

Learning Protein Structure with a Differentiable Simulator

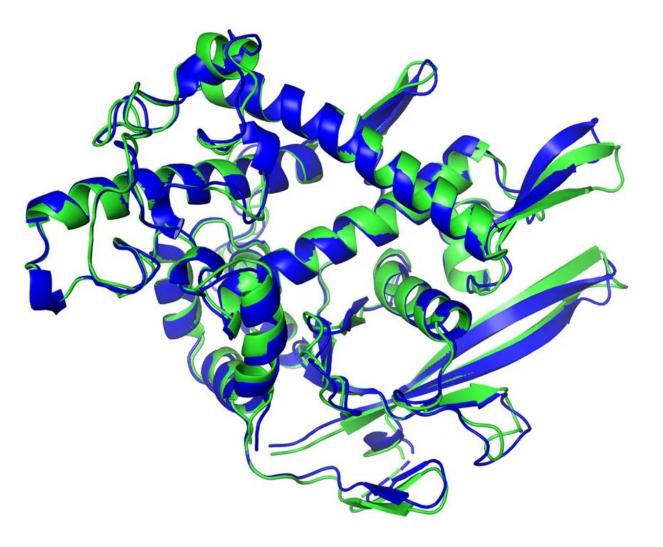
John Ingraham, Adam Riesselman, Chris Sander, Debora Marks ICLR 2019

Protein Folding

Grand challenge in structural biology

Useful for understanding and interfacing with proteins

Famously "solved" by AlphaFold2!



Outline

- 1. NEMO Why we're excited
- 2. Background
- 3. Model Design
- 4. Engineering
- 5. Data & Hyperparameters
- 6. Results

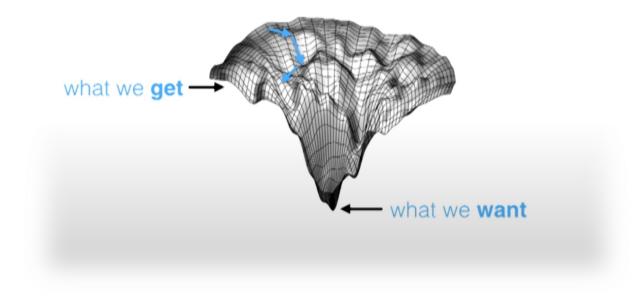
How does a protein fold?

A good heuristic (from experimental research):

the **energy landscape model** assumes that proteins naturally achieve folds that minimize free energy.

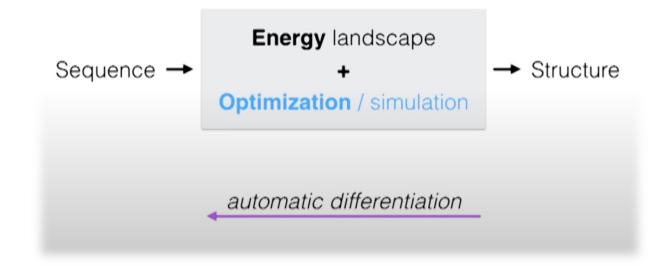
Just fold the protein!

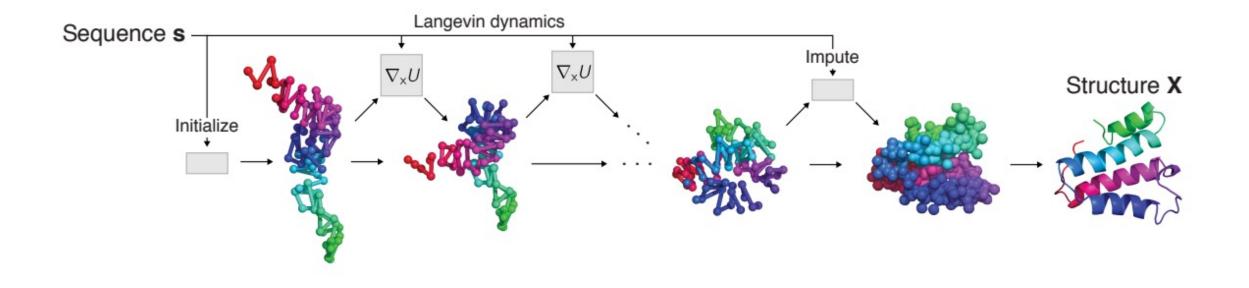
Even with a correct energy landscape, simulator fails to converge



Just learn to simulate the universe!

