Lecture 4

Fall 2028



Course Logistics

Optional student-only “precept”, Tuesdays at 4:30p in CS 401.
Today:
 Protein structure determination and cryo-EM reconstruction
Next week 9/28: Protein language modeling — modified format!
 Flash talks (groups of 1-2) + guest instructor (Adam Lerer)

 (Very) short writing assignment

- More details and paper sign up by the end of this week (end of day Friday): https://docs.google.com/
spreadsheets/d/TWznSeVYRaCFk8cl zGpxKRhe5JM65TZ1 d-Ge29byuze4d/edit#gid=0

Oct 12: Protein design

Oct 19 (fall break): No class + Project proposal due

« Guidelines: https://docs.google.com/document/d/1bKyklL 9v-N-Yac1tBQCNiISCGQHsN5wZ5BQM77Do4WN4/
edit



https://docs.google.com/spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0
https://docs.google.com/spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0
https://docs.google.com/spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0
https://docs.google.com/document/d/1bKyklL9v-N-Yac1tBQCNi8CGQHsN5wZ5BQM7ZDo4WN4/edit
https://docs.google.com/document/d/1bKyklL9v-N-Yac1tBQCNi8CGQHsN5wZ5BQM7ZDo4WN4/edit

[Submitted on 11 Sep 2019 (v1), last revised 15 Feb 2020 (this version, v3)]

O
I h IS Iecltu re Reconstructing continuous distributions of 3D protein structure from cryo-EM
images

CryoDRGN  £)

Ellen D. Zhong, Tristan Bepler, Joseph H. Davis, Bonnie Berger

Encoder Decoder

« (Recap): Who went to John Jumper’s talk? _ e s
« CryoDRGN: Deep Reconstructing Generative Networks - St % encoding Reconstructed 3D FT
. Seminar e e
- Figure by figure
« Questions: Article | Published: 04 February 2021
. What did you think of the papers? CryoDRGN: reconstruction of heterogeneous

| cryo-EM structures using neural networks
« What are the differences between conference vs.

jOU rnal pa per? Ellen D. Zhong, Tristan Bepler, Bonnie Berger & & Joseph H. Davis
. Whois familiar with NeRFs and impIiCit neural Nature Methods 18, 176-185 (2021) ! Cite this article
representations? 31k Accesses | 171 Citations | 177 Altmetric | Metrics

- Any other thoughts/reflections?
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* Motivation: Why do we care about

protein structure?



Outline

.. The cryo-EM reconstruction task
* Motivation: Why do we care about

protein structure? -....

* Background: Cryo-EM reconstruction
& the heterogeneity problem

Continuously heterogeneous
hyper-objects in cryo-EM and 3-D
movies of many temporal dimensions

Roy R. Lederman* and Amit Singerf

April 11, 2017

Abstract

Single particle cryo-electron microscopy (EM) is an increasingly pop-
ular method for determining the 3-D structure of macromolecules from

e e e O o Cryo-EM structure of the SARS CoV-2 Spike protein

Walls et al, 2020




Outline

The cryo-EM reconstruction task

- Motivation: Why do we care about
protein structure? .....
* Background: Cryo-EM reconstruction

& the heterogeneity problem

- CryoDRGN: Neural 3D reconstruction
of dynamic proteln structure with

cryoDRGN trajectory of the SARS CoV-2 Spike protein

Zhong et al, Nature Methods 2021



Outline

CASP14 Results, Dec 2020

Motivation: Why do we care about -

200

protein structure? - AlphaFold2

140

120

Background: Cryo-EM reconstruction Next best
& the heterogeneity problem : “m“

Sum(Zscore=0.0)

20

0 TTrrrrrrrTrrT T
QOO WO ~,

CryoDRGN: Neural 3D reconstruction
of dynamic protein structure with
cryoDRGN - &

Future directions: Machine learning
for structure determination at the
proteome scale

https: //pdb101 rcsb. org/SC| art/goodsell gallery/escherlch|a -coli-bacterium



Il essential biological processes are carried out by proteins and
rotein complexes

Fundamental molecules of life
Medicine and health

Nanotech and biotech
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deacetylases
(HDACs)

PDB-101 Molecule of the Month

Goodsell et al. PLoS Biology 2015.



All essential biological processes are carried out by proteins and
protein complexes

... which are dynamic macromolecular machines

Spliceosome splicing cycle

singular

U6 snRNP U4/U6 di snRNP

Spliceosome assembly

meppp I:

snRNP recycling

Active : %J
Spliceosome ;

https://en.wikipedia.org/wiki/Spliceosome

cryoDRGN trajectory of the pre-catalytic spliceosome

Zhong et al, Nature Methods 2021



Techniques to study molecular motions are limited

0.0 ps

Nuclear magnetic resonance (NMR)
spectroscopy

Small proteins (<100 AA in length)

MD simulation of
SARS CoV-2

_ Spik
Electric field crystallography (EF-X), PIKE

multi-temperature and XFEL
crystallography

Requires sample crystallization

Computational modeling
Molecular dynamics simulations
Hacking AlphaFold?

