

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589.

MOTIVATION

- **Physical** interactions
 - Computational intractability
 - Context dependence
 - Not sufficiently accurate
- **Evolutionary** history
 - Bioinformatics analysis
 - Far short of experimental accuracy

- Without AI, it takes **hundreds of thousands** of dollars to determine protein 3D structures
 - Costs **\$100,000~1M** per structure
 - Determination of 3D structure by X-ray crystallography takes as much as three to five years
- AlphaFold2
 - Near experimental accuracy in a majority of cases
 - Even in cases in which **no similar** structure is known.

THE PERFORMANCE OF ALPHAFOLD ON THE CASP14 DATASET

- AlphaFold2 can produce
 - very accurate **domain structures**
 - highly accurate side chains
 - scalable to very long proteins

THE ALPHAFOLD NETWORK

MULTIPLE SEQUENCE ALIGNMENT (MSA)

• If two amino acids are in close contact, mutations in one of them will be closely followed by mutations of the other, in order to preserve the structure.

8

TRANSFORMER

- An encoder-decoder model that can manipulate pairwise connections within and between sequences.
- Transformers are great with sequences that have pairwise connections.

Self-attention

RNN

EVOFORMER BLOCK

- Updates the MSA with axial attention, using the info from pair representation
- Updates the pair representation from updated MSA, using outer product mean block
- Applies triangle inequalities to the updated pair representation to enforce consistency

VISUALIZATIONS OF THE ATTENTION MAPS

MSA Columnwise Attention: CASP14 target T1082

12

INPUT FEATURE EMBEDDINGS

PAIR REPRESENTATION

Corresponding edges in a graph

TRIANGLE MULTIPLICATIVE UPDATE AND TRIANGLE SELF-ATTENTION.

C Triangle multiplicative update using 'outgoing' edges

Triangle self-attention around starting node

Triangle self-attention around ending node

WHAT ARE THE *INPUT* AND **OUTPUT OF THE STRUCTURE** MODULE

Evoformer's pair representation $\{\mathbf{z}_{ij}\}$ with $\mathbf{z}_{ij} \in \mathbb{R}^{c_z}$ and $i, j \in \{1, ..., N_{\text{res}}\}$ Backbone frames Rotations (r, 3x3) and translation vector (r, 3)

Input:

Evoformer's single representation

 $\{\mathbf{s}_{i}^{\text{initial}}\}$ with $\mathbf{s}_{i}^{\text{initial}} \in \mathbb{R}^{c_{s}}$

Output:

A global 3D coordinate for each residue

 $\vec{\mathbf{x}}_{\text{global}} \in \mathbb{R}^3$

Pseudo-algorithm

For each layer

Local Frames

- Protein backbone = gas of 3-D rigid bodies (chain is learned!)
- Rigid body orientation defines local coordinate frame along chain

 Coordinates measured in local Frame are invariant to choice of global frame

$$\vec{\mathbf{x}}_{\text{global}} = T_i \circ \vec{\mathbf{x}}_{\text{local}}$$

= $R_i \vec{\mathbf{x}}_{\text{local}} + \vec{\mathbf{t}}_i$.

