
COS 597N: Machine Learning for Structural Biology
Lecture 4 

Fall 2023 



Course Logistics
• Optional student-only “precept”, Tuesdays at 4:30p in CS 401. 

• Today: 

• Protein structure determination and cryo-EM reconstruction 

• Next week 9/28: Protein language modeling — modified format! 

• Flash talks (groups of 1-2) + guest instructor (Adam Lerer) 

• (Very) short writing assignment 

• More details and paper sign up by the end of this week (end of day Friday): https://docs.google.com/
spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0 

• Oct 12: Protein design 

• Oct 19 (fall break): No class + Project proposal due 

• Guidelines: https://docs.google.com/document/d/1bKyklL9v-N-Yac1tBQCNi8CGQHsN5wZ5BQM7ZDo4WN4/
edit

https://docs.google.com/spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0
https://docs.google.com/spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0
https://docs.google.com/spreadsheets/d/1WznSeVYRaCFk8cLzGpxKRhe5JM65TZLd-Ge29byuze4/edit#gid=0
https://docs.google.com/document/d/1bKyklL9v-N-Yac1tBQCNi8CGQHsN5wZ5BQM7ZDo4WN4/edit
https://docs.google.com/document/d/1bKyklL9v-N-Yac1tBQCNi8CGQHsN5wZ5BQM7ZDo4WN4/edit


This lecture

• (Recap): Who went to John Jumper’s talk? 

• CryoDRGN: Deep Reconstructing Generative Networks 

• Seminar 

• Figure by figure 

• Questions: 

• What did you think of the papers?  

• What are the differences between conference vs. 
journal paper? 

• Who is familiar with NeRFs and implicit neural 
representations? 

• Any other thoughts/reflections?

CryoDRGN ❄🐉



Outline

• Motivation: Why do we care about 
protein structure? 

• Background: Cryo-EM reconstruction 
& the heterogeneity problem 

• My PhD work: Neural 3D 
reconstruction of dynamic protein 
structure with cryoDRGN 

• Future vision: Machine learning for 
structure determination at the 
proteome scale



Outline

• Motivation: Why do we care about 
protein structure? 

• Background: Cryo-EM reconstruction 
& the heterogeneity problem 

• My PhD work: Neural 3D 
reconstruction of dynamic protein 
structure with cryoDRGN  

• Future vision: Machine learning for 
structure determination at the 
proteome scale

The cryo-EM reconstruction task

Cryo-EM structure of the SARS CoV-2 Spike protein

Walls et al, 2020



Outline

The cryo-EM reconstruction task

cryoDRGN trajectory of the SARS CoV-2 Spike protein
Zhong et al, Nature Methods 2021

• Motivation: Why do we care about 
protein structure? 

• Background: Cryo-EM reconstruction 
& the heterogeneity problem 

• CryoDRGN: Neural 3D reconstruction 
of dynamic protein structure with 
cryoDRGN ❄🐉 

• Future vision: Machine learning for 
structure determination at the 
proteome scale



Outline

https://predictioncenter.org/casp14/zscores_final.cgi

CASP14 Results, Dec 2020

AlphaFold2

Next best

https://pdb101.rcsb.org/sci-art/goodsell-gallery/escherichia-coli-bacterium

• Motivation: Why do we care about 
protein structure? 

• Background: Cryo-EM reconstruction 
& the heterogeneity problem 

• CryoDRGN: Neural 3D reconstruction 
of dynamic protein structure with 
cryoDRGN ❄🐉 

• Future directions: Machine learning 
for structure determination at the 
proteome scale



All essential biological processes are carried out by proteins and 
protein complexes

• Fundamental molecules of life 
• Medicine and health 
• Nanotech and biotech

Goodsell et al. PLoS Biology 2015.
PDB-101 Molecule of the Month

Histone 
deacetylases 

(HDACs)



All essential biological processes are carried out by proteins and 
protein complexes

… which are dynamic macromolecular machines

Spliceosome splicing cycle

cryoDRGN trajectory of the pre-catalytic spliceosome
https://en.wikipedia.org/wiki/Spliceosome

Zhong et al, Nature Methods 2021



• Nuclear magnetic resonance (NMR) 
spectroscopy 
• Small proteins (<100 AA in length) 

• Electric field crystallography (EF-X), 
multi-temperature and XFEL 
crystallography 
• Requires sample crystallization 

• Computational modeling 
• Molecular dynamics simulations 
• Hacking AlphaFold? 

