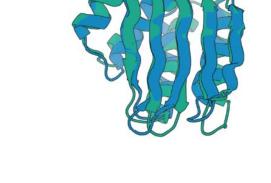
Robust deep learning-based protein sequence design using ProteinMPNN

Brendan Wang

October 12, 2023



Roadmap

- **Motivation**: why protein design?
- **Background**: what exists in the field?
- Methods: what is ProteinMPNN and how did the authors build it?
- **Evaluation and results**: how did the model perform?
- **Conclusions**: what's next?

Motivation

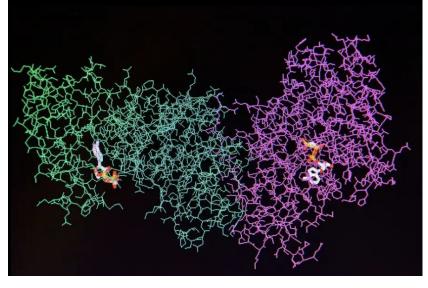
AI-designed protein shells could make vaccines more effective

Protein shells designed using AI can work as carriers for immunity-inducing molecules, generating more antibodies in mice than some competing vaccine approaches

By Karmela Padavic-Callaghan

💾 20 April 2023

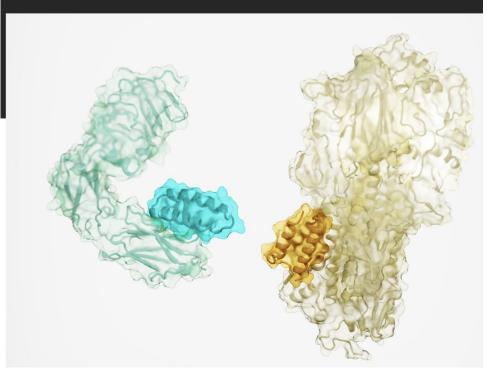
f y in 🕹 🗢 🗟



Software-designed miniproteins could create new class of drugs

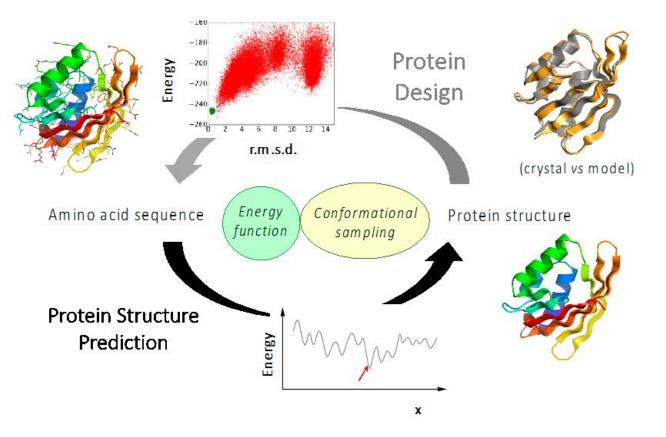
Small versions of antibodies bind to virtually any target protein

24 MAR 2022 · 1:35 PM ET · BY ROBERT F. SERVICE



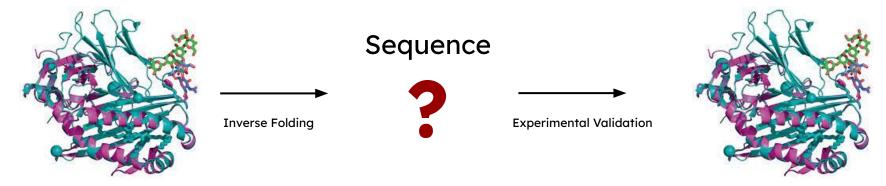
"...de novo protein design was nominated as one of the top 10 annual breakthroughs by Science in 2016."

What is protein design?



Task is to find amino acid sequence that results in a desired

protein structure that is stable and functional



Stable? Binds efficiently? Soluble?

Applications of Protein Design

- **Pharmaceuticals**: drug design, vaccine development
- **Biotechnology**: bioremediation, biocatalysis
- **Biosensors**: synthetic circuits, metabolic engineering
- Material Science: nanomaterials, biopolymers

"Native" proteins selected through millions of years of evolution are not likely to support

these needs so want to **design** proteins (often de-novo) tailored to such needs.