Cryo-electron microscopy (cryo-EM)

e

D E Shaw Research




The ongoing cryo-EM “resolution revolution”

« 2017 Nobel Prize in Chemistry

« Cryo-EM has opened up new areas of
structural biology

e Recent hardware and software
oreakthroughs:

« Hardware: direct electron detectors

Abdella et al Science 2021

o Software: New reconstruction
. Growth of EM Archives 2021-12-22
algorithms, GPU compute

B EMDB maps [ PDB EM models
16,000

o Faster: Automation and democratization
of cryo-EM imaging

14,000
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10,000

8,000

« New computational challenges ana
opportunities
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Frontiers of single particle cryo-EM

Higher resolution structures

Small proteins

- Time-resolved cryo-EM

Large, dynamic complexes

(MDa scale, 10s-100s of proteins)

cPIC: GTFs TFIIH: Mat1
MedHead: Med6 Med8 Med11 Med20 Med27 Med28
MedMiddle: Med1 Med4 Med9 Med10

Med30
Med21 Med26 Med31

https://twitter.com/DanielHurdiss/status/1372659832780623872
, human ACE2 'A;;_i" ] ‘;7 :\ ‘ > %

Singde-particiec
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"
S1 200 resolutioe

November 2020
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! rv}"Omicron spike protein
) - ] e AU TR RRS AN e
Omicron spike protein

Omicron spike protein structure. Mannar et al bioRxiv, 2022



The cryo-EM image processing pipeline: From micrograph to
atomic coordinates

[Step O) Sample preparation and imaging]




The cryo-EM image processing pipeline: From micrograph to
atomic coordinates

[Step O) Sample preparation and imaging]

1) Microaraph pre-processin

Lok

Grigoreff, 2013
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Ingnts maps maps maps Quiputs
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o
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Tx7 kemel 55 kemael 5x5 karewl connected

Train CNN classifier with positive
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Topaz, Bepler et al, 2019



The cryo-EM image processing pipeline: From micrograph to
atomic coordinates

[Step O) Sample preparation and imaging]

1) Micrograph pre-processin 2) 2D to 3D reconstruction

104-107 images

Grigoreff, 2013

Feature feature Feature
Ingnats maps maps maps Qutputs
1831x31 2®13x13 64855 12881x1 |
o

Convelution Corwohtion
Strde 2 Strde 2 Convolution  Fully
Tx7 kemal 55 kemael 5x5 karewl connected

Region classes are taken
from particle labels

Train CNN classifier with positive
and unlabeled examples
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Topaz, Bepler et al, 2019
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Walls et al, 2020



The cryo-EM image processing pipeline: From micrograph to
atomic coordinates

[Step O) Sample preparation and imaging]

1) Microaraph pre-processin

N
ﬁ

O

~—

Q3_D reconstruction 3) Atomic model fitting

4-107 images

Grigoreff, 2013

Feature feature Feature
Ingnts maps maps maps Quiputs
1831x3] 21313 64855 12881x]

Convelution Corwohtion
Strde 2 Strge 2 Convolution  Fully
Tx7 kemel 55 kemael 5x5 karewl connected

Region classes are taken
from particle labels

Train CNN classifier with positive
and unlabeled examples

Topaz, Bepler et al, 2019
Walls et al, 2020



Single particle cryo-EM image formation

. A purified solution of the molecule is fixed in a
thin layer of vitreous ice

.+ Each cryo-EM image X : R? > Risa
tomographic projection of a volume k.
VR’ >R

X(x,y) = PSF* T, * JV(RT(X, v,2)D)dz + noise

orojection

T 3D rotation by R € SO(3) hages

In-plane shift by t € R?

Microscope point spread function




The cryo-EM reconstruction task

Goal: Reconstruct a volume V : R? - R describing a molecule's 3D structure from a set of noisy projection
images X, ..., Xy each containing a copy of V captured from an unknown pose ¢, € (SO(3) X R?)

v p A
£ sl

o [EIA-10028]
Challenges
e Unknown particle poses
e Low signal to noise ratio
e Image degrading filters in microscopy
e Discretization of the measurements

Wong et al. 2014



The cryo-EM reconstruction task

Goal: Reconstruct a volume V : R? - R describing a molecule's 3D structure from a set of noisy projection
images X, ..., Xy each containing a copy of V captured from an unknown pose ¢, € (SO(3) X R?)

o [EMIA-10028]
Challenges
e Unknown particle poses
e Low signal to noise ratio
e Image degrading filters in microscopy
e Discretization of the measurements
e The heterogeneity problem

Wong et al. 2014



The Fourier slice theorem

“The Fourier transform of a 2D projection of a volume is a central slice out of the 3D
Fourier transform of the volume, perpendicular to the projection direction.”

3D Fourier Transform

2D FFT
e
et 2D IFFT
F Slice 1
2D FFT
———
———— /ﬁ
projection 2D IFFT Slice 2

50S \

ribosomal N 2D FFT
subunit /‘\ =
I <—

2D IFFT

Slice M

3D Inverse Fourier Transform?

Wang, Shkolnisky, & Singer arXiv. 2013



Traditional homogeneous reconstruction algorithms

Goal: Find the 3D structure V, that maximizes the

3D Fourier Transform

likelihood of data x = {xy, ..., Xy}, marginalizing

over unknown poses { ¢, } 2D FFT
N | ///‘7 2D IFFT  SHESEH 7o
Vo =] (5 i Vol
p( | 9 p 1’ l 9 l 2D FFT insert slice
T Js03)xR2 - — ——
. %
projection 2D IFFT Slice 2 extract slice
E-step: Estimate {¢,} with fixed V,
M-step: Estimate V, with fixed {¢);} ‘ \ | &
505 N
i N 2D FFT < &
i) N S
| <— et
| 2D IFFT
| Slice M

3D Inverse Fourier Transform?

Wang, L., Shkolnisky, Y., & Singer, A. arXiv.org. 2013



Traditional homogeneous reconstruction algorithms

Goal: Find the 3D structure V, that maximizes the

3D Fourier Transform

likelihood of data x = {xy, ..., Xy}, marginalizing

over unknown poses { ¢, } 2D FFT

= \\is/’&‘s
HN ///ﬁ 2DIFFT Slice 1 G*s
—_— S//gb
p(X | VH) o I p(xl’ ¢l ‘ Ve)d¢l 2D FFT insert slice
7 JSO(3)XR2 Tt i neert sl
¢‘ projection 2D IFFT Slice 2 extract slice
E-step: Estimate {¢,} with fixed V, & L |
M-step: Estimate V, with fixed {¢);} \ &
riboso?:gsl A \ 2D FFT | .\(\6*// (}6\\(’6
Many state of the art software packages: subunt % b oy
| 2D IFFT
RELION: Bayesian formulation for MAP . Slice M

estimation proposed by Sjors Scheres [JSB 2013] | |

3D Inverse Fourier Transform?