• Cryo-electron microscopy (cryo-EM)

Techniques to study molecular motions are limited

MD simulation of  
SARS CoV-2  

Spike



The ongoing cryo-EM “resolution revolution”

• 2017 Nobel Prize in Chemistry  

• Cryo-EM has opened up new areas of 
structural biology 

• Recent hardware and software 
breakthroughs: 

• Hardware: direct electron detectors 

• Software: New reconstruction 
algorithms, GPU compute 

• Faster: Automation and democratization 
of cryo-EM imaging 

• New computational challenges and 
opportunities

https://www.emdataresource.org/statistics.html

Abdella et al, Science 2021



Frontiers of single particle cryo-EM

• Higher resolution structures 

• Small proteins 

• Time-resolved cryo-EM 

• Large, dynamic complexes 

• (MDa scale, 10s-100s of proteins)

November 2020

https://twitter.com/DanielHurdiss/status/1372659832780623872

Omicron spike protein structure. Mannar et al bioRxiv, 2022
Nakane et al Nature 2020



The cryo-EM image processing pipeline: From micrograph to 
atomic coordinates

[Step 0) Sample preparation and imaging]



The cryo-EM image processing pipeline: From micrograph to 
atomic coordinates

[Step 0) Sample preparation and imaging]

1) Micrograph pre-processing

Topaz, Bepler et al, 2019

Grigorieff, 2013



The cryo-EM image processing pipeline: From micrograph to 
atomic coordinates

[Step 0) Sample preparation and imaging]

1) Micrograph pre-processing 2) 2D to 3D reconstruction

Topaz, Bepler et al, 2019

Grigorieff, 2013

Walls et al, 2020

104-107 images  



The cryo-EM image processing pipeline: From micrograph to 
atomic coordinates

[Step 0) Sample preparation and imaging]

1) Micrograph pre-processing 2) 2D to 3D reconstruction 3) Atomic model fitting

Topaz, Bepler et al, 2019

Grigorieff, 2013

Walls et al, 2020

104-107 images  



Single particle cryo-EM image formation

• A purified solution of the molecule is fixed in a 
thin layer of vitreous ice 

• Each cryo-EM image  is a 
tomographic projection of a volume 

X : ℝ2 → ℝ

V : ℝ3 → ℝ

X(x, y) = CTF * ∫ V(RT(x, y, z)T)dz + noise

X(x, y) = PSF * Tt * ∫ V(RT(x, y, z)T)dz + noise

e-

~104-7 projection 
images

Xi = PSF * TtPRVi + ϵ

3D rotation by R ∈ SO(3)
In-plane shift by t ∈ ℝ2

Microscope point spread function



• Goal: Reconstruct a volume  describing a molecule's 3D structure from a set of noisy projection 
images  each containing a copy of  captured from an unknown pose 

V : ℝ3 → ℝ
X1, . . . , XN V ϕi ∈ (SO(3) × ℝ2)

The cryo-EM reconstruction task

Challenges 
• Unknown particle poses 
• Low signal to noise ratio 
• Image degrading filters in microscopy 
• Discretization of the measurements 

[EMPIAR-10028]

Wong et al. 2014



• Goal: Reconstruct a volume  describing a molecule's 3D structure from a set of noisy projection 
images  each containing a copy of  captured from an unknown pose 

V : ℝ3 → ℝ
X1, . . . , XN V ϕi ∈ (SO(3) × ℝ2)

The cryo-EM reconstruction task

Challenges 
• Unknown particle poses 
• Low signal to noise ratio 
• Image degrading filters in microscopy 
• Discretization of the measurements 
• The heterogeneity problem 

[EMPIAR-10028]

Wong et al. 2014



The Fourier slice theorem

“The Fourier transform of a 2D projection of a volume is a central slice out of the 3D 
Fourier transform of the volume, perpendicular to the projection direction.”

Wang, Shkolnisky, & Singer arXiv. 2013



Goal: Find the 3D structure  that maximizes the  

likelihood of data , marginalizing 

over unknown poses  

• E-step: Estimate { } with fixed   

• M-step: Estimate   with fixed { }

Vθ
x = {x1, . . . , xN}

{ϕi}

ϕi Vθ

Vθ ϕi

Traditional homogeneous reconstruction algorithms

Wang, L., Shkolnisky, Y., & Singer, A. arXiv.org. 2013

p(x |Vθ) =
N

∏
i

∫SO(3)×ℝ2

p(xi, ϕi |Vθ)dϕi



Goal: Find the 3D structure  that maximizes the  

likelihood of data , marginalizing 

over unknown poses  

• E-step: Estimate { } with fixed   

• M-step: Estimate   with fixed { }

Vθ
x = {x1, . . . , xN}

{ϕi}

ϕi Vθ

Vθ ϕi

Traditional homogeneous reconstruction algorithms

Many state of the art software packages: 
• RELION: Bayesian formulation for MAP 

estimation proposed by Sjors Scheres [JSB 2013] 
• CryoSPARC: Stochastic optimization techniques 

proposed by Punjani, Rubinstein, Fleet, Brubaker 
[CVPR 2016, Nat Methods 2017]

Wang, L., Shkolnisky, Y., & Singer, A. arXiv.org. 2013

p(x |Vθ) =
N

∏
i

∫SO(3)×ℝ2

p(xi, ϕi |Vθ)dϕi



“The heterogeneity problem”

• The ability to image heterogeneous structures is a major 
opportunity in cryo-EM 

• Standard approaches for heterogeneous structures include: 

• Discarding heterogeneous data 

• Multiclass reconstruction — a discrete mixture model of K 
independent structures 

• The identification and analysis of heterogeneity — especially 
continuous forms — is an open problem in cryo-EM 
reconstruction.