Background

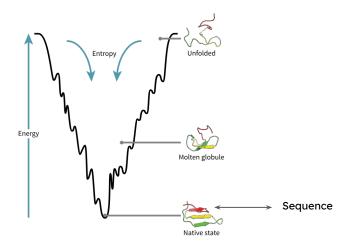
Current existing approaches for protein design

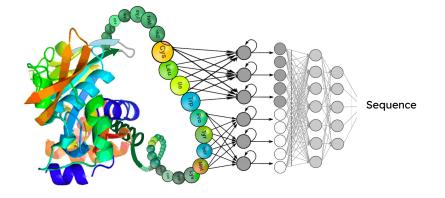
Physics-based: energy optimization

• Slower two-step process with need for customization

Deep-learning-based: pattern recognition

• Lacks physical transparency and extensive experimental design



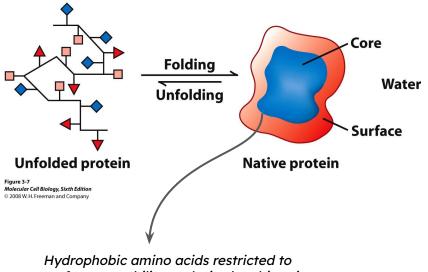


Rosetta is one current state-of-the-art method

- Physics based method that scans
 sequence space and evaluate energy
 of chosen sequence
- Requires side-chain packing

calculations and expert

customization



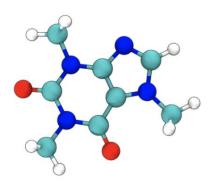
surface to stabilize undesired multimeric states. How much restriction to place at boundary? How can we **efficiently** use deep learning to predict amino acid sequences based on protein structures in a **robust**, **self-sufficient**, **accurate** way?

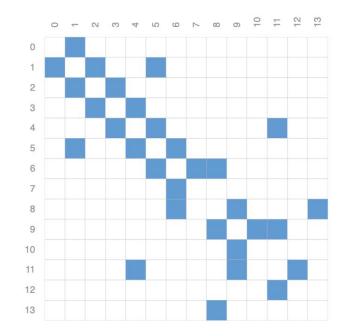
Method

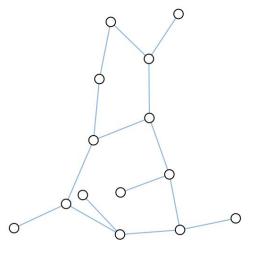
(Protein Message Passing Neural Network or ProteinMPNN)

Special type of Graph Neural Network

Graph Neural Networks operate on graphical data

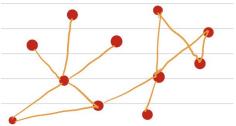






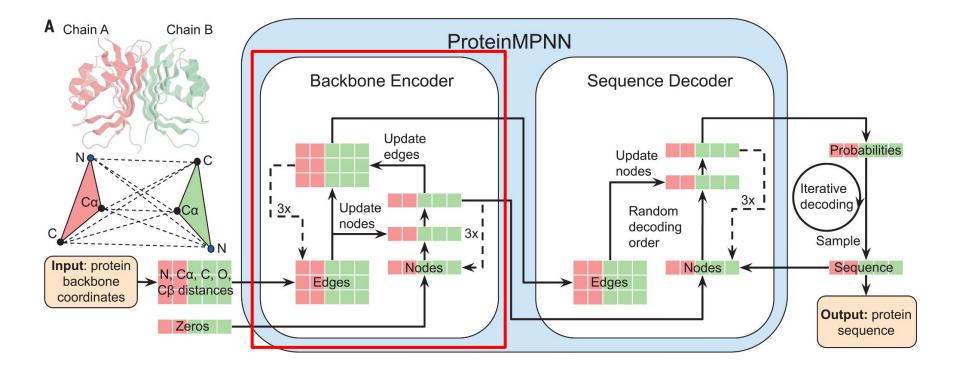
Message Passing Neural Networks

·Message Passing Paradigm; update nove representations based on aggregation from nearby nodes. Thee main steps: 1) Initialization: set each node embedding to seed h. = x, tieV (3) Aggregation: aggregate information of note and its reighbors from prev. time step $\vec{\mathsf{M}}_{J}^{(t)} = \int_{Agg}^{(t)} \left(\vec{\mathsf{h}}_{V}^{(t-1)} \notin \vec{\mathsf{h}}_{u}^{(t-1)} : \vec{\mathsf{u}} \in \mathsf{N}(\vec{\mathsf{u}}) \right)$ 14641 EX: $(\tilde{M}_{U}^{(4)} = |N(\tilde{u})+1| \sum_{u \in W_{U}} h_{u}^{t}$ (3) Transformation: set new note embedding as in of obl note emb. and aggrogeted into hy = fupsate (h(6) my)) Ex: $h_{\mathcal{V}}^{(t)} = \sigma \left(W^{(t)} m_{\mathcal{V}}^{(t)} \right)$