CryoSPARC: Stochastic optimization techniques
proposed by Punjani, Rubinstein, Fleet, Brubaker Wang, L., Shkolnisky, Y., & Singer, A. arXiv.org. 2013
[CVPR 2016, Nat Methods 2017]



“The heterogeneity problem”

[ ] [ ]
A typical cryo-EM processing workflow
) Dataset 1 Dataset 2
¥\, . Global classification 18,279 micrographs
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Each image contains a unique molecule

- The ability to image heterogeneous structures is a major
opportunity in cryo-EM

eeeeeeeeeeeeeeeee

- Standard approaches for heterogeneous structures include:

- Discarding heterogeneous data o e BT

Out: 2 structures (372k images)

- i
ey
3 G5

« Multiclass reconstruction — a discrete mixture model of K
iIndependent structures

- The identification and analysis of heterogeneity — especially
continuous forms — is an open problem in cryo-EM
reconstruction.

Continuous heterogeneity: See Lederman & Singer 2017 Ghanim et al. Nature 2021



Research Question

Can we design a modern machine learning method for

heterogeneous cryo-EM reconstruction?




CryoDRGN ' £): Deep Reconstructing Generative Networks

Task: 3D reconstruction Contribution:
from unlabeled 2D images S

NN e

positional code

MLP

3D structure
(Fourier domain)

* A new paradigm for heterogeneous cryo-EM reconstruction
based on deep generative models

* Addresses a major open problem in the field of
reconstructing continuous heterogeneity

* Introduced a neural field representation of 3D structure that
nas shown broad applicability in computer vision (e.g. NeRF)

Zhong, Bepler, Davis, Berger, ICLR 2020 Spotlight



Autoencoders and Variational Autoencoders (VAES)

The autoencoder is a nonlinear, dimensionality reduction technique

Input image Reconstructed image
A compressed, low

dimensional representation

—

z X

\

Encoder Decoder




Autoencoders and Variational Autoencoders (VAES)

The autoencoder is a nonlinear, dimensionality reduction technique

Input image

A compressed, low

dimensional representation

U

Encoder

N
/

J—
— Py —
\

Decoder

Reconstructed image

The VAE extends the Ak as inference of a probabilistic model — “a regularized autoencoder”

gVAE(X; 99 5) —

Reconstruction error

= 0ll0g p(X | 2)] — KL(gz| X) | | p(2))

Regularization



CryoDRGN  #): Deep reconstructing generative networks

Unsupervised learning of a deep generative model of 3D biomolecular structures from 2D cryo-EM images
1.  We develop coordinate-based neural networks to directly approximate the 3D structure
2. Fourier space image encoder-volume decoder architecture based on the variational autoencoder (VAE)

3. Exact inference for pose and variational inference for heterogeneity

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous
function, V: R - R

Traditional algorithms cryoDRGN

k — (kx, ky, kz)
O >

3D Cartesian coordinate Cryo-EM density

Multilayer Perceptron
(MLP)

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous
function, V: R - R

Traditional algorithms cryoDRGN
k = (kx, ky, kz) 7o V(k)
(o AT |
AT e
; ' R AH|
W S P
{’— ) : ‘{'.J/,'
2 4
3D Cartesian coordinate Cryo-EM density
Multilayer Perceptron
(MLP)

CryoDRGN structures are parameterized as a neural network instead of a voxel array

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous
function, V: R - R

Traditional algorithms cryoDRGN

[
T T em=—rT 1 1 || | |

m T k= (k, ky, k) b, VI
' o r\)/: o
— () sy
Y =4
4 }~7 ; b-’f,’
3D Cartesian coordinate Cryo-EM density
Multilayer Perceptron
(MLP)

Positional encoding function

pe? (k;) = sin(k;Dn(2/D)*/P), i =1,..,D/2;k; € k

J

pe PtV (k:) = cos(k;Dm(2/D)*/P), i=1,...,D/2:k; € k

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous

function, V: R> - R

—

#) JonBarro

¢ .

Well this is pretty exciting, Wired's cover story today is
about NeRF!

A New Trick Lets Artificial Intelligence See in 3D

cryoDRGN

k = (kx, le kZ)

o—())—

3D Cartesian coordinate

Multilayer Perceptron
(MLP)

Positional encoding function

pe? (k;) = sin(k;Dn(2/D)*/P), i =1,..,D/2;k; € k

2D (k) = (f()s(/a",-DW(‘Z/D)'z'f/D), i =1,...,D/2;k; € k

pe

Cryo-EM density

Also see:
NeRF, Mildenhall et al. ECCV 2020

Zhong et al. ICLR 2020. Spotlight



A sinusoidal encoding to featurize input coordinates

A toy example: Use an MLP to learn an image

s1n(yyx)
(X,y) — COS(VO X)




sinusoidal encoding to featurize input coordinates

A toy example: Use an MLP to learn an image




A sinusoidal encoding to featurize input coordinates

A toy example: Use an MLP to learn an image

) —

Ground truth No sinusoidal encoding




A sinusoidal encoding to featurize input coordinates

A toy example: Use an MLP to learn an image

S

y

Ground truth No sinusoidal encoding With sinusoidal encoding




Latent variable models for heterogeneous structures

Multiclass refinement cryoDRGN

V;, where zin {1,2,3...,K} |
Latent variable vector

Z

k=(kx, ky, kz)

o—()—

3D Cartesian ML P
coordinate

cryo-EM density

e Manual selection of K and initial volumes
e Typically, K<10

Zhong et al. ICLR 2020. Spotlight



CryoDRGN'’s continuous latent variable model

 Extend the neural representation of cryoDRGN generative model
volume with a conditional latent
variable model

Continuous N-D
latent space

.