Each image contains a unique molecule

A typical cryo-EM processing workflow

Ghanim et al. Nature 2021

In: 3.7M images

Out: 2 structures (372k images)

Continuous heterogeneity: See Lederman & Singer 2017



“The heterogeneity problem”

• The ability to image heterogeneous structures is a major 
opportunity in cryo-EM 

• Standard approaches for heterogeneous structures include: 

• Discarding heterogeneous data 

• Multiclass reconstruction — a discrete mixture model of K 
independent structures 

• The identification and analysis of heterogeneity — especially 
continuous forms — is an open problem in cryo-EM 
reconstruction.

Each image contains a unique molecule

A typical cryo-EM processing workflow

Ghanim et al. Nature 2021

In: 3.7M images

Out: 2 structures (372k images)

Continuous heterogeneity: See Lederman & Singer 2017

Research Question 
Can we design a modern machine learning method for 

heterogeneous cryo-EM reconstruction?



CryoDRGN ❄🐉: Deep Reconstructing Generative Networks

po
sit

io
na

l c
od

e

ky kzkx

3D structure  
(Fourier domain)

̂V(k)

MLP

Task: 3D reconstruction 
from unlabeled 2D images

Zhong, Bepler, Davis, Berger, ICLR 2020 Spotlight 

Contribution:

Dataset: Walls et al 2020

• A new paradigm for heterogeneous cryo-EM reconstruction 
based on deep generative models 

• Addresses a major open problem in the field of 
reconstructing continuous heterogeneity 

• Introduced a neural field representation of 3D structure that 
has shown broad applicability in computer vision (e.g. NeRF)



Autoencoders and Variational Autoencoders (VAEs)
• The autoencoder is a nonlinear, dimensionality reduction technique

zX X’

Encoder Decoder

Input image Reconstructed image
A compressed, low 

dimensional representation 



Autoencoders and Variational Autoencoders (VAEs)
• The autoencoder is a nonlinear, dimensionality reduction technique

zX X’

Encoder Decoder

Input image Reconstructed image

• The VAE extends the AE as inference of a probabilistic model — “a regularized autoencoder” 

qξ pθ

μ

Σ

ℒVAE(X; θ, ξ) = 𝔼qξ(z|X)[log pθ(X |z)] − KL(qξ(z |X) | |p(z))

ℒAE(X; θ, ξ) = | |X − pθ(qξ(X)) | |2

Reconstruction error Regularization

A compressed, low 
dimensional representation 



CryoDRGN ❄🐉: Deep reconstructing generative networks

Unsupervised learning of a deep generative model of 3D biomolecular structures from 2D cryo-EM images 

1. We develop coordinate-based neural networks to directly approximate the 3D structure 

2. Fourier space image encoder-volume decoder architecture based on the variational autoencoder (VAE) 

3. Exact inference for pose and variational inference for heterogeneity 

zi

(kx, ky, kz)

Xi

Vi

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Traditional algorithms cryoDRGN

• Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous 
function,   V : ℝ3 → ℝ

Zhong et al. ICLR 2020. Spotlight

V(k)

3D Cartesian coordinate 
Multilayer Perceptron 

(MLP)

Cryo-EM density 

k = (kx, ky, kz)



Coordinate-based neural networks for 3D volumes

Traditional algorithms cryoDRGN

• Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous 
function,   V : ℝ3 → ℝ

CryoDRGN structures are parameterized as a neural network instead of a voxel array

V(k)

3D Cartesian coordinate 
Multilayer Perceptron 

(MLP)

Cryo-EM density 

k = (kx, ky, kz)

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Traditional algorithms

• Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous 
function,   V : ℝ3 → ℝ

V(k)

3D Cartesian coordinate 
Multilayer Perceptron 

(MLP)

Cryo-EM density 

Positional encoding function

k = (kx, ky, kz)

cryoDRGN

Zhong et al. ICLR 2020. Spotlight



Coordinate-based neural networks for 3D volumes

Traditional algorithms

• Key idea: Instead of representing the structure as discrete points on a 3D lattice, learn a continuous 
function,   V : ℝ3 → ℝ

V(k)

3D Cartesian coordinate 
Multilayer Perceptron 

(MLP)

Cryo-EM density 

Positional encoding function

Also see: 
NeRF, Mildenhall et al. ECCV 2020

k = (kx, ky, kz)

cryoDRGN

Zhong et al. ICLR 2020. Spotlight



A sinusoidal encoding to featurize input coordinates

(    ,    )




…

sin(γ0x)
cos(γ0, x) (r,g,b)(x,y)