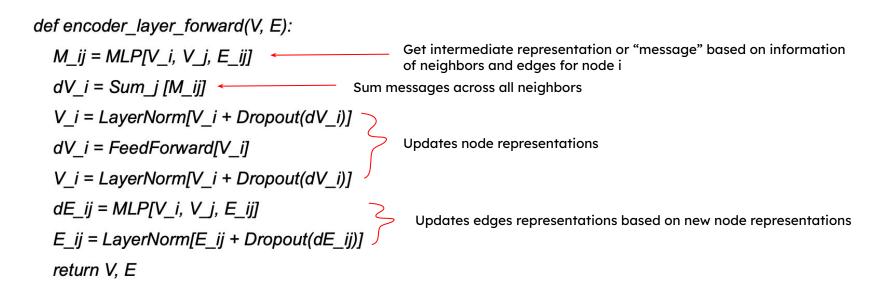


· Graph G= (V, E, X, W) -> V: vertices > E: edges -> X: node attributes - W: edge attributes

ProteinMPNN operates on structures represented as graphs

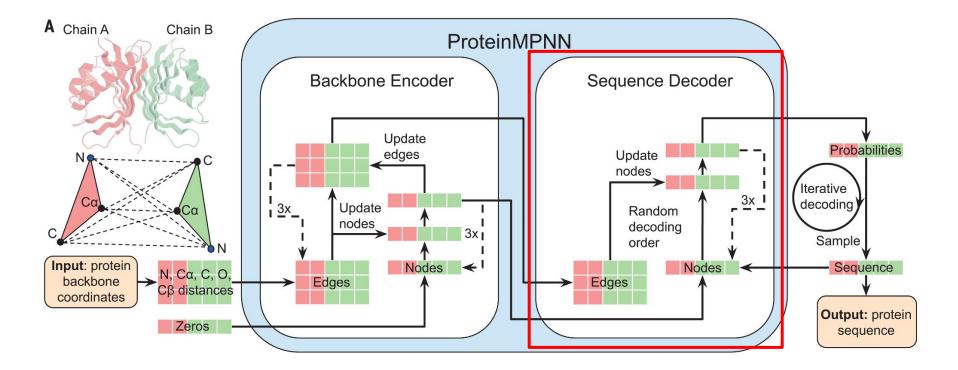


Pseudocode for the encoder layer (V - node features, E - edge features):



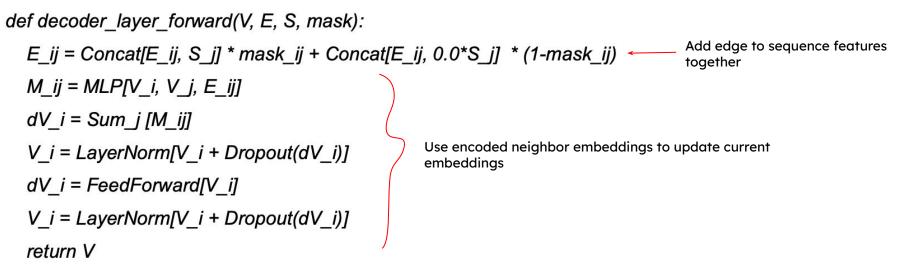
Encoder layer is repeated 3 times - propogate messages 3 neighborhoods away

ProteinMPNN operates on structures represented as graphs



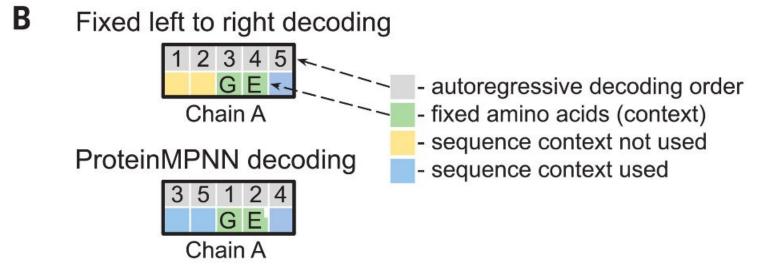
Pseudocode for the decoder layer (V - node features, E - edge features, S - sequence features, mask - autoregressive mask):

