E-values 

• Expected sequence hits with s imilar or higher bit score that could be 
found just by chance.

• Probabil ity of match being homologous given the structural bit score. 



FoldSeek:
Results 



Summary of Results 

• Sensitivity compared to structural aligners : 

• {TM-Align, Dali} > FoldSeek > CE 

• Sensitivity compared to sequence based aligners : 

• FoldSeek >> {3D-Blast, CLE-SW}

• Speed : 4000 – 180,000 times faster than structure aligners. 



Credits: ISCB Talk, Johannes Söding, Youtube



Credits: ISCB Talk, Johannes Söding, Youtube



SCOPe Experiments

• All-vs-All comparison on SCOPe40 benchmark.

• Three experiments to measure sensitivity at family, 
superfamily and  fold levels. 

• TP are within family, superfamily, and fold proteins. 

• FP are outside fold proteins. 

• Sensitivity until f irst FP, Recall and Precision is calculated. 

Clustering SCOPe 2.01 at 40% sequence identity yielded 11,211 non-
redundant protein sequences



SCOPe Results

Foldseek has Avg. sensitivity similar to TM-align and Dali with a 
10^3 -10^4 reduction in execution time.  
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Foldseek alignments are more accurate and sensitive than MMseqs2, 
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise 
but 15% more sensitive than CE. In the reference-based HOMSTRAD 
alignment quality benchmark24, Foldseek performs slightly below CE, 
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between 
Foldseek and Dali in alignment quality for all HOMSTRAD families (see 
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we 
searched the set of unfragmented models in AlphaFoldDB (version 1)  
with average predicted LDDT1≥80 against itself. We inspected the 
1,675 (of 133,813) high-scoring FPs (score per aligned column ≥ 1.0, 
TM-score < 0.5), revealing queries with multiple structured segments 
but with incorrect relative orientations (Supplementary Table 3 and 
Supplementary Fig. 9). The folded segments were correctly aligned 
by Foldseek. This illustrates that 3D aligners such as TM-align may 
overlook homologous structures that are not globally superposable, 
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is 
independent of relative domain orientations and excels at detecting 
homologous multi-domain structures12.

We developed a webserver (https://search.foldseek.com) for 
multi-database searches, including AlphaFoldDB (version 4: Proteomes 
and Swiss-Prot), AlphaFoldDB (version 4) and CATH25 clustered at 50% 
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)26.

We compared Foldseek webserver, TM-align and Dali using 
SARS-CoV-2 RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version 1). Search times were 10 d for Dali, 33 h for TM-align and 
6 s for Foldseek, making it 180,000 and 23,000 times faster. All top 10 
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every 
folded protein is transformative for biology and bioinformatics. 

Sequence-based analyses will soon be largely superseded by 
structure-based analyses. The main limitation in our view—the four 
orders of magnitude slower speed of structure comparisons—is 
removed by Foldseek.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41587-023-01773-0.
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Fig. 2 | Foldseek reaches similar sensitivities as structural aligners at 
thousands of times their speed. a, Cumulative distributions of sensitivity for 
homology detection on the SCOPe40 database of single-domain structures. TPs 
are matches within the same superfamily; FPs are matches between different 
folds. Sensitivity is the area under the ROC (AUROC) curve up to the first FP (see 
Supplementary Fig. 4 for family and fold). b, Precision-recall curve of SCOPe40  
superfamilies (see Supplementary Fig. 4 for family and fold). c, Average 
sensitivity up to the first FP for family, superfamily and fold versus total runtime 
on an AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11,211 
structures of SCOPe40. d, Search sensitivity on multi-domain, full-length 

AlphaFold2 protein models. One hundred queries, randomly selected from 
AlphaFoldDB (version 1), were searched against this database. Per-residue 
query coverage (y axis) is the fraction of residues covered by at least x (x axis) TP 
matches ranked before the first FP match. e, Alignment quality for alignments of 
AlphaFoldDB (version 1) protein models (top panel), averaged over the top five 
matches of each of the 100 queries. Sensitivity = TP residues in alignment / query 
length; precision = TP residues / alignment length. Reference-based alignment 
quality benchmark on HOMSTRAD alignments. f, Alignment quality comparison 
between Foldseek and Dali for each HOMSTRAD family. The F1 score is the 
harmonic mean between sensitivity and precision.
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Foldseek alignments are more accurate and sensitive than MMseqs2, 
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise 
but 15% more sensitive than CE. In the reference-based HOMSTRAD 
alignment quality benchmark24, Foldseek performs slightly below CE, 
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between 
Foldseek and Dali in alignment quality for all HOMSTRAD families (see 
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we 
searched the set of unfragmented models in AlphaFoldDB (version 1)  
with average predicted LDDT1≥80 against itself. We inspected the 
1,675 (of 133,813) high-scoring FPs (score per aligned column ≥ 1.0, 
TM-score < 0.5), revealing queries with multiple structured segments 
but with incorrect relative orientations (Supplementary Table 3 and 
Supplementary Fig. 9). The folded segments were correctly aligned 
by Foldseek. This illustrates that 3D aligners such as TM-align may 
overlook homologous structures that are not globally superposable, 
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is 
independent of relative domain orientations and excels at detecting 
homologous multi-domain structures12.