def	StructureModule $\left(\{ \mathbf{s}_{i}^{\text{initial}} \}, \{ \mathbf{z}_{ij} \}, N_{\text{layer}} = 8, c = 128, \right)$	$\mathbf{s}_i^{ ext{initial}} \in \mathbb{R}^{c_s}$	
	$\{T_i^{\text{true},f}\}, \{T_i^{\text{alt truth},f}\}, \{\vec{lpha}_i^{\text{true},f}\}, \{\vec{lpha}_i^{\text{alt truth},f}\}, \{\vec{\mathbf{x}}_i^{\text{true},a}\}, \{\vec{\mathbf{x}}_i^{\text{alt truth},a}\}\}$:		
1:	$\mathbf{s}_{i}^{\text{initial}} \leftarrow \text{LayerNorm}(\mathbf{s}_{i}^{\text{initial}})$		
2:	$\mathbf{z}_{ii} \leftarrow \text{LayerNorm}(\mathbf{z}_{ii})$		
3:	$\mathbf{s}_i = ext{Linear}(\mathbf{s}_i^{ ext{initial}})$	$\mathbf{s}_i \in \mathbb{R}^{c_s}$	
4:	$T_i = (\mathbf{I}, \vec{0})$	$\mathbf{I} \in \mathbb{R}^{3 imes 3}, ec{0} \in \mathbb{R}^{3}$	
5:	for all $l \in [1,, N_{layer}]$ do # shared weights		
6:	$\{\mathbf{s}_i\} += \text{InvariantPointAttention}(\{\mathbf{s}_i\}, \{\mathbf{z}_{ij}\}, \{T_i\})$		
7:	$\mathbf{s}_i \leftarrow \operatorname{LayerNorm}(\operatorname{Dropout}_{0.1}(\mathbf{s}_i))$		
#	Transition.		
8:	$\mathbf{s}_i \leftarrow \mathbf{s}_i + \text{Linear}(\text{relu}(\text{Linear}(\mathbf{s}_i)))))$	all intermediate activations $\in \mathbb{R}^{c_s}$	
9:	$\mathbf{s}_i \leftarrow \operatorname{LayerNorm}(\operatorname{Dropout}_{0.1}(\mathbf{s}_i))$		
#	Update backbone.		
10:	$T_i \leftarrow T_i \circ \text{BackboneUpdate}(\mathbf{s}_i)$		
#	Predict side chain and backbone torsion angles $\omega, \phi, \psi, \chi_1, \chi_2, \chi_3,$	χ4	
11:	$\mathbf{a}_i = \text{Linear}(\mathbf{s}_i) + \text{Linear}(\mathbf{s}_i^{\text{Linear}})$	$\mathbf{a}_i \in \mathbb{R}^{\circ}$	
12:	$\mathbf{a}_i \leftarrow \mathbf{a}_i + \text{Linear}(\text{relu}(\text{Linear}(\text{relu}(\mathbf{a}_i))))$	all intermediate activations $\in \mathbb{R}^{c}$	
14.	$\vec{a}_i \leftarrow \vec{a}_i + \text{Dincar(refu(Dincar(refu(\vec{a}_i))))}$ $\vec{a}_i^f = \text{Linear(refu(\mathbf{a}_i)))$	$\vec{\alpha}^f \in \mathbb{R}^2$ $f \in S$	
	$u_i = \text{Efficient}(u_i)$	$\alpha_i \in \mathbb{R}^{+}, j \in \mathcal{O}$ torsion names	
#	Auxiliary losses in every iteration. $(B, \vec{t}_{i}) - T_{i}$		
15.	$\vec{\mathbf{x}}_{i}^{C\alpha} = \vec{\mathbf{t}}_{i}$		
17:	$\mathcal{L}_{aux}^{l} = \Big(\text{computeFAPE}(\{T_i\}, \{\vec{\mathbf{x}}_i^{C\alpha}\}, \{T_i^{true}\}, \{\vec{\mathbf{x}}_i^{true,C\alpha}\}, \epsilon = 10^{-1} \Big)$	-12)	
18:	$+ \operatorname{torsionAngleLoss}(\{\vec{\alpha}_i^f\}, \{\vec{\alpha}_i^{\operatorname{true},f}\}, \{\vec{\alpha}_i^{\operatorname{alt}\operatorname{truth},f}\}) \Big)$		
#	No rotation gradients between iterations to stabilize training.		
19: 20:	if $l < N_{\text{layer}}$ then $T_i \leftarrow (\text{stopgrad}(R_i), \vec{t}_i)$		
21:	end if		
22:	end for		
23:	$\mathcal{L}_{ ext{aux}} = ext{mean}_l(\{\mathcal{L}_{ ext{aux}}^l\})$		
24:	$T_i^f, \vec{\mathbf{x}}_i^a = \text{computeAllAtomCoordinates}(T_i, \vec{\alpha}_i^f)$	$a \in \mathcal{S}_{ ext{atom names}}$	
25:	$T_i^f \leftarrow \operatorname{concat}(T_i, T_i^f)$		
#	Final loss on all atom coordinates.		
26:	$\{T_i^{\text{true},f}\}, \{\vec{\mathbf{x}}_i^{\text{true},a}\} \leftarrow \text{renameSymmetricGroundTruthAtoms}($		
27:	$\{T_i^f\},\{ec{\mathbf{x}}_i^a\},\{T_i^{ ext{true},f}\},$	$\{T_i^{\text{alt truth},f}\}, \{\vec{\mathbf{x}}_i^{\text{true},a}\}, \{\vec{\mathbf{x}}_i^{\text{alt truth},a}\}\}$	
28:	$\mathcal{L}_{\text{FAPE}} = \text{computeFAPE}(\{T_i^f\}, \{\vec{\mathbf{x}}_i^a\}, \{T_i^{\text{true},f}\}, \{\vec{\mathbf{x}}_i^{\text{true},a}\}, \epsilon = 10^{-4})$		
#	Predict model confidence.		
29:	$\{r_i^{\text{true LDDT}}\} = \text{perResidueLDDT_Ca}(\{\vec{\mathbf{x}}_i^a\}, \{\vec{\mathbf{x}}_i^{\text{true},a}\})$		
30:	$\{r_i^{\text{pLDDT}}\}, \mathcal{L}_{\text{conf}} = \text{predictPerResidueLDDT}_\text{Ca}(\{\mathbf{s}_i\}, \{r_i^{\text{true LDDT}}\})$		
31:	return $\{ \vec{\mathbf{x}}_i^a \}, \{ r_i^{\text{pLDDT}} \}, \mathcal{L}_{\text{FAPE}}, \mathcal{L}_{\text{conf}}, \mathcal{L}_{\text{aux}}$		