Could we learn the energy landscape and simulator simultaneously?



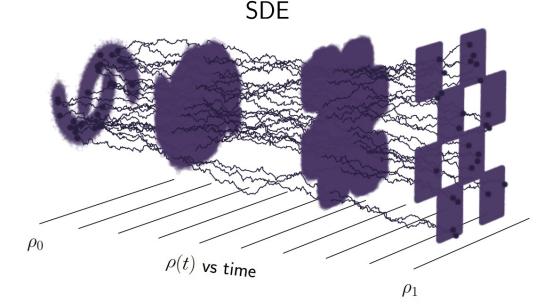


NEMO

An end-to-end differentiable protein folding simulator.

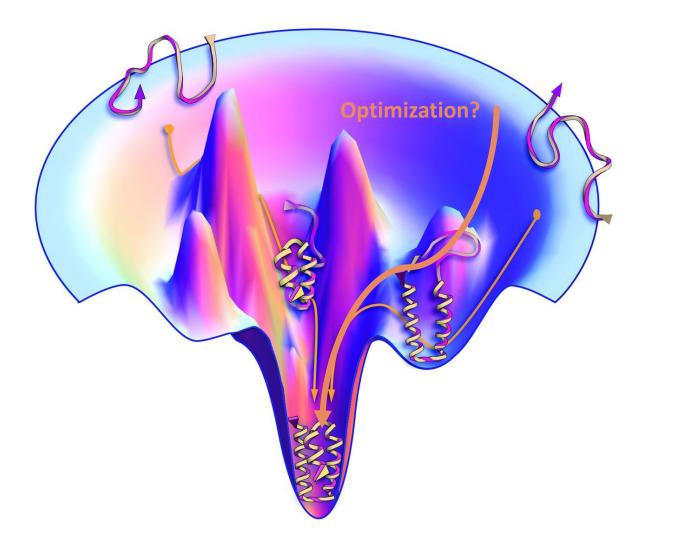
Related Work

- Learning distributions and sampling (SPEN, diffusion)
- Protein modeling (like AlphaFold)
- Differentiable computing (neural implicit representations, etc.)
- RNNs and exploding gradients, RL and discount factor



Background

Boltzmann Distribution & Energy Landscapes



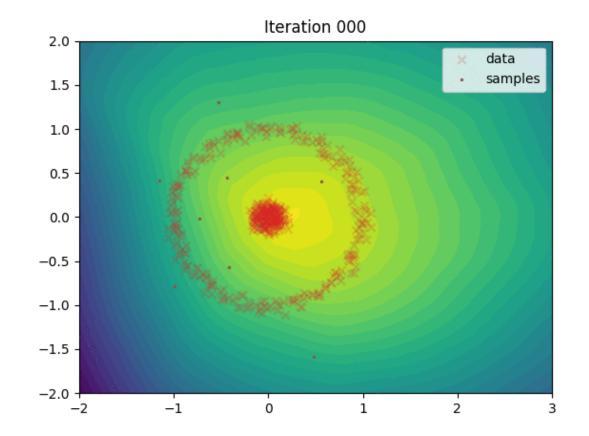
Sampling low energy states

$$x^{(t+\varepsilon)} \leftarrow x^{(t)} - \frac{\varepsilon}{2} \nabla_x U^{(t)} + \sqrt{\varepsilon}p$$

(Approximate) Langevin Dynamics

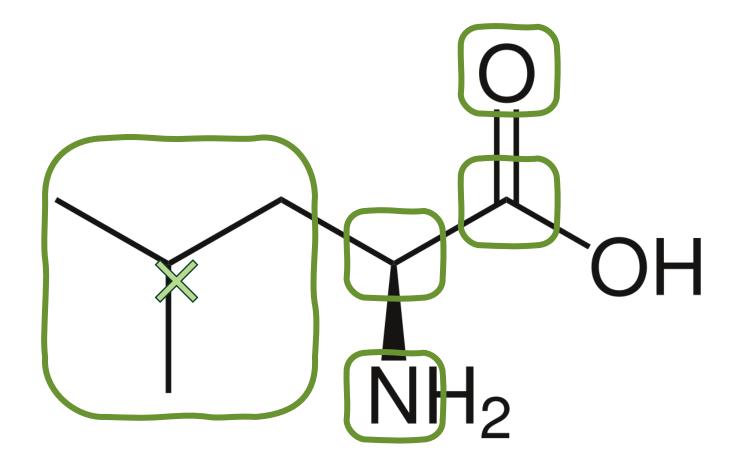
We update each atom's position, by stepping in the direction of the force, and perturbing with Gaussian noise.