We developed a webserver (https://search.foldseek.com) for 
multi-database searches, including AlphaFoldDB (version 4: Proteomes 
and Swiss-Prot), AlphaFoldDB (version 4) and CATH25 clustered at 50% 
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)26.

We compared Foldseek webserver, TM-align and Dali using 
SARS-CoV-2 RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version 1). Search times were 10 d for Dali, 33 h for TM-align and 
6 s for Foldseek, making it 180,000 and 23,000 times faster. All top 10 
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every 
folded protein is transformative for biology and bioinformatics. 

Sequence-based analyses will soon be largely superseded by 
structure-based analyses. The main limitation in our view—the four 
orders of magnitude slower speed of structure comparisons—is 
removed by Foldseek.

Online content
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Fig. 2 | Foldseek reaches similar sensitivities as structural aligners at 
thousands of times their speed. a, Cumulative distributions of sensitivity for 
homology detection on the SCOPe40 database of single-domain structures. TPs 
are matches within the same superfamily; FPs are matches between different 
folds. Sensitivity is the area under the ROC (AUROC) curve up to the first FP (see 
Supplementary Fig. 4 for family and fold). b, Precision-recall curve of SCOPe40  
superfamilies (see Supplementary Fig. 4 for family and fold). c, Average 
sensitivity up to the first FP for family, superfamily and fold versus total runtime 
on an AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11,211 
structures of SCOPe40. d, Search sensitivity on multi-domain, full-length 

AlphaFold2 protein models. One hundred queries, randomly selected from 
AlphaFoldDB (version 1), were searched against this database. Per-residue 
query coverage (y axis) is the fraction of residues covered by at least x (x axis) TP 
matches ranked before the first FP match. e, Alignment quality for alignments of 
AlphaFoldDB (version 1) protein models (top panel), averaged over the top five 
matches of each of the 100 queries. Sensitivity = TP residues in alignment / query 
length; precision = TP residues / alignment length. Reference-based alignment 
quality benchmark on HOMSTRAD alignments. f, Alignment quality comparison 
between Foldseek and Dali for each HOMSTRAD family. The F1 score is the 
harmonic mean between sensitivity and precision.



SCOPe Results

Foldseek AUROC results are competitive with TM-align & Dali.
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Foldseek alignments are more accurate and sensitive than MMseqs2, 
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise 
but 15% more sensitive than CE. In the reference-based HOMSTRAD 
alignment quality benchmark24, Foldseek performs slightly below CE, 
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between 
Foldseek and Dali in alignment quality for all HOMSTRAD families (see 
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we 
searched the set of unfragmented models in AlphaFoldDB (version 1)  
with average predicted LDDT1≥80 against itself. We inspected the 
1,675 (of 133,813) high-scoring FPs (score per aligned column ≥ 1.0, 
TM-score < 0.5), revealing queries with multiple structured segments 
but with incorrect relative orientations (Supplementary Table 3 and 
Supplementary Fig. 9). The folded segments were correctly aligned 
by Foldseek. This illustrates that 3D aligners such as TM-align may 
overlook homologous structures that are not globally superposable, 
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is 
independent of relative domain orientations and excels at detecting 
homologous multi-domain structures12.

We developed a webserver (https://search.foldseek.com) for 
multi-database searches, including AlphaFoldDB (version 4: Proteomes 
and Swiss-Prot), AlphaFoldDB (version 4) and CATH25 clustered at 50% 
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)26.

We compared Foldseek webserver, TM-align and Dali using 
SARS-CoV-2 RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version 1). Search times were 10 d for Dali, 33 h for TM-align and 
6 s for Foldseek, making it 180,000 and 23,000 times faster. All top 10 
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every 
folded protein is transformative for biology and bioinformatics. 