* Encodes a N-dimensional continuous
distribution over strutures

k=(kx, ky, kz)
O

Cartesian coordinate MLP Cryo-EM density

Zhong et al. ICLR 2020. Spotlight



CryoDRGN'’s continuous latent variable model

 Extend the neural representation of cryoDRGN generative model
volume with a conditional latent
variable model

Continuous N-D
latent space

.

* Encodes a N-dimensional continuous
distribution over strutures

* How to learn such a model from
data?

k=(kx, le kZ)

=-EmemEsm s E-

- N
- N
- N
- N
- N
f‘ ~§
- ~

Cartesian coordinate MLP Cryo-EM density




CryoDRGN'’s overall architecture

We propose a Fourier domain image encoder - volume decoder architecture based on the VAE

Image encoder Volume decoder

latent code
V4
| | Z _>
+ concatenate

Input Image Reconstructed 3D volume

(Fourier space) (Fourier space)

k= (k,k,k)

E I

2l

<

o
positional code

Oriented 3D pixel
coordinates

The decoder reconstructs an image pixel-by-pixel given z and the 3D coordinates of the pixels

Coordinate-based volume architecture enforces geometric consistency between 2D views (Fourier slice theorem)



CryoDRGN'’s overall architecture

We propose a Fourier domain image encoder - volume decoder architecture based on the VAE

Image encoder Volume decoder

latent code
Z
| | Z _>
F'”IOl{t image + concatenate Reconstructed 3D volume
(Fourier space) (Fourier space)
)
 k=R'(G,;0)] 8
b=QR D) — 5 — [l —O—
B
S

Oriented 3D pixel
coordinates

To obtain oriented 3D pixel coordinates, a coordinate lattice on the x-y plane is rotated by R

For each image, we need to approximate its pose ¢ = (R, t). How?



Possible paradigms for pose inference

+ Amortized variational inference [1]

¢; ~ q§(¢ | X)

+ Gradient descent [2]

p" =" —aV,L(p)

* Distribution matching/GANSs [3]

argmin D(p;, (X | V), P (X))
%4

[1] Spatial-VAE Bepler et al. NeurlPS 2019; Rosenbaum et al, 2021; CryoPoseNet Nashed et al, 2021; CryoAl Levy et al 2022; CryoFIRE Levy et al 2022
[2] NeRF-- Wang et al, arXiv 2021; [3] CryoGAN Gupta et al, 2021



Spurious local minima in the training objective

Ground truth poses

(noiseless)

Example image

Amortized Variational Inference Pose SGD

b ~ g1 X) PO = 0 — oV, L(h)



Search algorithms for inference of image pose

Instead we perform a global search over a
discretization of SO(3) x R? for the MLE pose for
each image X; given the current decoder V,,

A hierarchical search procedure:

Start with an exhaustive search over a
discretization of the 5D space of poses

A uniform discretization of SO(3) with the
Hopf fibration, regular 2D grid for in-plane
translations

Iteratively refine the poses by keeping the top K
poses that minimize the reconstruction loss

Choose K via a branch-and-bound
procedure’

[1] cryoSPARC; Punjani et al 2017

argmaxy p(X;|Vy)

576 orientations

! i ]

/X7 in-plane translations

4 608 orientations

36,864 orientations

196 in-plane translations

/84 in-plane translations



Search algorithms for inference of image pose

Instead we perform a global search over a
discretization of SO(3) X R? for the MLE pose for argmaxgb, p(Xl ‘ VQ)
l

each image X. given the current decoder V,

Freq uency ma rchi ng1 . 576 orientations 4,608 orientations 36,864 orientations

Band limit the loss function to low frequency
components

Benefit 1: Computational efficiency

Benefit 2: Prevent overfitting

! i

/X7 in-plane translations 196 in-plane translations 784 in-plane translations

[1] Barnett et al. 2016



Spurious local minima in the training objective

Ground truth poses

(noiseless)

Example image

Amortized variational inference Pose SGD Hierarchical search

°
¢

b ~ g1 X) HOD = ) — oV, L)




Pose search: Traditional vs. neural

Cou1 Cii1
Traditional O
/ Ci10
| c
N COOO 100
//\ Each off-voxel point is computed as the weighted
average of its 8 spatially closest neighbors

cryoDRGN

MLP

Each off-voxel point is computed by evaluating the MLP

cryoDRGN models are much more expensive to evaluate



CryoDRGNZ2: Ab initio heterogeneous reconstruction of real data

(e) Training schedule

I:Il:III:IIII:IIIIl:IIIII:-IIIIIIIII:IIIII:IIIII:IIIII:IIII
- Pose search epoch - Volume update epoch Model reset

cryoDRGNT cryoDRGN, pose superv's'cm cryoDRGNz

Training time:  38.3 hours (1 GPU)
Zhong, Lerer, Davis, Berger. ICCV 2021



Analyzing the generative model

CryoDRGN at test time:
- Use the encoder network to evaluate the latent embedding z for each image

View empirical data distribution
in l[atent space

encode

Latent space
representation



Analyzing the generative model

CryoDRGN at test time:
- Use the encoder network to evaluate the latent embedding z for each image

#0

encode

View empirical data distribution
In latent space

Zi

Latent space
representation

- Use the decoder network to generate V at different values of z
Representative sa