Langevin Sampling in Action

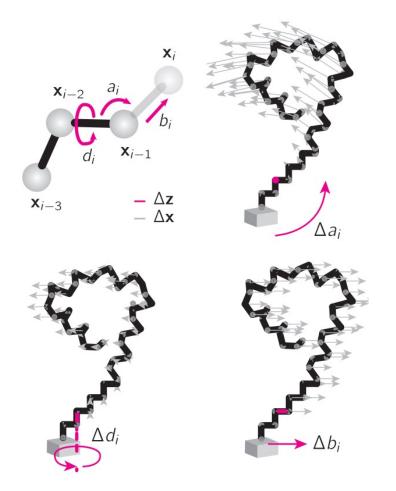


A Differentiable Simulator

Building Blocks



Coordinate Choices



Internal coordinates favor coherent movement into new conformations.

Cartesian coordinates favor local structure rearrangements.

NEMO uses **both** coordinates, alternating between time steps.

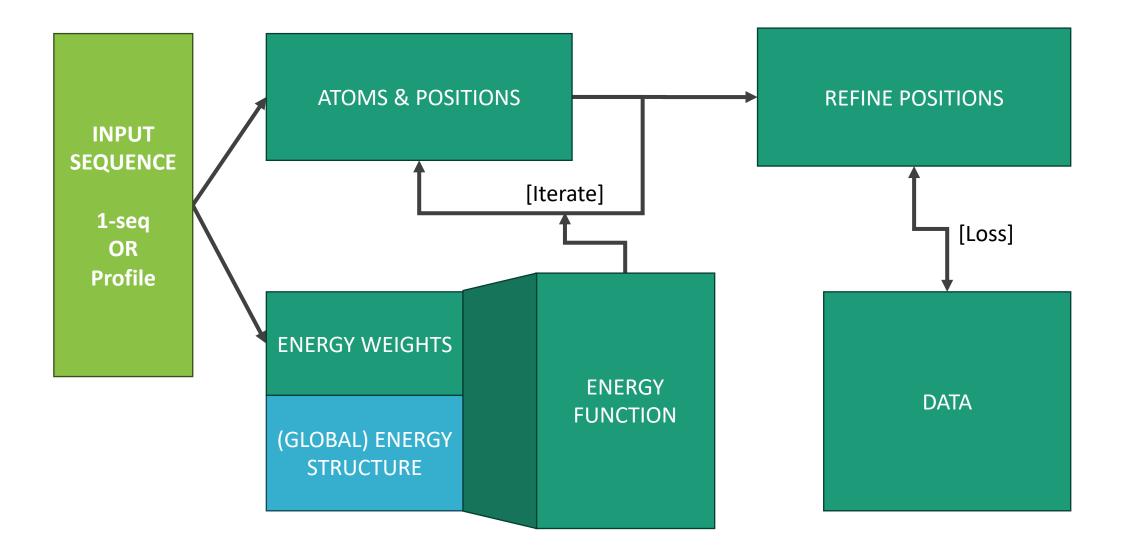
Sampling Atomic Position

Algorithm 1: Direct integrator

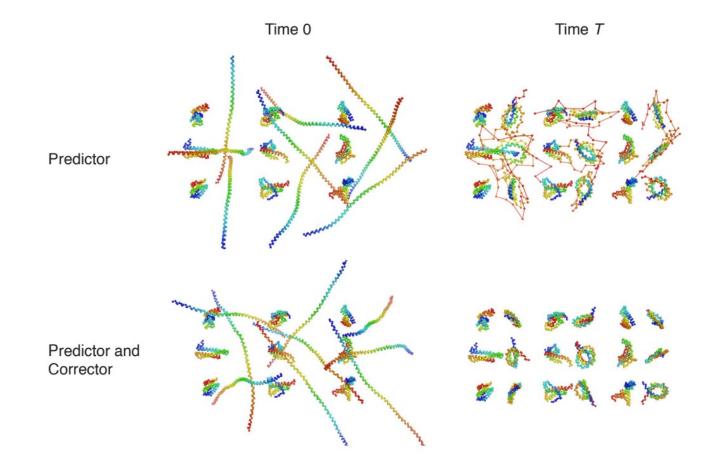
Input :State $z^{(0)}$, energy U(x), step ϵ , time T, scale \mathbf{C} Output : Trajectory $x^{(0)}, \dots, x^{(T)}$ Initialize $x^{(0)} \leftarrow \mathcal{F}(z^{(0)})$; while t < T do Compute forces $f_z = -\frac{\partial x}{\partial z}^T \nabla_x U$; Sample $\Delta z \sim \mathcal{N} \left(\frac{1}{2}\epsilon \mathbf{C} f_z, \epsilon \mathbf{C}\right)$; $z^{(t+\epsilon)} \leftarrow z^{(t)} + \Delta z$; $z^{(t+\epsilon)} \leftarrow \mathcal{F}(z^{(t+\epsilon)})$; $t \leftarrow t + \epsilon$; end Algorithm 2: Transform integrator

Input :State $z^{(0)}$, energy U(x), step ϵ , time T, scale \mathbf{C} Output : Trajectory $x^{(0)}, \dots, x^{(T)}$ Initialize $x^{(0)} \leftarrow \mathcal{F}(z^{(0)})$; Parallelizable! while t < T do Compute forces $f_z = -\frac{\partial x}{\partial z}^T \nabla_x U$; Sample $\Delta z \sim \mathcal{N} \left(\frac{1}{2}\epsilon \mathbf{C} f_z, \epsilon \mathbf{C}\right)$; $\mathbf{\tilde{x}} \leftarrow x^{(t)} + \frac{\partial x}{\partial z}^{(t)} \Delta z^{(t)}$; $\mathbf{\tilde{x}} \leftarrow x^{(t)} + \frac{\partial x}{\partial z} \left(\frac{1}{2}\sum_{i=1}^{\infty} \frac{\partial x}{\partial z}\right) \Delta z^{(t)}$; $t \leftarrow t + \epsilon$; Heun's Method