Sequence-based analyses will soon be largely superseded by 
structure-based analyses. The main limitation in our view—the four 
orders of magnitude slower speed of structure comparisons—is 
removed by Foldseek.
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Fig. 2 | Foldseek reaches similar sensitivities as structural aligners at 
thousands of times their speed. a, Cumulative distributions of sensitivity for 
homology detection on the SCOPe40 database of single-domain structures. TPs 
are matches within the same superfamily; FPs are matches between different 
folds. Sensitivity is the area under the ROC (AUROC) curve up to the first FP (see 
Supplementary Fig. 4 for family and fold). b, Precision-recall curve of SCOPe40  
superfamilies (see Supplementary Fig. 4 for family and fold). c, Average 
sensitivity up to the first FP for family, superfamily and fold versus total runtime 
on an AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11,211 
structures of SCOPe40. d, Search sensitivity on multi-domain, full-length 

AlphaFold2 protein models. One hundred queries, randomly selected from 
AlphaFoldDB (version 1), were searched against this database. Per-residue 
query coverage (y axis) is the fraction of residues covered by at least x (x axis) TP 
matches ranked before the first FP match. e, Alignment quality for alignments of 
AlphaFoldDB (version 1) protein models (top panel), averaged over the top five 
matches of each of the 100 queries. Sensitivity = TP residues in alignment / query 
length; precision = TP residues / alignment length. Reference-based alignment 
quality benchmark on HOMSTRAD alignments. f, Alignment quality comparison 
between Foldseek and Dali for each HOMSTRAD family. The F1 score is the 
harmonic mean between sensitivity and precision.
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Foldseek alignments are more accurate and sensitive than MMseqs2, 
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise 
but 15% more sensitive than CE. In the reference-based HOMSTRAD 
alignment quality benchmark24, Foldseek performs slightly below CE, 
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between 
Foldseek and Dali in alignment quality for all HOMSTRAD families (see 
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we 
searched the set of unfragmented models in AlphaFoldDB (version 1)  
with average predicted LDDT1≥80 against itself. We inspected the 
1,675 (of 133,813) high-scoring FPs (score per aligned column ≥ 1.0, 
TM-score < 0.5), revealing queries with multiple structured segments 
but with incorrect relative orientations (Supplementary Table 3 and 
Supplementary Fig. 9). The folded segments were correctly aligned 
by Foldseek. This illustrates that 3D aligners such as TM-align may 
overlook homologous structures that are not globally superposable, 
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is 
independent of relative domain orientations and excels at detecting 
homologous multi-domain structures12.

We developed a webserver (https://search.foldseek.com) for 
multi-database searches, including AlphaFoldDB (version 4: Proteomes 
and Swiss-Prot), AlphaFoldDB (version 4) and CATH25 clustered at 50% 
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)26.

We compared Foldseek webserver, TM-align and Dali using 
SARS-CoV-2 RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version 1). Search times were 10 d for Dali, 33 h for TM-align and 
6 s for Foldseek, making it 180,000 and 23,000 times faster. All top 10 
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every 
folded protein is transformative for biology and bioinformatics. 

Sequence-based analyses will soon be largely superseded by 
structure-based analyses. The main limitation in our view—the four 
orders of magnitude slower speed of structure comparisons—is 
removed by Foldseek.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Fig. 2 | Foldseek reaches similar sensitivities as structural aligners at 
thousands of times their speed. a, Cumulative distributions of sensitivity for 
homology detection on the SCOPe40 database of single-domain structures. TPs 
are matches within the same superfamily; FPs are matches between different 
folds. Sensitivity is the area under the ROC (AUROC) curve up to the first FP (see 
Supplementary Fig. 4 for family and fold). b, Precision-recall curve of SCOPe40  
superfamilies (see Supplementary Fig. 4 for family and fold). c, Average 
sensitivity up to the first FP for family, superfamily and fold versus total runtime 
on an AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11,211 
structures of SCOPe40. d, Search sensitivity on multi-domain, full-length 

AlphaFold2 protein models. One hundred queries, randomly selected from 
AlphaFoldDB (version 1), were searched against this database. Per-residue 
query coverage (y axis) is the fraction of residues covered by at least x (x axis) TP 
matches ranked before the first FP match. e, Alignment quality for alignments of 
AlphaFoldDB (version 1) protein models (top panel), averaged over the top five 
matches of each of the 100 queries. Sensitivity = TP residues in alignment / query 
length; precision = TP residues / alignment length. Reference-based alignment 
quality benchmark on HOMSTRAD alignments. f, Alignment quality comparison 
between Foldseek and Dali for each HOMSTRAD family. The F1 score is the 
harmonic mean between sensitivity and precision.



AlphaFoldDB Experiments

• They clustered the AlphaFoldDB (version 1) to 34,270 
structures using BLAST and SPICi.