A toy example: Use an MLP to learn an image 






…

sin(γ0y)
cos(γ0y)



A sinusoidal encoding to featurize input coordinates

Ground truth
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A sinusoidal encoding to featurize input coordinates

Ground truth No sinusoidal encoding

(    ,    )
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A toy example: Use an MLP to learn an image 
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A sinusoidal encoding to featurize input coordinates

Ground truth No sinusoidal encoding With sinusoidal encoding

(    ,    )




…

sin(γ0x)
cos(γ0, x) (r,g,b)(x,y)

A toy example: Use an MLP to learn an image 

Also see: Tancik et al, NeurIPS 2020






…

sin(γ0y)
cos(γ0y)






…

sin(γ0x)
cos(γ0, x)(x,y)






…

sin(γ0y)
cos(γ0y)



Latent variable models for heterogeneous structures

Multiclass refinement cryoDRGN

k=(kx, ky, kz) Vz(k)

3D Cartesian 
coordinate 

MLP cryo-EM density

Latent variable vector 
zV1

…

V2

V3 V4

Vz, where z in {1,2,3…,K}

• Manual selection of K and initial volumes 
• Typically, K < 10

Zhong et al. ICLR 2020. Spotlight



CryoDRGN’s continuous latent variable model

• Extend the neural representation of 
volume with a conditional latent 
variable model 

• Encodes a N-dimensional continuous 
distribution over strutures

k=(kx, ky, kz) Vz(k)

Cartesian coordinate
MLP Cryo-EM density

.

Continuous N-D  
latent space

.

cryoDRGN generative model

z

Zhong et al. ICLR 2020. Spotlight



CryoDRGN’s continuous latent variable model

• Extend the neural representation of 
volume with a conditional latent 
variable model 

• Encodes a N-dimensional continuous 
distribution over strutures 

• How to learn such a model from 
data?

k=(kx, ky, kz) Vz(k)

Cartesian coordinate
MLP Cryo-EM density

.

Continuous N-D  
latent space

.

cryoDRGN generative model

z



CryoDRGN’s overall architecture

…

…
Reconstructed 3D volume 

(Fourier space)

Input image 
(Fourier space)

… …

…

z
…

…

…

…

Image encoder Volume decoder

…

po
si

tio
na

l c
od

e

ky kz

z

+ concatenate

Oriented 3D pixel 
coordinates

kx

latent code

̂Vz(k)

k = (kx, ky, kz)

R

(Fourier slice theorem)

• We propose a Fourier domain image encoder - volume decoder architecture based on the VAE

• The decoder reconstructs an image pixel-by-pixel given z and the 3D coordinates of the pixels 
• Coordinate-based volume architecture enforces geometric consistency between 2D views (Fourier slice theorem)



CryoDRGN’s overall architecture

(Fourier slice theorem)

• We propose a Fourier domain image encoder - volume decoder architecture based on the VAE

• To obtain oriented 3D pixel coordinates, a coordinate lattice on the x-y plane is rotated by R 

• For each image, we need to approximate its pose . How?ϕ = (R, t)

…

…
Reconstructed 3D volume 

(Fourier space)

Input image 
(Fourier space)

… …

…

z
…

…

…

…

Image encoder Volume decoder

…

po
si

tio
na

l c
od

e

ky kz

z

+ concatenate

Oriented 3D pixel 
coordinates

kx

latent code

̂Vz(k)

k = RT(i, j,0)T

R

ϕ = (R, t)



Possible paradigms for pose inference

• Amortized variational inference [1] 

• Gradient descent [2] 

• Distribution matching/GANs [3]

[1] Spatial-VAE Bepler et al. NeurIPS 2019; Rosenbaum et al, 2021; CryoPoseNet Nashed et al, 2021; CryoAI Levy et al 2022; CryoFIRE Levy et al 2022  
[2] NeRF-- Wang et al, arXiv 2021;  [3] CryoGAN Gupta et al, 2021

ϕi ∼ qξ(ϕ |X)

ϕ(n+1) = ϕ(n) − α∇ϕℒ(ϕ)

argmin
V

D(psim(X |V), pdata(X))



Spurious local minima in the training objective 

(noisy) (noiseless)

Ground truth poses

Amortized Variational Inference Pose SGD

Example image

ϕi ∼ qξ(ϕ |X) ϕ(n+1) = ϕ(n) − α∇ϕℒ(ϕ)



Search algorithms for inference of image pose

• Instead we perform a global search over a 
discretization of  for the MLE pose for 
each image  given the current decoder  

• A hierarchical search procedure: 
• Start with an exhaustive search over a 

discretization of the 5D space of poses 
• A uniform discretization of SO(3) with the 

Hopf fibration, regular 2D grid for in-plane 
translations 

• Iteratively refine the poses by keeping the top K 
poses that minimize the reconstruction loss 
• Choose K via a branch-and-bound 

procedure1

SO(3) × ℝ2

Xi Vθ

argmaxϕi
p(Xi |Vθ)

• Very compute intensive!