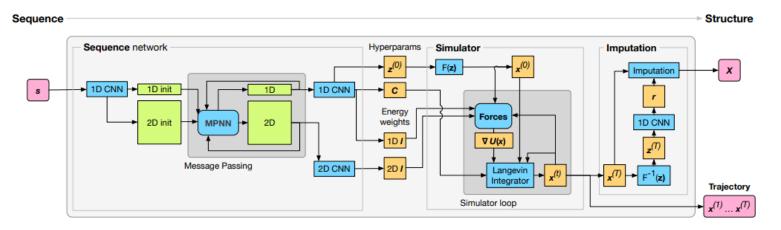
Learning to simulate

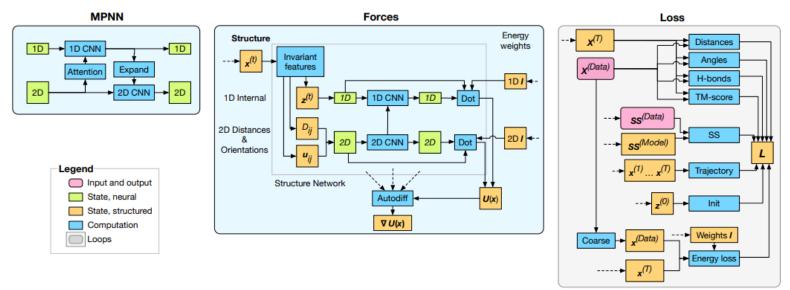


Corrector & Imputation

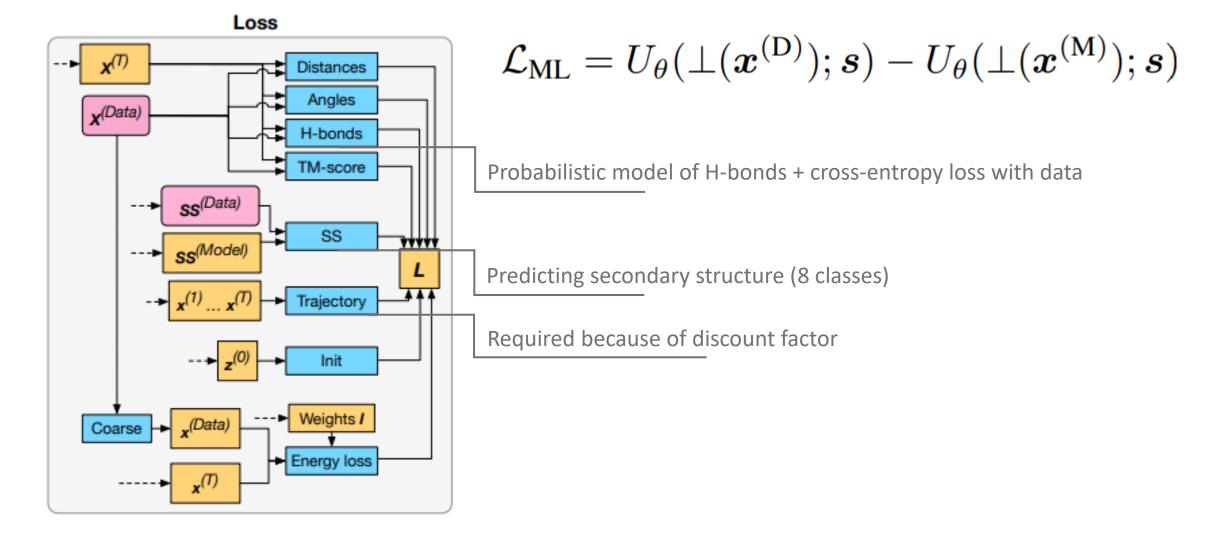


Full model architecture





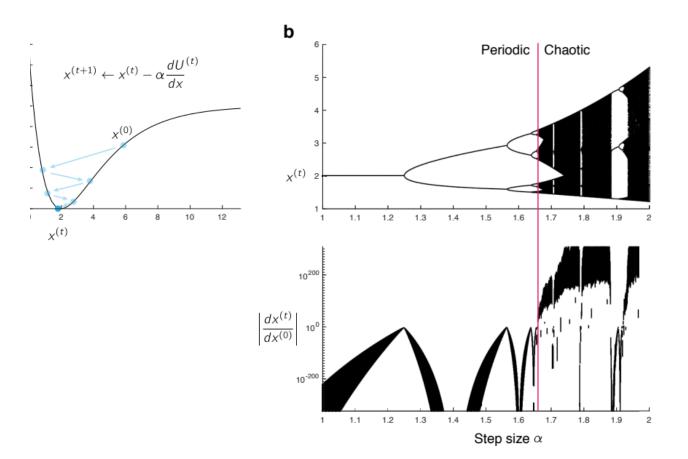
Focusing on Loss



Training is *very* unstable!

Some problems:

- Gradients accumulate **exponentially** over time
- High forces explode simulations!
- Sensitivity to initial conditions → instability through time steps



Damped Gradients