Algorithm 22 Invariant point attention (IPA)

def InvariantPointAttention $\{\mathbf{s}_i\}, \{\mathbf{z}_{ij}\}, \{\mathbf{T}_i\}, N_{\text{head}} = 12, c = 16, N_{\text{duery points}} = 4, N_{\text{point values}} = 8\}$: 1: $\mathbf{q}_{i}^{h}, \mathbf{k}_{i}^{h}, \mathbf{v}_{i}^{h} = \text{LinearNoBias}(\mathbf{s}_{i})$ $\mathbf{q}_i^h, \mathbf{k}_i^h, \mathbf{v}_i^h \in \mathbb{R}^c, h \in \{1, \dots, N_{\text{head}}\}$ 2: $\vec{\mathbf{q}}_{i}^{hp}, \vec{\mathbf{k}}_{i}^{hp} = \text{LinearNoBias}(\mathbf{s}_{i})$ $\vec{\mathbf{q}}_i^{hp}, \vec{\mathbf{k}}_i^{hp}, \in \mathbb{R}^3, \ p \in \{1, \dots, N_{\text{query points}}\}, \text{ units: nanometres}$ 3: $\vec{\mathbf{v}}_{i}^{hp} = \text{LinearNoBias}(\mathbf{s}_{i})$ $\vec{\mathbf{v}}_i^{hp} \in \mathbb{R}^3, \ p \in \{1, \dots, N_{\text{point values}}\}, \ \text{units: nanometres}$ 4: $b_{ij}^h = \text{LinearNoBias}(\mathbf{z}_{ij})$ 5: $w_C = \sqrt{\frac{2}{9N_{\text{ouery points}}}},$ 6: $w_L = \sqrt{\frac{1}{3}}$ 7: $a_{ij}^{h} = \operatorname{softmax}_{j} \left(w_L \left(\frac{1}{\sqrt{c}} \mathbf{q}_i^{h^{\top}} \mathbf{k}_j^{h} + b_{ij}^{h} - \frac{\gamma^h w_C}{2} \sum_{p} \left\| T_i \circ \vec{\mathbf{q}}_i^{hp} - T_j \circ \vec{\mathbf{k}}_j^{hp} \right\|^2 \right) \right)$ 8: $\tilde{\mathbf{o}}_i^h = \sum_j a_{ij}^h \mathbf{z}_{ij}$ 9: $\mathbf{o}_i^h = \sum_j a_{ij}^h \mathbf{v}_j^h$ 10: $\vec{\mathbf{o}}_i^{hp} = T_i^{-1} \circ \sum_j a_{ij}^h \left(T_j \circ \vec{\mathbf{v}}_j^{hp} \right)$ 11: $\tilde{\mathbf{s}}_i = \text{Linear}\left(\text{concat}_{h,p}(\tilde{\mathbf{o}}_i^h, \mathbf{o}_i^h, \vec{\mathbf{o}}_i^{hp}, \left\|\vec{\mathbf{o}}_i^{hp}\right\|\right)$ 12: return $\{\tilde{\mathbf{s}}_i\}$

LOSS

Attaching individual loss to each model component

- Frame Aligned Point Error (FAPE)
- Auxiliary loss
- Distogram loss
- MSA loss
- Confidence loss
- Violation loss

Algorithm 28 Compute the Frame aligned point error

- Final FAPE loss: score all atoms in backbone and sidechain
- Auxiliary: score only Ca atoms in backbone frames

Frame aligned point error (FAPE) loss

Scoring predicted atom coordinates under predicted <u>local</u> frames against corresponding ground truth coordinates and <u>local</u> frames

RESULTS - CASP14

- Langian (S. 1997).

Do we understand why it works so well?

RECALL OVERALL ARCHITECTURE

PERFORMANCE TRAJECTORY

Evoformer block

41586 2021 3819 MOESM3 ESM.mp4

T1024 - easy folding

T1044 - some domain folds quickly, others take longer

T1064 - hard one that takes entire training depth to fold

T1091 - very hard, explored "unphysical configurations"

TRAINING DATASET

Supervised:

Protein Database (PDB) data with known structure

High performance

Unsupervised

- 1. Masked MSA
- 2. Self-distillation Uniclust30 sequence only

High "confidence" subset are taken as a new dataset for training

LIMITATIONS

- Doesn't work very well when MSA depth is low
- Doesn't work very well when subunits are heterogeneous (non-homomers)

SUMMARY

IMPRESSIVE PERFORMANCE

NOVEL ARCHITECTURE

SOLVED A LONG-STANDING PROBLEM, PROVIDE A HUGE RESERVOIR OF PREDICTED STRUCTURES (AFDB)

LIST OF FIGURES FROM PAPER

DOES ALPHAFOLD2 UNDERSTAND

- Computational structure prediction is typically underspecified
 - Oligomeric state, ligands, DNA-binding, experimental conditions, multiple conformations etc. 0
- Our network is tolerant to missing context
 - AlphaFold is just as good at membrane proteins or novel folds as more typical PDB structures

TBM-hard, 98.2 GDT

FM/TBM, 85.9 GDT

Experimental structure

STRUCTURAL MODULE

GRAPHICAL OUTLINE

Figure 1(e)