Use information about previous time step to predict at current step

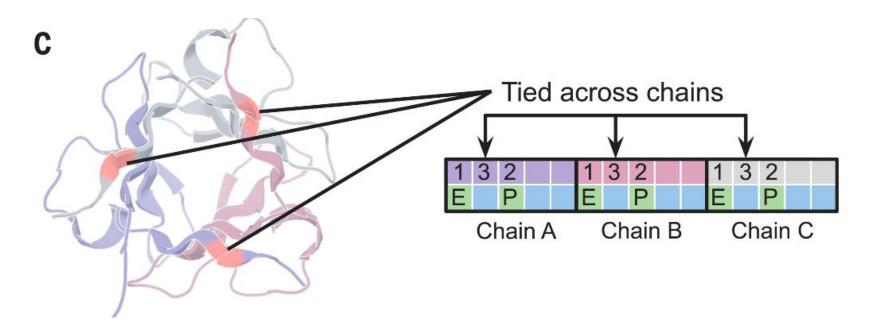


Decoder layer is repeated 3 times - get messages 3 neighborhoods away

ProteinMPNN uses random decoding order



ProteinMPNN uses positional coupling for multichain predictions



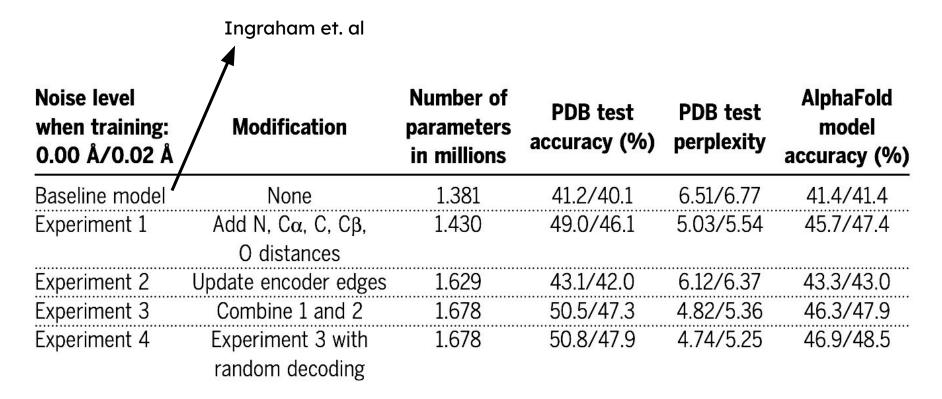
How was ProteinMPNN trained?

- Protein assemblies in PDB (X-ray or cryoEM)
- Random train, validation, test split (23358/1464/1529)
 - Different chains from one protein must be in same group
- Training Epoch
 - 1. Pick query sequence from training set
 - 2. For the query, pick a conformation
- Loss: masked negative log likelihood
- Evaluation: accuracy, perplexity, run time

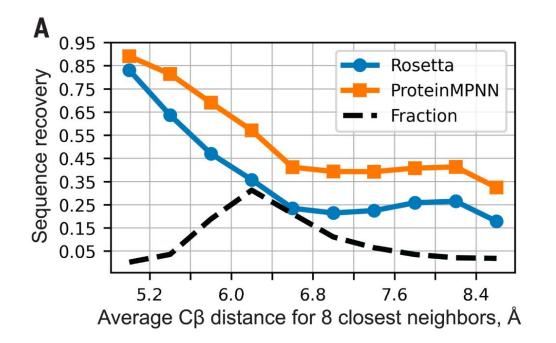
Results

(In-silico and experimental validation of ProteinMPNN)

