Generative models for graph-based protein design

John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi Jaakkola Computer Science and Artificial Intelligence Lab, MIT {ingraham, vgarg, regina, tommi}@csail.mit.edu

Presenter: Yukang Yang

Introduction

• Computational Protein Design (i.e., *Inverse protein folding problem*)

 $\mathcal{F}_{ heta}:\mathcal{X}\mapsto\mathcal{S}$ the amino acids sequence

$$S = \{s_i : 1 \le i \le n\}$$

• Desired structure
$$X = \{x_i \in \mathbb{R}^3 : 1 \le i \le n\}$$

Desired functional properties

• Related Work

Graph-based

Representing protein structure as a graph

Pros:

- Computational efficiency
- Inductive bias
- Representational flexibility

Method

Inductive Bias:

Attention:

• Encoder

• Decoder

 $\boldsymbol{r}_{ij}^{(\text{dec})} = \begin{cases} (\boldsymbol{h}_{j}^{(\text{dec})}, \boldsymbol{e}_{ij}, \boldsymbol{g}(s_{j})) & i > j \\ (\boldsymbol{h}_{j}^{(\text{enc})}, \boldsymbol{e}_{ij}, \boldsymbol{0}) & i \leq j \end{cases}$

Results

• Dataset: CATH 4.2

a hierarchical domain classification of the three-dimensional (3D) structures of proteins

- Class: secondary structure content
- Architecture: shape revealed by the orientations of the secondary structure units
- Topology: sequential connectivity of secondary structure elements
- Homologous superfamily: whether the domains are evolutionarily related

Structure-split setting

- Training set: 18024 chains
- Validation set: 608 chains
- Test set: 1120 chains

No CAT overlap

http://www.cathdb.info

• Evaluation

	Single mut	ations may cause a prote	ein to break or misfold
S	equence	$ \longrightarrow $	3D structure
	Many prote	in sequences may desig	n the same 3D structure

Sequence Similarity x

- Likelihood-based: Perplexity
- Native sequence recovery
- Experimental comparison

Likelihood-based: Perplexity

Table 1: Null perplexities for common statistical models of proteins.

Null model	Perplexity	Conditioned on
Uniform	20.00	-
Natural frequencies	17.83	Random position in a natural protein
Pfam HMM profiles	11.64	Specific position in a specific protein family

Perplexity	C _{1/probability}
log(perplexity($S)) = -\frac{1}{m} \sum_{i=1}^{m} \log p(w_i w_1, \cdots, w_{i-1})$

Table 2: **Per-residue** perplexities for protein language modeling (lower is better). The protein chains have been cluster-split by CATH topology, such that test includes only unseen 3D folds. While a structure-conditioned language model can generalize in this structure-split setting, unconditional language models struggle.

Test set	Short	Single chain	All
Structure-conditioned models			
Structured Transformer (ours)	8.54	9.03	6.85
SPIN2 [8]	12.11	12.61	-
Language models			
LSTM ($h = 128$)	16.06	16.38	17.13
LSTM ($h = 256$)	16.08	16.37	17.12
LSTM ($h = 512$)	15.98	16.38	17.13
Test set size	94	103	1120

$$Perplexity = e^{\frac{\sum_{i}^{m} L_{nll}}{m}}$$

Protein profiles

Ablations:

ProteinMPNN

Message Passing Neural Networks (MPNN)

		$\int \Delta h$	$a_i = \sum_j M$	$LP(h_i, h_j, e_{ij})$	
Node features	Edge features	Aggregation	Short	Single chain	All
Rigid backbone					
Dihedrals	Distances, Orientations	Attention	8.54	9.03	6.85
Dihedrals	Distances, Orientations	PairMLP	8.33	8.86	6.55
C_{α} angles	Distances, Orientations	Attention	9.16	9.37	7.83
Dihedrals	Distances	Attention	9.11	9.63	7.87
Flexible backbone					
C_{α} angles	Contacts, Hydrogen bonds	Attention	11.71	11.81	11.51
	SPIN2 [8]	i Au	12.11	12.61	-

Native sequence recovery

Method	Recovery (%)	Speed (AA/s) CPU	Speed (AA/s) GPU
Rosetta 3.10 fixbb	17.9	$4.88 imes 10^{-1}$	N/A
Ours ($T = 0.1$)	27.6	$f 2.22 imes 10^2$	$f 1.04 imes 10^4$

(a)	Single	chain	test	set	(103)	proteins)
-----	--------	-------	------	-----	-------	-----------

Method	Recovery (%)
Rosetta, fixbb 1	33.1
Rosetta, fixbb 2	38.4
Ours ($T = 0.1$)	39.2

More Accurate

Faster

(b) Ollikainen benchmark (40 proteins)

Table 4: **Improved reliability and speed compared to Rosetta.** (a) On the 'single chain' test set, our model more accurately recovers native sequences than Rosetta fixbb with greater speed (CPU: single core of Intel Xeon Gold 5115, GPU: NVIDIA RTX 2080). This set includes NMR-based structures for which Rosetta is known to not be robust [46]. (b) Our model also performs favorably on a prior benchmark of 40 proteins. All results reported as median of average over 100 designs.

Biased sampling

<u>Rosetta</u> : state-of-the-art framework for computational protein design

Experimental comparison

Mutation effects

Table 5: Structure-conditioned likelihoods correlate with mutation effects in *de novo*-designed miniproteins. Shown are Pearson correlation coefficients (R, higher is better) between the log-likelihoods of mutated sequences and high-throughput mutation effect data from a systematic design of miniproteins [6]. Each design (column) includes 775 experimentally tested mutant protein sequences.

Design	$etaetalphaetaeta_{37}$	$etaetalphaetaeta_{1498}$	$etaetalphaetaeta_{1702}$	$etaetalphaetaeta_{1716}$	$lphaetaetalpha_{779}$
Rigid backbone	0.47	0.45	0.12	0.47	0.57
Flexible backbone	0.50	0.44	0.17	0.40	0.56

Design	$lphaetaetalpha_{223}$	$lphaetaetalpha_{726}$	$lphaetaetalpha_{872}$	$lpha lpha lpha_{134}$	$lpha lpha lpha_{138}$
Rigid backbone	0.36	0.11	0.21	0.24	0.33
Flexible backbone	0.33	0.21	0.23	0.36	0.41

log-likelihoods of mutated
sequences

Pearson correlation coefficients

high-throughput mutation effect data Structured Transformer

- Graph-based Transformer
- + Inductive Bias: 3D structural encodings, spatial locality
- Improved perplexities
- Compared to the SOTA protein design program, more accurate and faster

Showing the potential of being able to **efficiently** design and engineer protein sequence with **structurally-guided** generative models...

Q&A