576 orientations 4,608 orientations 36,864 orientations

7x7 in-plane translations 196 in-plane translations 784 in-plane translations

[1] cryoSPARC; Punjani et al 2017



Search algorithms for inference of image pose

• Instead we perform a global search over a 
discretization of  for the MLE pose for 
each image  given the current decoder  

• Frequency marching1: 
• Band limit the loss function to low frequency 

components 
• Benefit 1: Computational efficiency 
• Benefit 2: Prevent overfitting

SO(3) × ℝ2

Xi Vθ

argmaxϕi
p(Xi |Vθ)

• Very compute intensive!

576 orientations 4,608 orientations 36,864 orientations

7x7 in-plane translations 196 in-plane translations 784 in-plane translations

[1] Barnett et al. 2016



Spurious local minima in the training objective 

(noisy) (noiseless)

Ground truth poses

Amortized variational inference Pose SGD

Example image

ϕi ∼ qξ(ϕ |X) ϕ(n+1) = ϕ(n) − α∇ϕℒ(ϕ)

Hierarchical search



Pose search: Traditional vs. neural

cryoDRGN models are much more expensive to evaluate

Each off-voxel point is computed as the weighted 
average of its 8 spatially closest neighbors

Traditional

cryoDRGN  

k=(kx, ky, kz) V(k)

MLP

Each off-voxel point is computed by evaluating the MLP



CryoDRGN2: Ab initio heterogeneous reconstruction of real data

cryoDRGN2

3.8 h 11.8 hTraining time:

cryoDRGN1 cryoDRGN, pose supervision

38.3 hours (1 GPU)
Zhong, Lerer, Davis, Berger. ICCV 2021



Analyzing the generative model

CryoDRGN at test time: 
• Use the encoder network to evaluate the latent embedding z for each image

encode
Latent space 

representation

zk

zizj

E

Xk

Xi Xj View empirical data distribution  
in latent space 



CryoDRGN at test time: 
• Use the encoder network to evaluate the latent embedding z for each image

• Use the decoder network to generate V at different values of z

encode
Latent space 

representation

zk

zizj

E

Xk

Xi Xj

decode

D

Latent space 
representation

View the structural ensemble 
and generate movies from 
trajectories in latent space

Representative samples

…

Vi Vj Vk

zk

zizj

View empirical data distribution  
in latent space 

Analyzing the generative model



CryoDRGN at test time: 
• Use the encoder network to evaluate the latent embedding z for each image

View empirical data distribution  
in latent space 

• Use the decoder network to generate V at different values of z

encode
Latent space 

representation

zk

zizj

E

Xk

Xi Xj

Continuous trajectories

… …decode

D

Latent space 
representation

View the structural ensemble 
and generate movies from 
trajectories in latent space

Analyzing the generative model



CryoDRGN at test time: 
• Use the encoder network to evaluate the latent embedding z for each image

• Use the decoder network to generate V at different values of z

encode
Latent space 

representation

zk

zizj

E

Xk

Xi Xj

decode

D

subset.star

Validation with 
traditional tools

Particle selection

Dataset 
filtering

Latent space 
representation

Continuous trajectories

… …

View empirical data distribution  
in latent space 

Analyzing the generative model



• Released as an open source software tool for training cryoDRGN models and 
interpreting results

CryoDRGN: Applications and software
U

M
AP

2

CryoDRGN latent space

A B C D E
Published 3D classification, major states

C4

C4

UMAP1

Discovery of new structures Visualization of continuous dynamics

Zhong, Bepler, Berger, Davis, Nature Methods 2021



CryoDRGN software

$ cryodrgn downsample -h 
$ cryodrgn parse_ctf_star -h 
$ cryodrgn parse_pose_star -h

$ cryodrgn train_vae -h

# Analysis pipeline 
$ cryodrgn analyze -h 

# Making movies            
$ cryodrgn pc_traversal -h       
$ cryodrgn graph_traversal -h

1. Preprocess inputs

2. Training

3. Analysis

Vineet Bansal 
Michal Grzadkowski 
Princeton Research 

Computing

Software Pipeline Tutorial Enhancements and integrations

Now described in: Kinman, Powell, Zhong, 
Berger, Davis. Nature Protocols 2022.



Roadmap

• Motivation and background 
• CryoDRGN: Deep Reconstructing Generative Networks 
• Validation on synthetic benchmarks 
• CryoDRGN reconstructions of real data 
• Future vision



Heterogeneous reconstruction of a model protein complex 
containing 1 degree of freedom

• We generate a model protein complex containing one continuous degree of freedom 

• 100 atomic models varying one dihedral angle 

• 500 randomly oriented projections of each model, yielding a total of 50k projections

100 models



Heterogeneous reconstruction of a model protein complex 
containing 1 degree of freedom

• We generate a model protein complex containing one continuous degree of freedom 

• 100 atomic models varying one dihedral angle 

• 500 randomly oriented projections of each model, yielding a total of 50k projections

100 models

Can we reconstruct this continuum of conformations?