Adding atomic distances as additional input features boosted performance

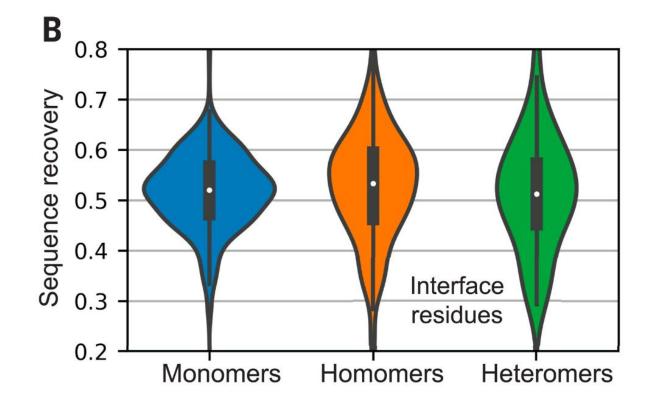


ProteinMPNN had higher overall native sequence recovery than Rosetta

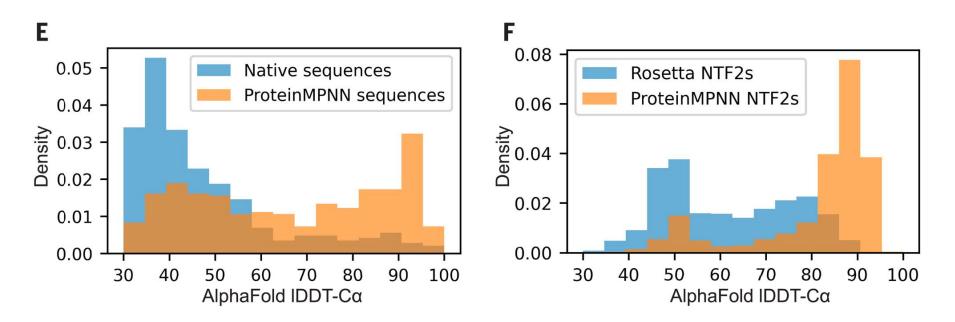


- Sequence recovery: 54.29% vs. 32.9%
- Run time: 1.2s vs. 258.8s (1 CPU for 100 residues)

ProteinMPNN performs well for different protein categories

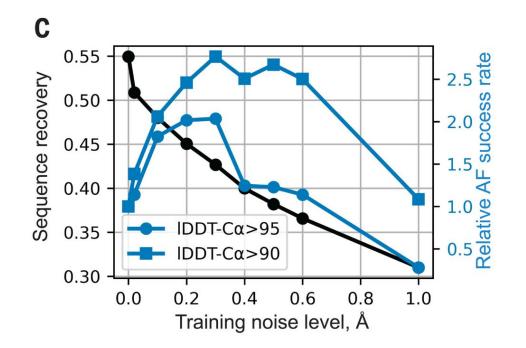


ProteinMPNN sequences predict native structures more effectively than native sequences



- Used AlphaFold to generate structures based native sequence (no MSA) and ProteinMPNN generated sequences
- Used AlphaFold to generate structures based Rosetta and ProteinMPNN sequences

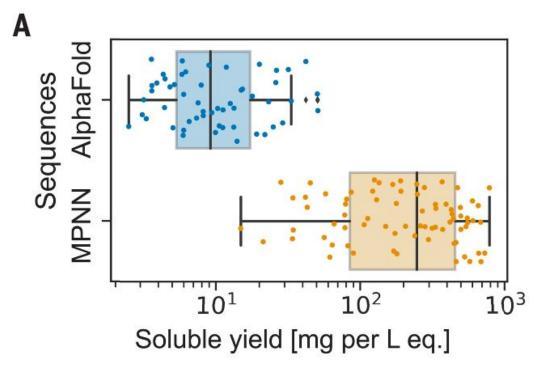
Adding noise helps inference of ProteinMPNN sequences



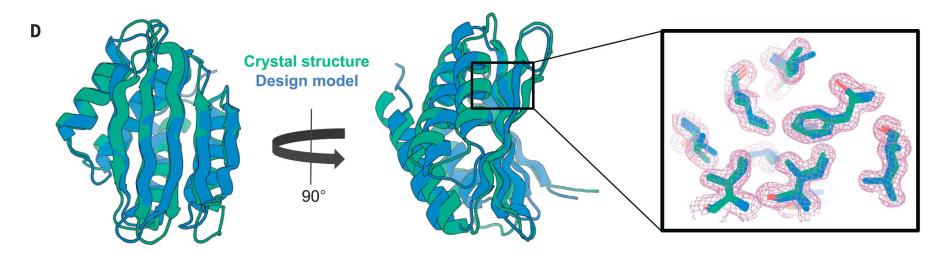
- Noise allows model to focus more on overall topological instead of local features
- More representative of real-world where true structure is not known at atomic resolution (aim is not necessarily to maximize sequence recovery)

