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MOTIVATION
● Physical interactions 

○ Computational intractability
○ Context dependence
○ Not sufficiently accurate

● Evolutionary history
○ Bioinformatics analysis
○ Far short of experimental accuracy

● Without AI, it takes hundreds of thousands 
of dollars to determine protein 3D 
structures 

○ Costs $100,000~1M per structure
○ Determination of 3D structure by 

X-ray crystallography takes as much 
as three to five years

● AlphaFold2
○ Near experimental accuracy in a 

majority of cases
○ Even in cases in which no similar 

structure is known.
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THE PERFORMANCE OF ALPHAFOLD 
ON THE CASP14 DATASET
● AlphaFold2 can produce

○ very accurate domain structures
○ highly accurate side chains
○ scalable to very long proteins
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THE ALPHAFOLD NETWORK
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MULTIPLE SEQUENCE ALIGNMENT 
(MSA)

● If two amino acids are in close contact, mutations in one of them will be closely 
followed by mutations of the other, in order to preserve the structure.
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TRANSFORMER
● An encoder-decoder model that can 

manipulate pairwise connections 
within and between sequences. 

● Transformers are great with 
sequences that have pairwise 
connections.
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EVOFORMER BLOCK
● Updates the MSA with axial attention, using the info from pair representation
● Updates the pair representation from updated MSA, using outer product mean block
● Applies triangle inequalities to the updated pair representation to enforce consistency
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VISUALIZATIONS OF THE ATTENTION 
MAPS
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INPUT FEATURE EMBEDDINGS
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PAIR REPRESENTATION
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TRIANGLE MULTIPLICATIVE UPDATE 
AND TRIANGLE SELF-ATTENTION. 
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STRUCTURE 
MODULE
How does AlphaFold2 “translates” output of Evoformer to 3D 
coordinates of atoms?



WHAT ARE THE INPUT AND 
OUTPUT OF THE STRUCTURE 
MODULE

Input:

Evoformer’s single representation

Evoformer’s pair representation 

Backbone frames
        Rotations (r, 3x3) and translation vector (r, 3)

Output:

A global 3D coordinate for each 
residue 
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Pseudo-algorithm
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IPA 
module
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IPA

Modulation by 
pair 
representation

Standard attention 
on abstract 
features

24



LOSS
Attaching individual loss to each 

model component

● Frame Aligned Point Error (FAPE)
● Auxiliary loss
● Distogram loss
● MSA loss
● Confidence loss
● Violation loss
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Frame aligned 
point error 
(FAPE) loss
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Scoring predicted atom coordinates 
under predicted local frames

against 

corresponding ground truth 
coordinates and local frames

- Final FAPE loss: score all atoms in backbone and 
sidechain

- Auxiliary: score only Cα atoms in backbone frames



RESULTS - CASP14
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MODEL 
INTERPRETABILITY
Do we understand why it works so well?



RECALL OVERALL ARCHITECTURE
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PERFORMANCE TRAJECTORY
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T1024 - easy folding
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41586_2021_3819_MOESM3_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM3_ESM.mp4


T1044 - some  domain folds quickly, others take longer
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41586_2021_3819_MOESM4_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM4_ESM.mp4


T1064 - hard one that takes entire training depth to fold
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41586_2021_3819_MOESM5_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM5_ESM.mp4


T1091 - very hard, explored “unphysical configurations”
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41586_2021_3819_MOESM6_ESM.mp4

https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM6_ESM.mp4


TRAINING DATASET
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Supervised:
Protein Database (PDB) data with 
known structure
High performance

Unsupervised
1. Masked MSA
2. Self-distillation 

Uniclust30 sequence only
High “confidence” subset are 

taken as a new dataset for training



ALL COMPONENTS CONTRIBUTE TO 
PERFORMANCE
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LIMITATIONS

▪ Doesn’t work very well when 
MSA depth is low

▪ Doesn’t work very well when 
subunits are heterogeneous 
(non-homomers)
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SUMMARY
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IMPRESSIVE PERFORMANCE *NOVEL* ARCHITECTURE *SOLVED* A LONG-STANDING 
PROBLEM, PROVIDE A HUGE 
RESERVOIR OF PREDICTED 

STRUCTURES  (AFDB)



THANK YOU
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LIST OF FIGURES FROM PAPER
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DOES ALPHAFOLD2 UNDERSTAND 
HOW PROTEIN FOLDS

42



STRUCTURAL MODULE
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GRAPHICAL OUTLINE

Figure 1(e)
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