View the structural ensemble
and generate movies from

trajectories in latent space

w
{

& ' decode

Latent space
representation




Analyzing the generative model

CryoDRGN at test time:
- Use the encoder network to evaluate the latent embedding z for each image

View empirical data distribution
in l[atent space

Latent space
representation

- Use the decoder network to generate V at different values of z

Continuous trajectories

View the structural ensemble
and generate movies from
trajectories in latent space

decode

Latent space
representation



Analyzing the generative model

CryoDRGN at test time:
- Use the encoder network to evaluate the latent embedding z for each image

View empirical data distribution
in l[atent space

Latent space
representation

- Use the decoder network to generate V at different values of z

Particle selection ﬁ Continuous trajectories

subset.star
Validation with Dataset
traditional tools filtering

decode

Latent space
representation




UMAP2

CryoDRGN: Applications and software

* Released as an open source software tool for training cryoDRGN models and
interpreting results

Discovery of new structures Visualization of continuous dynamics

CryoDRGN latent space

PC2

0
PC1

UMAP1

Published 3D classification, major states

A OB e(C eD eof

Zhong, Bepler, Berger, Davis, Nature Methods 2021



CryoDRGN software

Software Pipeline

1. Preprocess inputs

S cryodrgn downsample -h
$ cryodrgn parse ctf star -h
S cryodrgn parse pose star -h

2. Training

S cryodrgn train vae -h

3. Analysis

# Analysis pipeline
S cryodrgn analyze -h

# Making movies
$ cryodrgn pc traversal -h
$ cryodrgn graph traversal -h

Tutorial

cryoDRGN EMPIAR-10076 tutorial

Preparing cryoDRGN inputs
Step 1) Obtain the dataset
Step 2) Consensus reconstruction (optional)
Step 3) Preprocess inputs
Step 3.1) Convert poses to cryoDRGN format
Step 3.2) Convert CTF parameters to cryoDRGN format
Step 3.3) Downsample images
CryoDRGN training
General recommended workflow
Step 4) CryoDRGN initial training
Extending or restarting from a checkpoint
Overview of cryoDRGN analysis
Step 5) cryodrgn analyze
What's in the analysis directory?
Visualization of the latent space
Sampled density maps
PC trajectories
Step 6) Particle filtering with the cryoDRGN Jupyter notebook
Step 6.1) Accessing the jupyter notebook
Step 6.2) Run the jupyter-notebook for particle filtering
Baseline: Published filtering results
Step 6.3) Filtering by GMM cluster label
Alternative method: Filtering by z-score
Alternative method: Filtering with an interactive lasso tool
View the raw particles
Saving the selection
(Additional Functionality) Writing a new .star file

(Additional Functionality) Extracting a new particle stack

Step 7) CryoDRGN high resolution training

Now described in: Kinman, Powell, Zhong,
Berger, Davis. Nature Protocols 2022.

O PyTorch

Enhancements and integrations

Suggestions wanted for cryoDRGN map and plot visualization in ChimeraX
#134
tomgoddard opened this issue 24 days ago - 6 comments

tomgoddard commented 24 days ago @ oo

Assignees

. . L . . . . . . N —assi
I'm making a cryoDRGN visualization tool in ChimeraX and am interested in any suggestions users have about what it should © oneassign your

do. So far it shows the umap plot and the maps computed by "cryodrgn analyze" on as points that plot and you can click on

the points to see the map in the 3D view. You can cycle through the precomputed maps with a slider. | think it will be nice to Labels
allow computing new maps by clicking a point on the plot and morph between pairs of precomputed maps, and maybe make None yet
movies along paths drawn on the plot. Please add comments if you have other suggestions. Thanks!

Projects
Home Molecule Display Nucleotides Graphics Map Medical Image Markers Right Mouse
== None yet
w5 ©O©
@D g SS @ /0L 1M ELM &
Open s: Snapshot  Spin Show Hide : Show Hide @ Show Hide : Stick Sphere Ball wi imp!
movie stick
File Images Atoms Cartoons Surfaces Styles Milestone

cryoDRGN Viewer

cryoDRGN results directory icsf/data/cryodrgn/analyze.41 Browse Open No milestone

Development

Create a branch for t

Notifications

1 P}
You're receiving noti
watching this reposit

Vineet Bansal
Michal Grzadkowski
Princeton Research

Computing
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- Future vision



Heterogeneous reconstruction of a model protein complex
containing 1 degree of freedom

We generate a model protein complex containing one continuous degree of freedom
100 atomic models varying one dihedral angle

500 randomly oriented projections of each model, yielding a total of 50k projections

100 models



Heterogeneous reconstruction of a model protein complex
containing 1 degree of freedom

We generate a model protein complex containing one continuous degree of freedom
100 atomic models varying one dihedral angle

500 randomly oriented projections of each model, yielding a total of 50k projections

Can we reconstruct this continuum of conformations? i

100 models



The predicted latent code correlates with the true reaction
coordinate

ADb initio cryoDRGN, |z]| =1

Latent embedding z

0 10000 20000 30000 40000 50000

Ground truth reaction coordinate



CryoDRGN can reconstruct a continuum of structures along the
true reaction coordinate

Ab initio cryoDRGN
10 structures generated from latent representation
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CryoDRGN can reconstruct a continuum of structures along the
true reaction coordinate

Ab initio cryoDRGN
10 structures generated from latent representation

-
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CryoDRGN can reconstruct a continuum of structures along the
true reaction coordinate

6
N
_g)) 24
Ab initio cryoDRGN 9
N
10 structures generated from latent s
representation e
- _O 1O(I)00 20(I)OO 30(I)00 4O(I)OO 50000
true reaction coordinate
|t A
cryoSPARC discrete < &‘@N A e
multiclass reconstruction _ oo
q) -t
K=3 classes 5 15000
B § 10000 -
4 5 r‘/‘ . +H
\ S ’z:\}’ 5000 -

