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Introduction

e Computational Protein Design (i.e., Inverse protein folding problem)

fg . X —> S the amino acids sequence | S = {s;:1 < i <n}

® Desired structure |X ={x;eR3:1<i<n}
e Desired functional properties

. Structure prediction Fixed-backbone design De novo design
Sequence known, structure unknown Sequence unknown, structure known Sequence unknown, structure unknown
Input: Known amino-acid sequence Known backbone structure Architecture definition
Backbone /—\ Side-chain Backbone Side-chain Backbone /\ Side-chain
sampling sampling sampling sampling sampling sampling
Guided by local \—/ Rotamers of native None Rotamers of all _ Sequence Rotamers of all
native sequence amino acids amino acids independent amino acids
Output: Predicted structure Designed sequence Designed backbone

and designed sequence

<—  Flexible-backbone design




e Related Work

Rosetta

Bottom-up: optimizing Energy Function

ﬂ

Top-down: Conditional Generative Model

MLP-based CNN-based Graph-based

Output layer
(20 nodes)

Hidden Layer 3
(500 nodes)

Representing protein
structure as a graph

SPIN2 f
Hic:ggonntfgsr . Pros:
t e Computational efficiency

Hidden Layer 1
(500 nodes)

Cons:
Input layer .
(190 features) e Slow inference

e Cons: Feature Design e Complex preprocessing

e Inductive bias
e Representational flexibility




Method

Structured Transformer
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&9 Backbone —>» Structure and sequence | Structure G |

G = V,€)

Y = {'vl, . e ,'vN} Node Features

p(slz) = Hp(silw,sa)

E = {ez-j}#j Edge Features




Inductive Bias:

e [|nvariance

[ Relative Spatial Encodings

A Edge features

Backbone structure Distances
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e Locally Informative

Local Frame
k-NN (sparsity)
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Attention:
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Results

e Dataset: CATH 4.2

a hierarchical domain classification of the three-dimensional (3D) structures of proteins

Class: secondary structure content
Architecture: shape revealed by the orientations of the secondary structure units
Topology: sequential connectivity of secondary structure elements

Homologous superfamily: whether the domains are evolutionarily related

K/ K/ K/ K/
LR X X X4

BOBE tome Seach  Browse Download ~ About  Support Search GATH by keywords or ID

CATH / Gene3D 23

151 million protein domains/classifiedlintol5ie4isupertamilics

Structure-split setting

% Training set: 18024 chains
«»  Validation set: 608 chains
Core classification files for the latest version of CATH-Plus (v4.3) are now available to download. Daily updates of our very latest classifications are also available. ‘:‘ Te St S e t : 1 1 2 O c h a i n S
3D Structure Protein Evolution Protein Function N O CAT Ove rI a p

Find out what 3D structure your Learn about a particular protein family Investigate the function of your
protein adopts and how it evolved protein

@ Find out more > Go © Find out more © Find out more > Go

http://www.cathdb.info
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Evaluation

Single mutations may cause a protein to break or misfold

Sequence '< > 3D structure Sequence Similarity x

Many protein sequences may design the same 3D structure

% Likelihood-based: Perplexity
* Native sequence recovery

«  Experimental comparison




%  Likelihood-based: Perplexity

Table 1: Null perplexities for common statistical models of proteins.

Pfam HMM profiles 11.64

Null model Perplexity Conditioned on
Uniform 20.00 -
Natural frequencies 17.83 Random position in a natural protein

Specific position in a specific protein family

Perplexity xl/probability

m
) 1
log(perplexity(S)) = — ;Z logp(w;|wy, -+, w;_1)
i=1

Table 2: perplexities for protein language modeling (lower is better). The protein
chains have been cluster-split by CATH topology, such that test includes only unseen 3D folds. While

a structure-conditioned language model can generalize in this structure-split setting, unconditional

language models struggle.

Test set Short Single chain Al
Structure-conditioned models

Structured Transformer (ours) 8.54 9.03 6.85
SPIN2 [8] 12.11 12.61 -
Language models

LSTM (h = 128) 16.06 16.38 17.13
LSTM (h = 256) 16.08 16.37 17.12
LSTM (h = 512) 15.98 16.38 17.13
Test set size 94 103 1120

Protein profiles

Zi" Lnu
Perplexity = e m
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Ablations: ProteinMPNN

Message Passing Neural Networks (MPNN)

Ahi = Z] MLP( hi, h], el-j)

Node features Edge features Aggredation Short Single chain  All
Rigid backbone

Dihedrals Distances,|Orientations Attention 8.54 9.03 6.85
Dihedrals Distances,|Orientations 8.33 8.86 6.55
C, angles Distances, Orientations Attention 9.16 9.37 7.83
Dihedrals Distances Attention 9.11 9.63 7.87
Flexible backbone

C, angles Contacts, Hydrogen bonds  Attention 11.71 11.81 11.51

| SPIN2 [8] 12.11 12.61 -
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Native sequence recovery

Method Recovery (%) Speed (AA/s) CPU Speed (AA/s) GPU
Rosetta 3.10 £ixbb 17.9 4.88 x 1071 N/A
Ours (T'=0.1) 27.6 2.22 x 102 1.04 x 104

(a) Single chain test set (103 proteins)

Method RCCOVCry (%) [ M ore Accu rate
Rosetta, fixbb 1 33.1
Rosetta, fixbb 2 38.4 ([ ] Faster
Ours (T'=0.1) 39.2

(b) Ollikainen benchmark (40 proteins)

Table 4: Improved reliability and speed compared to Rosetta. (a) On the ‘single chain’ test set,
our model more accurately recovers native sequences than Rosetta fixbb with greater speed (CPU:
single core of Intel Xeon Gold 5115, GPU: NVIDIA RTX 2080). This set includes NMR-based
structures for which Rosetta is known to not be robust [46]. (b) Our model also performs favorably
on a prior benchmark of 40 proteins. All results reported as median of average over 100 designs.

p(s|lx) = Hp(silmas<i) —— p@sht) — Hl z:p(‘:(lz,:zl)l)/:;T

Biased sampling

Rosetta : state-of-the-art framework for computational protein design



https://www.rosettacommons.org/software

%  Experimental comparison

Mutation effects

Table 5: Structure-conditioned likelihoods correlate with mutation effects in de novo-designed
miniproteins. Shown are Pearson correlation coefficients (R, higher is better) between the log-
likelihoods of mutated sequences and high-throughput mutation effect data from a systematic design
of miniproteins [6]. Each design (column) includes 775 experimentally tested mutant protein

sequences.
Design BBaBBsr  BPaBBiass  BBaBPiroz  BBaBBirie  afBarrg
Rigid backbone 0.47 0.45 0.12 0.47 0.57
| Flexible backbone | 0.50 0.44 0.17 0.40 0.56
Design ofBags  affors  afBagre  aoaizs  oonss
Rigid backbone 0.36 0.11 0.21 0.24 0.33
| Flexible backbone |  0.33 0.21 0.23 0.36 0.41

log-likelihoods of mutated Pearson correlation coefficients high-throughput

sequences < mutation effect data

A4




Take-away

Structured Transformer

Graph-based Transformer
+ Inductive Bias: 3D structural encodings, spatial locality

Improved perplexities

Compared to the SOTA protein design program, more accurate and faster

Showing the potential of being able to efficiently design and engineer
protein sequence with structurally-guided generative models...
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