Experimental validation

- Network hallucination by AlphaFold to produce backbone set
- 2. Monte Carlo to generate variety of AlphaFold sequences
- 3. ProteinMPNN to generate sequences
- 4. Express these proteins in E. coli

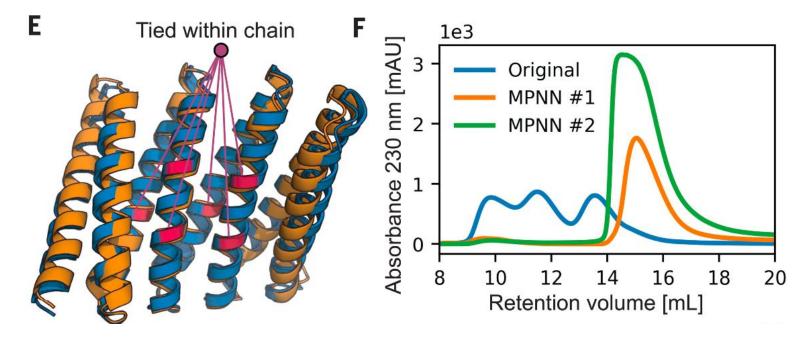


ProteinMPNN can solve crystal structure of proteins with "difficult" folds



- Design of a difficult protein structure with difficult fold structure (TM-score: 0.56)
- Crystal side chains in green, MPNN in blue
- Very close match suggests MPNN can design accurate sequences robustly

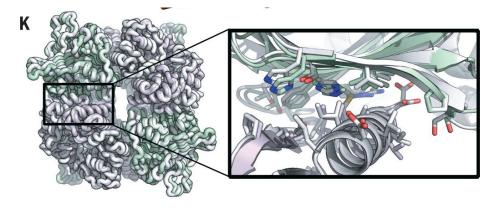
ProteinMPNN can design structural repeats more accurately than Rosetta



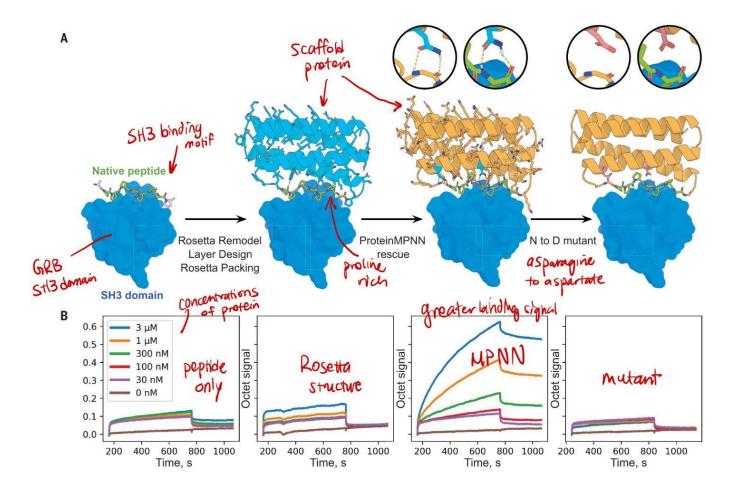
- Orange is backbone design and blue is MPNN
- Rosetta generates protein with many different components, whereas MPNN has one component (peak)

ProteinMPNN can rescue tetrahedral assemblies that Rosetta failed to design

- Designed 76 sequences spanning 27 of tetrahedral nanoparticle backbones
- Express in E-coli: 13 designs formed assemblies including new tetrahedral assemblies failed using Rosetta
- Close match for an example tetrahedral assembly (gray is crystal, green and purple is MPNN)



ProteinMPNN can rescue protein functions that Rosetta failed to design



Conclusion

Summary

- Protein design: finding optimal sequence from structure (inverse folding)
- Limitations of physics-based approaches (e.g., Rosetta)
- ProteinMPNN uses message passing, flexible decoding, tied positions
- High sequence recovery, rescued failed designs and functions, fast
- Robustness and efficiency is promising for protein design

