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Roadmap

e Motivation: why protein design?

e Background: what exists in the field?

e Methods: what is ProteinMPNN and how did the authors build it?
e Evaluation and results: how did the model perform?

e Conclusions: what’s next?



Motivation



Al- designed protein shells could make ::)l:;v;are-demgned miniproteins could create new class of

vaccines more eﬂe ctive Small versions of antibodies bind to virtually any target protein

Protein shells designed using Al can work as carriers for immunity-inducing molecules, RS SRS
generating more antibodies in mice than some competing vaccine approaches
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“..de novo protein design was
nominated as one of the top 10
annual breakthroughs by
Science In 2016.”



What is protein design?
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https://www.ibmb.csic.es/en/department-of-structural-and-molecular-biology/protein-design-and-modeling/

Task is to find amino acid sequence that results in a desired

protein structure that is stable and functional

Sequence
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Inverse Folding Experimental Validation

Stable? Binds efficiently?
Soluble?



Applications of Protein Design

e Pharmaceuticals: drug design, vaccine development
e Biotechnology: bioremediation, biocatalysis
e Biosensors: synthetic circuits, metabolic engineering

e Material Science: nanomaterials, biopolymers

“Native” proteins selected through millions of years of evolution are not likely to support

these needs so want to design proteins (often de-novo) tailored to such needs.



Background



Current existing approaches for protein design

Physics-based: energy optimization Deep-learning-based: pattern recognition
e Slower two-step process with need e Lacks physical fransparency and
for customization extensive experimental design
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https://upload.wikimedia.org/wikipedia/commons/9/91/Folding_funnel_schematic.svg
https://scx2.b-cdn.net/gfx/news/hires/2022/study-evaluates-deep-l.jpg

Rosetta is one current state-of-the-art method

e Physics based method that scans

sequence space and evaluate energy D@ u Folding _
Unfolding

of chosen sequence 4__‘

=

Unfolded protein

Figure 3-7
Molecular Cell Biology, Sixth Edition
©2008 W. H.Freeman and Company
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e Requires side-chain packing Native protein

calculations and expert

. . Hydrophobic amino acids restricted to
customization surface to stabilize undesired multimeric
states. How much restriction to place at
boundary?

Image: https://www.allometric.com/tom/courses/protected/MCB6/ch03/3-07.jpa 11



https://www.allometric.com/tom/courses/protected/MCB6/ch03/3-07.jpg

How can we efficiently use deep learning
to predict amino acid sequences based on
protein structures in a robust,
self-sufficient, accurate way?
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Method

(Protein Message Passing Neural Network or ProteinMPNN)

|

Special type of Graph Neural Network
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Graph Neural Networks operate on graphical data
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https://distill.pub/2021/gnn-intro/

Message Passing Neural Networks
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ProteinMPNN operates on structures represented as graphs
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Pseudocode for the encoder layer (V - node features, E - edge features):

def encoder_layer forward(V, E):

T : : 7 Get intermediate representation or “message” based on information
M_ij=MLPV_i, V_j, E_ij] of neighbors and edges for node i

dV_i=Sum_j [M_ij] Sum messages across all neighbors
V_i = LayerNorm[V_i + Dropout(dV_i)]
dV _i = FeedForward[V _i] Updates node representations

V_i = LayerNorm[V _i + Dropout(dV _i)]
dE_ijj=MLP[V_i, V_j, E_ij]
E_ij = LayerNorm[E_ij + Dropout(dE_ij)]

% Updates edges representations based on new node representations

return V, E

Encoder layer is repeated 3 times - propogate messages 3 neighborhoods away
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ProteinMPNN operates on structures represented as graphs
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Pseudocode for the decoder layer (V - node features, E - edge features, S - sequence
features, mask - autoregressive mask):

Use information about previous time step to predict at current step

def decoder_layer _forward(V, E, S, mask):
E_ij = Concat[E_ij, S_j] * mask_ij + Concat[E_ij, 0.0*S_j] * (1-mask_ij) — jesemmer o -cauence features
M_ij=MLPLV_i, V_j, E_jj
dV_i=Sum_j [M_ij]
V_i = LayerNorm[V_i + DI'OpOUt(dV_D] g;ebzgg?:ges neighbor embeddings to update current
dV_i = FeedForward[V _i]
V_i = LayerNorm[V i + Dropout(dV _i)]

return V

Decoder layer is repeated 3 times - get messages 3 neighborhoods away
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ProteinMPNN uses random decoding order