¥ - 0 T T T
V'\ 1 2 3
| class

Zhong et al. ICLR 2020 Spotlight



Heterogeneous reconstruction of a model protein complex with
continuous motions

Ground truth Ab initio cryoDRGN, |z| =10
10 structures sampled
along latent space

25000 A

- 100 atomic models varying
one dihedral angle

20000

cryoSPARC discrete

* 500 randomly oriented multiclass reconstruction
projections of each model K=3 classes

15000

10000

# images

5000 —

- 50k projection images

class

Zhong et al. ICLR 2020 Spotlight



Additional datasets with more complex latent structure

Linear 2D Circular 1D

Discrete 10 class

PC2
PC2

PC1 PC1

Reconstruction accuracy quantified by an
FSC=0.5 resolution metric between

predicted and ground truth volume
(Lower is better; best possible is 2 pixels)

o

<

S

D
Dataset cryoDRGN
Linear 1D motion 2.50
Linear 2D motion 4.44
Cer}JIar 1D 3.86
motion
Discrete 10 class 4.95

cryoDRGN
+ tilt pairs

2.35
2.93
2.63

2.58

UMAP1

cryoSPARC
3.60
6.90
4.87

5.69

Zhong et al. ICLR 2020 Spotlight



Roadmap

Motivation and background
CryoDRGN: Deep Reconstructing Generative Networks
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CryoDRGN reconstructions of real data
Uncovering residual heterogeneity in high resolution “homogeneous” datasets

Discovering new states of the assembling ribosome

Reconstructing continuous motions of the pre-catalytic spliceosome

Future vision



Homogeneous reconstruction of the Pf80S ribosome bound to the
anti-protozoan drug emetine

. 3.2 A homogeneous reconstruction from 105k
cryo-EM images (EMPIAR-10028)

- Difference map between structures with and
without EME identified its binding site

- Lower local resolution in head group of small
subunit and peripheral regions

40S
CP

\M}o LIFE

Cryo-EM structure of the Plasmodium
falciparum 80S ribosome bound to the
anti-protozoan drug emetine

Wilson Wong'?', Xiao-chen Bai®', Alan Brown®', Israel S Fernandez?, Eric Hanssen?,
Melanie Condron'?, Yan Hong Tan"?, Jake Baum'?*¥, Sjors HW Scheres®*

N

Tunnel

EME

exit

Wong et al 2014



CryoDRGN'’s neural model can learn high resolution cryo-EM
density maps

Train the cryoDRGN decoder (with no latent variable input) on images from EMPIAR-10028

Neural network representation Voxel-based representation

3.2 A GSFSC

80S ribosome
EMPIAR 10028

1024x10 architecture

50 A
50 epochs Zhong et al., Nature Methods 2021



Achievable resolution is bounded by image size and model
capacity

* The representation capacity of a cryoDRGN model is affected by:
- Architecture
- Fourier featurization, see Tancik et al. NeurlPS 2020
- Latent variable dimension (for heterogeneous reconstruction)

- Inverse tradeoff between architecture size and training speed

1.0
5 better
1.24 o 0.8 - Architecture
th — 128x3
S 0.6 - 256x3
§ 1.23 — [ === —— 512x3
° S 0.4 - —— 1024x3
U: 1024x10
1.22 - < 0.2 -
S S —
S
I | | I 0.0 | | I )
0 5 10 15 20 25 1/13.4 1/6.7 1/4.5 1/3.4 1/2.7

epoch 1/resolution (1/A)

Zhong et al., Nature Methods 2021



Advanced methods for heterogeneity analysis

*  Multi-body analysis’: Motions between B rigid bodies

Ribosome \
Eigenvector #1

B
Image X; = CTF;( Y Py, V, | +N;,
b=1

*  cryoSPARC 3DVAZ: Linear interpolations between “eigenvolumes"

Image X; = o;C; P(¢;)V(2;) +n

K
= o;C; P(¢;) (Vo + Z Zikvk) T

k=1

1 Nakane et al. eLife 2018; 2 Punjani & Fleet, JSB 2021 https://cryosparc.com/docs/tutorials/3d-variability-analysis/



https://cryosparc.com/docs/tutorials/3d-variability-analysis/

Discovering residual heterogeneity of the Pf80S ribosome
[EMPIAR-10028]

CryoDRGN latent space: 20 sampled structures:

<5 | |zl =10 - Subset of images separated by PC1 correspond to the 40S

10 -5 0 5 0 15 20 subunit in a rotated state
PC1 (EV: 0.16)

Many heterogeneous elements in the large and small subunit

Zhong et al., Nature Methods 2021



Variation in 40S SSU is consistent with other methods for
heterogeneity analysis

CryoDRGN, co

—10 0 10 20

PC1
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Learning ribosome assembly landscapes [EMPIAR-10076]

Modular assembly of the bacterial large ribosomal subunit (LSU)
Dataset: 131k cryo-EM images of a mixture of LSU assembly intermediates

4 major and 13 minor states of the LSU identified from hierarchical multiclass reconstruction

ple images

[EMPIAR-10076] T .13 distinct structures
i . ~4-5 A resolution

Davis et al. Cell 2016



Learning ribosome assembly landscapes [EMPIAR-10076]

Modular assembly of the bacterial large ribosomal subunit (L SU)

Dataset: 131k cryo-EM images of a mixture of LSU assembly intermediates
4 major and 13 minor states of the LSU identified from hierarchical multiclass reconstruction

M

Latent embeddings from cryoDRGN

6 -
10.0 - -
|z| =10
75 4 I 4 -
5.0 - !
~~
© 2- .
— 8 N
@) 25 1 [ ol
) ——
N < o;
(O 00- ~ =
al D)
-25 ] Sl
5.0 - ! 4 -
-75
_6 g
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Learning ribosome assembly landscapes [EMPIAR-10076]