The predicted latent code correlates with the true reaction 
coordinate
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Ground truth reaction coordinate

Ab initio cryoDRGN, |z| = 1



CryoDRGN can reconstruct a continuum of structures along the 
true reaction coordinate

True reaction coordinate

Pr
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Ab initio cryoDRGN  
10 structures generated from latent representation



CryoDRGN can reconstruct a continuum of structures along the 
true reaction coordinate

True reaction coordinate
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Ab initio cryoDRGN  
10 structures generated from latent representation



CryoDRGN can reconstruct a continuum of structures along the 
true reaction coordinate

Ab initio cryoDRGN 
10 structures generated from latent 

representation

cryoSPARC discrete 
multiclass reconstruction 

K=3 classes 

class

# 
im

ag
es

la
te

nt
 c

od
e

true reaction coordinate

Zhong et al. ICLR 2020 Spotlight



Heterogeneous reconstruction of a model protein complex with 
continuous motions

cryoSPARC discrete 
multiclass reconstruction 

K=3 classes 

class

# 
im

ag
es

Ground truth Ab initio cryoDRGN, |z| = 10 
10 structures sampled 

along latent space

PC1

PC
2

• 100 atomic models varying 
one dihedral angle 

• 500 randomly oriented 
projections of each model 

• 50k projection images

Zhong et al. ICLR 2020 Spotlight



PC1

PC
2

Linear 2D

UMAP1

U
M

A
P2

Discrete 10 class

PC1

PC
2

Circular 1D

Dataset cryoDRGN cryoDRGN 
+ tilt pairs

cryoSPARC

Linear 1D motion 2.50 2.35 3.60

Linear 2D motion 4.44 2.93 6.90

Circular 1D 
motion

3.86 2.63 4.87

Discrete 10 class 4.95 2.58 5.69

Reconstruction accuracy quantified by an 
FSC=0.5 resolution metric between 
predicted and ground truth volume 
(Lower is better; best possible is 2 pixels)

Additional datasets with more complex latent structure

Zhong et al. ICLR 2020 Spotlight



Roadmap

• Motivation and background 
• CryoDRGN: Deep Reconstructing Generative Networks 
• Validation on synthetic benchmarks 
• CryoDRGN reconstructions of real data 

• Uncovering residual heterogeneity in high resolution “homogeneous” datasets 
• Discovering new states of the assembling ribosome 
• Reconstructing continuous motions of the pre-catalytic spliceosome 

• Future vision



Homogeneous reconstruction of the Pf80S ribosome bound to the 
anti-protozoan drug emetine

• 3.2 Å homogeneous reconstruction from 105k 
cryo-EM images (EMPIAR-10028) 

• Difference map between structures with and 
without EME identified its binding site 

• Lower local resolution in head group of small 
subunit and peripheral regions 

Wong et al 2014



CryoDRGN’s neural model can learn high resolution cryo-EM 
density maps

• Train the cryoDRGN decoder (with no latent variable input) on images from EMPIAR-10028

D = 360

3.2 Å GSFSC

50 Å

80S ribosome 
EMPIAR 10028

1024x10 architecture 
50 epochs

Neural network representation Voxel-based representation

Zhong et al., Nature Methods 2021



• The representation capacity of a cryoDRGN model is affected by: 

• Architecture 

• Fourier featurization, see Tancik et al. NeurIPS 2020 

• Latent variable dimension (for heterogeneous reconstruction) 

• Inverse tradeoff between architecture size and training speed

epoch

lo
ss

Achievable resolution is bounded by image size and model 
capacity

1/resolution (1/Å)

Fo
ur

ie
r S

he
ll 

C
or

re
la

tio
n Map-to-map FSC

Zhong et al., Nature Methods 2021

better



• Multi-body analysis1: Motions between B rigid bodies  

• cryoSPARC 3DVA2: Linear interpolations between “eigenvolumes"

Advanced methods for heterogeneity analysis

https://cryosparc.com/docs/tutorials/3d-variability-analysis/1 Nakane et al. eLife 2018; 2 Punjani & Fleet, JSB 2021

Image

Image

https://cryosparc.com/docs/tutorials/3d-variability-analysis/


Discovering residual heterogeneity of the Pf80S ribosome 
[EMPIAR-10028]

CryoDRGN latent space:

PC1 (EV: 0.16)

PC
2 

(E
V:

 0
.1

2)

|z| = 10 • Subset of images separated by PC1 correspond to the 40S 
subunit in a rotated state 

• Many heterogeneous elements in the large and small subunit

20 sampled structures:

Zhong et al., Nature Methods 2021



Variation in 40S SSU is consistent with other methods for 
heterogeneity analysis