• TP matches are those with an LDDT score of at least 0.6 and 
FPs below 0.25, ignoring matches in between.

• They calculated per-residue query coverage, which is the 
fraction of residues covered by at least x TP matches ranked 
before the first FP match.



AlphaFoldDB Results
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Foldseek alignments are more accurate and sensitive than MMseqs2, 
CLE-SW and TM-align, similarly accurate as Dali and 13% less precise 
but 15% more sensitive than CE. In the reference-based HOMSTRAD 
alignment quality benchmark24, Foldseek performs slightly below CE, 
Dali and TM-align (Fig. 2e). Figure 2f shows the comparison between 
Foldseek and Dali in alignment quality for all HOMSTRAD families (see 
Supplementary Fig. 8 for example alignments).

To find potentially problematic high-scoring Foldseek FPs, we 
searched the set of unfragmented models in AlphaFoldDB (version 1)  
with average predicted LDDT1≥80 against itself. We inspected the 
1,675 (of 133,813) high-scoring FPs (score per aligned column ≥ 1.0, 
TM-score < 0.5), revealing queries with multiple structured segments 
but with incorrect relative orientations (Supplementary Table 3 and 
Supplementary Fig. 9). The folded segments were correctly aligned 
by Foldseek. This illustrates that 3D aligners such as TM-align may 
overlook homologous structures that are not globally superposable, 
whereas Foldseek (as well as the two-dimensional (2D) aligner Dali) is 
independent of relative domain orientations and excels at detecting 
homologous multi-domain structures12.

We developed a webserver (https://search.foldseek.com) for 
multi-database searches, including AlphaFoldDB (version 4: Proteomes 
and Swiss-Prot), AlphaFoldDB (version 4) and CATH25 clustered at 50% 
sequence identity, ESM Atlas-HQ and Protein Data Bank (PDB)26.

We compared Foldseek webserver, TM-align and Dali using 
SARS-CoV-2 RdRp (PDB: 6M71, chain A (ref. 27); 942 residues) in Alpha-
FoldDB (version 1). Search times were 10 d for Dali, 33 h for TM-align and 
6 s for Foldseek, making it 180,000 and 23,000 times faster. All top 10 
hits were known RdRp homologs (Supplementary Table 4).

The availability of high-quality structures for nearly every 
folded protein is transformative for biology and bioinformatics. 

Sequence-based analyses will soon be largely superseded by 
structure-based analyses. The main limitation in our view—the four 
orders of magnitude slower speed of structure comparisons—is 
removed by Foldseek.
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Fig. 2 | Foldseek reaches similar sensitivities as structural aligners at 
thousands of times their speed. a, Cumulative distributions of sensitivity for 
homology detection on the SCOPe40 database of single-domain structures. TPs 
are matches within the same superfamily; FPs are matches between different 
folds. Sensitivity is the area under the ROC (AUROC) curve up to the first FP (see 
Supplementary Fig. 4 for family and fold). b, Precision-recall curve of SCOPe40  
superfamilies (see Supplementary Fig. 4 for family and fold). c, Average 
sensitivity up to the first FP for family, superfamily and fold versus total runtime 
on an AMD EPYC 7702P 64-core CPU for the all-versus-all searches of 11,211 
structures of SCOPe40. d, Search sensitivity on multi-domain, full-length 

AlphaFold2 protein models. One hundred queries, randomly selected from 
AlphaFoldDB (version 1), were searched against this database. Per-residue 
query coverage (y axis) is the fraction of residues covered by at least x (x axis) TP 
matches ranked before the first FP match. e, Alignment quality for alignments of 
AlphaFoldDB (version 1) protein models (top panel), averaged over the top five 
matches of each of the 100 queries. Sensitivity = TP residues in alignment / query 
length; precision = TP residues / alignment length. Reference-based alignment 
quality benchmark on HOMSTRAD alignments. f, Alignment quality comparison 
between Foldseek and Dali for each HOMSTRAD family. The F1 score is the 
harmonic mean between sensitivity and precision.

Foldseek has the highest query coverage in lesser time comparatively.

Fraction of residues covered 
by atleast x (x-axis) TP 
matches ranked before the 
first FP match



AlphaFoldDB + HOMSTRAD Results

Sensitivity = TP residues in alignment/query length

Precision = TP residues/alignment length

HOMSTRAD : a database containing expert-curated homologous structural alignments for 1032 protein families.

Alignment quality comparison between Foldseek and Dali for
each HOMSTRAD family.

F1 score = harmonic mean between sensitivity and precision.
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