Modular assembly of the bacterial large ribosomal subunit (LSU)

Dataset: 131k cryo-EM images of a mixture of LSU assembly intermediates
4 major and 13 minor states of the LSU identified from hierarchical multiclass reconstruction

-----------

CryoDRGN latent space

UMAP2

|z| =10

UMAP1

Published class assignment, major states
A o8B oC oD oE

LSU assembly class D LSU assembly class E



Clusters in the latent space vs. expert-driven hierarchical classification

Cl

C2

‘@
C3 D1 D2 D3
& e (o
1|[A 2 . E ’ »
Q. A $
% :E) D4 El E2 E3
$ R
® || s | D
&
E4 ES5
9
)
UMAP1 UMAP]

Published 3D classification, minor states

® - ®s ®@ci ©O©cc @c3 @b @np2
@03 O @1 @2 O3 @OEs E5




Additional samples from the latent space

the 70S ribosome

UMAP2

UMAP1

E class minor assembly states




1/16.4

0.4 1

0.2 A

0.0

samples from the latent space

Additional

1/

ly states

b

|INOI' dSSEe

D class

UMAP1

Adapted from Figure 5, Davis et al 2016



Discovery of a new assembly state, C4

- -

CryoDRGN latent space

UMAP2

UMAP1

Published 3D classification, major states
oA eB oC oD oE




Discovery of a new assembly state, C4

- -

CryoDRGN latent space

UMAP2

UMAP1

Homogeneous refinement

Published 3D classification, major states
oA eB oC oD oE
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Structure of the pre-catalytic spliceosome

Sub-complexes resolved separately through Multibody refinement
many rounds of focused classification

Resolution (A)

3.5 45 5.5 6.5 >7.5

User-defined
rigid bodies

Spliceosome = #7iL
Eigenvector #1 |

Front view Right side view

Plaschka, Lin, & Nagai. Nature 2017 Nakane et al. elLife 2018



Structure of the pre-catalytic spliceosome

Sub-complexes resolved separately through
many rounds of focused classification

@,
2
>

cryoSPAR

Resolution (A)

Front view Right side view

Punjani & Fleet. JSB 2021

Plaschka, Lin, & Nagai. Nature 2017



Reconstructing continuous motions of the pre-catalytic
spliceosome [EMPIAR-10180]

Trajectories along principle component axis of the latent space show variability within dataset

10

PC2

-10

cryodrgn pc traversal

Caveat: Interpolation along PCs can produce nonphysical motions e.g. under compositional heterogeneity and in
general when the data distribution is not supported along the interpolation path



Generating trajectories with a graph traversal algorithm

cryodrgn graph traversal

10

PC2
o

=10

-10 -9 0 5 10
PC1

Graph traversal algorithm along latent
embedding nearest-neighbor graph

- Explore the learned distribution



CryoDRGN interactive analysis

In the generative modeling paradigm, cryoDRGN can reconstruct an
arbitrary number of cryo-EM volumes.

How do we analyze the resulting ensemble of structures?




CryoDRGN interactive analysis

In the generative modeling paradigm, cryoDRGN can reconstruct an
arbitrary number of cryo-EM volumes.

How do we analyze the resulting ensemble of structures?

The cryoDRGN jupyter notebook is a web application that allows
exploratory data analysis:

- visualization of the latent space embeddings

* visualization of images

* generation of new volumes

C (| @ localhost:8889/notebooks/cryoDRGN_viz.ipynb

: Ju pyter cryoDRGN_Viz Last Checkpoint: 11/06/2020 (autosaved)

File Edit View Insert Cell Kernel Widgets  Help

CryoDRGN visualization and analysis

This jupyter notebook provides a template for analyzing cryoDRGN results, including

import pickle
sssssssssssssss

from cryodrgn import analysis

import matplotlib.pyplot as plt

ata analysis, and not a polished Ul. Experience with Python/Pandas is recommended

oa v B s =@ (u
# Logout
d | Python 3 O



Interactive filtering of non-structural imaging variability

Non-structural imaging variability (e.g. junk particles, ice artifacts, peripheral particles) may interfere with

optimization and representation learning

Interactive lasso tool

4
46565 285471
(LT ST L TE S L B T P
2 ks :
. 54864
0
:

UMAP2

76382

16356

133464
T T TR T

10

160681

350369




CryoDRGN reconstruction of the SARS CoV-2 spike protein

Dataset and training details:
* Walls et al 2020

* 276k particles

* D=256, large architecture
* 25 epochs

* 4 GPU training, 10 hr total

20 sampled structures Graph traversal trajectory



Towards automated analysis of the structure distribution

Dataset: Structural basis of ClpXP recognition and

unfolding of ssrA-tagged substrates
Fei et al. 2020, eLife

cryodrgn pc traversal

cryoDRGN latent space

Xue Fei Bob Sauer

UMAP] Intermediate <-> Recognition complex



Towards automated analysis of the structure distribution

Dataset: Structural basis of ClpXP recognition and

unfolding of ssrA-tagged substrates
Fei et al. 2020, eLife

Bob Sauer

Xue Fei

cryoDRGN latent space

| with substrate

"trash? much weaker '

with nucleotide

intermediate
fully loaded

Brmediate comqex

intermediate complex but fy

lly loaded

cryodrgn pc traversal

Intermediate <-> Recognition complex



Extending the cryoDRGN toolkit with a scalable structural landscape
analysis: cryodrgn analyze landscape