90˚

40S

SSU head

40S
60S

SSU head

CryoDRGN, comparison of 2 volumes

PC1

PC
2 



Roadmap

• Motivation and background 
• CryoDRGN: Deep Reconstructing Generative Networks 
• Validation on synthetic benchmarks 
• CryoDRGN reconstructions of real data 

• Uncovering residual heterogeneity in high resolution “homogeneous” datasets 
• Discovering new states of the assembling ribosome 
• Reconstructing continuous motions of the pre-catalytic spliceosome 

• Future vision



Learning ribosome assembly landscapes [EMPIAR-10076]

Modular assembly of the bacterial large ribosomal subunit (LSU) 
   Dataset: 131k cryo-EM images of a mixture of LSU assembly intermediates 

4 major and 13 minor states of the LSU identified from hierarchical multiclass reconstruction 

Davis et al. Cell 2016

Example images

[EMPIAR-10076]



Learning ribosome assembly landscapes [EMPIAR-10076]

Latent embeddings from cryoDRGN

PC1 (0.17)

PC
2 

(0
.16

)

UMAP1
U

M
A

P2

|z| = 10

Modular assembly of the bacterial large ribosomal subunit (LSU) 
   Dataset: 131k cryo-EM images of a mixture of LSU assembly intermediates 

4 major and 13 minor states of the LSU identified from hierarchical multiclass reconstruction 



L1 stalk

LSU assembly class B

LSU assembly class D LSU assembly class E

LSU assembly class C

CP

Learning ribosome assembly landscapes [EMPIAR-10076]

U
M

A
P2

UMAP1
|z| = 10

CryoDRGN latent space

A B C D E
Published class assignment, major states

Modular assembly of the bacterial large ribosomal subunit (LSU) 
   Dataset: 131k cryo-EM images of a mixture of LSU assembly intermediates 

4 major and 13 minor states of the LSU identified from hierarchical multiclass reconstruction 



Clusters in the latent space vs. expert-driven hierarchical classification

A B C1 C2 C3 D1 D2

D3 D4 E1 E2 E3 E4 E5

Published 3D classification, minor states

U
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A
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D2 D3
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E3

E1
E2 E4

E5

C1
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UMAP1



Additional samples from the latent space

U
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P2

UMAP1

B

A
D1

D2 D3

D4

E3

E1
E2 E4

E5

C1

C2

C3

E1 E2 E3 E4 E5

50S

30S
CP

E class minor assembly states

the 70S ribosome



D1 D2 D3

D4

Additional samples from the latent space
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E1
E2 E4

E5

C1

C2
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D class minor assembly states

1/resolution (1/Å)
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Adapted from Figure 5, Davis et al 2016



Discovery of a new assembly state, C4

CryoDRGN latent space

C4

C4

UMAP1

A B C D E
Published 3D classification, major states

U
M

A
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Discovery of a new assembly state, C4

U
M

A
P2

CryoDRGN latent space

1,113 particles

C4

C4

Homogeneous refinement 

GSFSC 7.6 Å

UMAP1

A B C D E
Published 3D classification, major states



Roadmap

• Motivation and background 
• CryoDRGN: Deep Reconstructing Generative Networks 
• Validation on synthetic benchmarks 
• CryoDRGN reconstructions of real data 

• Uncovering residual heterogeneity in high resolution “homogeneous” datasets 
• Discovering new states of the assembling ribosome 
• Reconstructing continuous motions of the pre-catalytic spliceosome 

• Future vision



Structure of the pre-catalytic spliceosome

Plaschka, Lin, & Nagai. Nature 2017 

Sub-complexes resolved separately through 
many rounds of focused classification

Nakane et al. eLife 2018

Multibody refinement

User-defined 
rigid bodies



Structure of the pre-catalytic spliceosome

Plaschka, Lin, & Nagai. Nature 2017 

Sub-complexes resolved separately through 
many rounds of focused classification cryoSPARC 3DVA

Punjani & Fleet. JSB 2021



Reconstructing continuous motions of the pre-catalytic 
spliceosome [EMPIAR-10180]

Trajectories along principle component axis of the latent space show variability within dataset

Caveat: Interpolation along PCs can produce nonphysical motions e.g. under compositional heterogeneity and in 
general when the data distribution is not supported along the interpolation path

cryodrgn pc_traversal



Generating trajectories with a graph traversal algorithm

• Graph traversal algorithm along latent 
embedding nearest-neighbor graph 

• Explore the learned distribution

cryodrgn graph_traversal



CryoDRGN interactive analysis

In the generative modeling paradigm, cryoDRGN can reconstruct an 
arbitrary number of cryo-EM volumes.  

How do we analyze the resulting ensemble of structures? 



CryoDRGN interactive analysis

In the generative modeling paradigm, cryoDRGN can reconstruct an 
arbitrary number of cryo-EM volumes.  

How do we analyze the resulting ensemble of structures? 