B  Fixed left to right decoding

{1052 EB1 ]~
G E x4 __ T~ -autoregressive decoding order
Chain A ~ =~ -fixed amino acids (context)

- sequence context not used
- sequence context used

ProteinMPNN decoding
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ProteinMPNN uses positional coupling for multichain predictions
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Tied across chains
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How was ProteinMPNN trained?

e Protein assemblies in PDB (X-ray or cryoEM)

e Random train, validation, test split (23358/1464/1529)
o Different chains from one protein must be in same

group

e Training Epoch
1. Pick query sequence from training set
2. For the query, pick a conformation

e Loss: masked negative log likelihood

e Evaluation: accuracy, perplexity, run time

extended hetero-oligomer



Results

(In-silico and experimental validation of ProteinMPNN)
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Adding atomic distances as additional input features boosted performance

Ingraham et. al

Noise Iev_el_ o Number of PDB test PDB test AlphaFold
when training: Modification parameters %) lexi model
0.00 A70.02 A in millions 2““!"%Y (%) perplexity accuracy (%)
Baseline model© None 1381 412/401 65677  4l4/Al4
Experimentl] ~ Add N, Co, C, CB, 1430  49.0/461 5.03/554  457/474
O IS AR e
Experiment2  Update encoder edges 1629 4317420  612/637  433/430
Experiment3 . Combine land2 = . 1678 .. 00.5/47.3 | 482/936  463/47.9
Experiment4 Experiment 3 with 1678 50.8/479  4.74/525  469/485

random decoding
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ProteinMPNN had higher overall native sequence recovery than Rosetta
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ProteinMPNN performs well for different protein categories
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ProteinMPNN sequences predict native structures more effectively than native sequences

D05 A I Native sequences I Rosetta NTF2s
0.04 - ProteinMPNN sequences 0.06 - ProteinMPNN NTF2s

30 40 50 60 70 80 90 100 | 30 40 50 60 70 80 90 100
AlphaFold IDDT-Ca AlphaFold IDDT-Ca

e Used AlphaFold to generate structures based native sequence (no MSA) and
ProteinMPNN generated sequences
e Used AlphaFold to generate structures based Rosetta and ProteinMPNN sequences



Adding noise helps inference of ProteinMPNN sequences
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e Noise allows model to focus more on overall topological instead of local features
e More representative of real-world where true structure is not known at atomic
resolution (aim is not necessarily to maximize sequence recovery)



Experimental validation

Network hallucination by
AlphaFold to produce backbone
set

Monte Carlo to generate variety
of AlphaFold sequences
ProteinMPNN to generate
sequences

Express these proteins in E. coli
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ProteinMPNN can solve crystal structure of proteins with “difficult” folds

Crystal structure
Design model

90°

e Design of a difficult protein structure with difficult fold structure (TM-score: 0.56)
e Crystal side chains in green, MPNN in blue

e Very close match suggests MPNN can design accurate sequences robustly
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ProteinMPNN can design structural repeats more accurately than Rosetta

E Tied within chain F le3
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e Orange is backbone design and blue is MPNN
e Rosetta generates protein with many different components, whereas MPNN has one

component (peak) 31



ProteinMPNN can rescue tetrahedral assemblies that Rosetta failed to design

e Designed 76 sequences spanning 27 of

tetrahedral nanoparticle backbones

e Express in E-coli: 13 designs formed
assemblies including new tetrahedral

assemblies failed using Rosetta

e Close match for an example tetrahedral

assembly (gray is crystal, green and
purple is MPNN)
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ProteinMPNN can rescue protein functions that Rosetta failed to design
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Conclusion



Summary

Protein design: finding optimal sequence from structure (inverse folding)
Limitations of physics-based approaches (e.g., Rosetta)

ProteinMPNN uses message passing, flexible decoding, tied positions
High sequence recovery, rescued failed designs and functions, fast

Robustness and efficiency is promising for protein design
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