Mapping interpretable reaction coordinates

How can we gain insight from high-
. . . . particles
dimensional biological datasets? g
. ...t: . S 2500
XS] e =
g R E. :
§ 5 S -.;{' -..':‘."."_,,-. % 1500
2 ..:“.k ® .:'o ot 'v.:°. e _O
% | W it W |
o o “o‘.‘&“o.’o ...“.o.. @)
T T T T T O ..'3 .k‘....; 2 $ ' A P o ’ L 500
: @ % * &
trash? much weaker ‘.‘...’,*.: s ot o S oo
ClpX . ' IR 1
Intermeaiate compiex but ."Jlly Ooaded ¢ PRI
8 5 th nucleotide 7 -100 -75 50 -25 00 25 5.0 75 100
_ N Intermediate <-> Recognition
intermediate . O\)‘:‘; Intermediate <-> Recognition
fully loaded O(\’(_\(\\)
6 4 With substratessy i O . .
, fully loaded Identification of rare states
Bund taller
a
<4 . i
= recogninon
=~ very cled
21 ' discrete ; -
8.5 A, 1,255 particles
0.3% of the dataset
0- __ -
ermediate comqex
0 2 4 : 8 10

Available in cryoDRGN 1.0



Summary

Unsupervised reconstruction of a continuous
distribution of protein structures from cryo-EM images

Latent code

A new neural representation for modeling high- =(kx, ky, kz)
resolution density maps
ke | Ky | ke —®—>

The deep generative model provides a general, flexible
framework for modeling heterogeneity

Positional code

Discovery of new structures

Visualization of continuous dynamics

Novel structures and molecular motions from cryo-EM
data g

Future outlook: A nascent area of ML for protein
structure determination

PC1

Catalytic trajectory of PchE. Wang et al 2022



A nascent area in ML algorithms for cryo-EM reconstruction

+ Ab initio cryoDRGN on real datasets

. . . . . cryoDRGN

* Engineering, optimization, and identifiability challenges cryoDRC;N Super-PS?
BNB-P /

4 ~7 3
,,"-VL/". v

RELION
Exhaustive search

Zhona, Lerer, Davis, Berqger, ICCV 2021



A nascent area in ML algorithms for cryo-EM reconstruction

+ Ab initio cryoDRGN on real datasets

Engineering, optimization, and identifiability challenges

How can we gain insight from high-
dimensional biological datasets?

Characterizing distributions of protein structure

Methods for exploratory data analysis, benchmarks, and

atomic modeling

"trash? much weaker '

intermeaqiate
fully loaded
6 _ ‘clil’.h SLIDSUJ[G '

recognifipn
very cledr density

. fully loaded
und taller

termediate com:{lex

With Ashwin Narayan, Bonnie Berger, Laurel Kinman, Barrett Powell, Joey Davis, Xue Fei, Bob Sauer



A nascent area in ML algorithms for cryo-EM reconstruction

+ Ab initio cryoDRGN on real datasets , , , ,

| | S | o Radial basis function representation:

Engineering, optimization, and identifiability challenges
Characterizing distributions of protein structure

Methods for exploratory data analysis, benchmarks, and
atomic modeling

New representations and generative modeling paradigms

Better inductive biases for protein motion/dynamics;
Exploiting information from structure/sequence databases

A) . B) Atomic structure

N s L
» . Heterogeneous reconstruction *, \VS&L
1 \ A X 1 /N
4 s / \ [] N
| T Lo 5 : A
! S . i ilmage X;}— Zj — i J e > o)
’/, | S J J \ \ ; 1 .ﬂm B,
/«/ \ /X%\ 1’%’ /‘W / .I : o ( ]
y b \ ; // ‘\\ 3 J . 2 e s
. W - A .
| - i

[N . Oriented 3D pixel
. B - coordinates

G
e b Image pose ¢; ﬁ >
o« [L; _ .
- k=(k,k k)

Zhong, Lerer, Davis, Berger. NeurlPS 2020 Workshop on ML for Structural Biology




A nascent area in ML algorithms for cryo-EM reconstruction

Ab initio cryoDRGN on real datasets

* Engineering, optimization, and identifiability challenges

Characterizing distributions of protein structure

- Methods for exploratory data analysis, benchmarks, and
atomic modeling

New representations and generative modeling paradigms

+ Better inductive biases for protein motion/dynamics,
Exploiting information from structure/sequence databases

In situ cryoDRGN

- Towards in situ structural biology with cryo-electron
tomography (cryo-ET)

Visualizing the molecular sociology at the HeLa cell nuclear periphery
Mahamid et al, Science 2016



A nascent area in ML algorithms for cryo-EM reconstruction

Ab initio cryoDRGN on real datasets
* Engineering, optimization, and identifiability challenges
Characterizing distributions of protein structure

- Methods for exploratory data analysis, benchmarks, and

atomic modeling

New representations and generative modeling paradigms

+ Better inductive biases for protein motion/dynamics,
Exploiting information from structure/sequence databases

In situ cryoDRGN

- Towards in situ structural biology with cryo-electron

tomography (cryo-ET)

Outlook in the post-AlphaFold2 era?
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Thank you for listening!

E.Z.Lab ET/Thermo Fischer
- Ramya Rangan -+ Sagar Svenekar (MPI Biochemistry)
- Axel Levy - Jake Johnston (Columbia/NYSBC) f q Voo ,
- Rish Raghu - Adam Lerer (DeepMind) £7 Lab at NeurIPS Machine | earning for Srtral BiIgWorkhop
* Ryan Feathers  Martin Obr (TF)
* Vineet Bansal * Ron Kelley (TF)
Stanford - Abhay Kotecha (TF)

* Fred Poitevi
red Poitevin CryoDRGN]

- Gordon Wetzstein .
- Tristan Bepler

NVIDIA

- Bonnie Berger (MIT Mathematics)
- Tim Dockhorn

- Joey Davis (MIT Biology)

- Karsten Krels

 Ashwin Narayan

Flatiron Institute
- Barrett Powell
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