The cryoDRGN jupyter notebook is a web application that allows 
exploratory data analysis: 
• visualization of the latent space embeddings 
• visualization of images 
• generation of new volumes



Interactive filtering of non-structural imaging variability

Interactive lasso tool

• Non-structural imaging variability (e.g. junk particles, ice artifacts, peripheral particles) may interfere with 
optimization and representation learning



CryoDRGN reconstruction of the SARS CoV-2 spike protein

Dataset and training details: 
* Walls et al 2020 
* 276k particles 
* D=256, large architecture 
* 25 epochs 
* 4 GPU training, 10 hr total

20 sampled structures Graph traversal trajectory



Towards automated analysis of the structure distribution

Xue Fei Bob Sauer

Dataset: Structural basis of ClpXP recognition and 
unfolding of ssrA-tagged substrates 
Fei et al. 2020, eLife

Intermediate <-> Recognition complex

cryodrgn pc_traversal

cryoDRGN latent space



Towards automated analysis of the structure distribution

Xue Fei Bob Sauer

Dataset: Structural basis of ClpXP recognition and 
unfolding of ssrA-tagged substrates 
Fei et al. 2020, eLife

Intermediate <-> Recognition complex

cryodrgn pc_traversal

cryoDRGN latent space



Extending the cryoDRGN toolkit with a scalable structural landscape 
analysis: cryodrgn analyze_landscape

Intermediate <-> Recognition

C
lp

X 
di

ss
oc

ia
tio

n

GFP

8.5 Å, 1,255 particles 
0.3% of the dataset

Mapping interpretable reaction coordinates

Identification of rare states

How can we gain insight from high-
dimensional biological datasets?

Available in cryoDRGN 1.0

discrete

continuous Intermediate <-> Recognition

C
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X 
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ss
oc

ia
tio

n

particles



Summary

• Unsupervised reconstruction of a continuous 
distribution of protein structures from cryo-EM images 

• A new neural representation for modeling high-
resolution density maps 

• The deep generative model provides a general, flexible 
framework for modeling heterogeneity 

• Discovery of new structures 

• Visualization of continuous dynamics 

• Novel structures and molecular motions from cryo-EM 
data 

• Future outlook: A nascent area of ML for protein 
structure determination

z Vz(k)

k=(kx, ky, kz)
ky kzkx
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MLP

Catalytic trajectory of PchE. Wang et al 2022



A nascent area in ML algorithms for cryo-EM reconstruction

• Ab initio cryoDRGN on real datasets 
• Engineering, optimization, and identifiability challenges cryoDRGN 

BNB-PS

cryoDRGN  
Super-PS?

RELION 
Exhaustive search

Zhong, Lerer, Davis, Berger, ICCV 2021



• Ab initio cryoDRGN on real datasets 
• Engineering, optimization, and identifiability challenges 

• Characterizing distributions of protein structure 
• Methods for exploratory data analysis, benchmarks, and 

atomic modeling

With Ashwin Narayan, Bonnie Berger, Laurel Kinman, Barrett Powell, Joey Davis, Xue Fei, Bob Sauer

How can we gain insight from high-
dimensional biological datasets?

A nascent area in ML algorithms for cryo-EM reconstruction



• Ab initio cryoDRGN on real datasets 
• Engineering, optimization, and identifiability challenges 

• Characterizing distributions of protein structure 
• Methods for exploratory data analysis, benchmarks, and 

atomic modeling 
• New representations and generative modeling paradigms 

• Better inductive biases for protein motion/dynamics; 
Exploiting information from structure/sequence databases

Radial basis function representation:

Zhong, Lerer, Davis, Berger. NeurIPS 2020 Workshop on ML for Structural Biology

A nascent area in ML algorithms for cryo-EM reconstruction



• Ab initio cryoDRGN on real datasets 
• Engineering, optimization, and identifiability challenges 

• Characterizing distributions of protein structure 
• Methods for exploratory data analysis, benchmarks, and 

atomic modeling 
• New representations and generative modeling paradigms 

• Better inductive biases for protein motion/dynamics, 
Exploiting information from structure/sequence databases 

• In situ cryoDRGN 
• Towards in situ structural biology with cryo-electron 

tomography (cryo-ET)

https://pdb101.rcsb.org/sci-art/goodsell-gallery/escherichia-coli-bacterium

Visualizing the molecular sociology at the HeLa cell nuclear periphery  
Mahamid et al, Science 2016

A nascent area in ML algorithms for cryo-EM reconstruction



• Ab initio cryoDRGN on real datasets 
• Engineering, optimization, and identifiability challenges 

• Characterizing distributions of protein structure 
• Methods for exploratory data analysis, benchmarks, and 

atomic modeling 
• New representations and generative modeling paradigms 

• Better inductive biases for protein motion/dynamics, 
Exploiting information from structure/sequence databases 

• In situ cryoDRGN 
• Towards in situ structural biology with cryo-electron 

tomography (cryo-ET) 

• Outlook in the post-AlphaFold2 era?

A nascent area in ML algorithms for cryo-EM reconstruction
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