Gradient clipping? Doesn't work...

...so multiply each backwards iteration by γ , like in reinforcement learning!

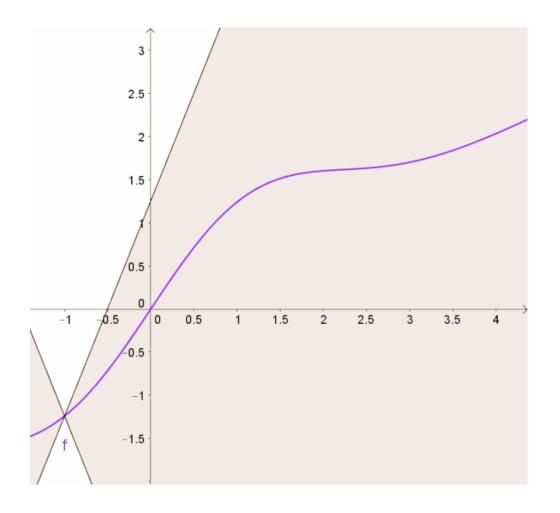
$$\partial \hat{\boldsymbol{x}^{(t)}}_{\partial \boldsymbol{x}^{(t-k)}} = \left(\left(\left(\gamma \frac{\partial \boldsymbol{x}^{(t)}}{\partial \boldsymbol{x}^{(t-1)}} \right) \gamma \frac{\partial \boldsymbol{x}^{(t-1)}}{\partial \boldsymbol{x}^{(t-2)}} \right) \cdots \gamma \frac{\partial \boldsymbol{x}^{(t-k+1)}}{\partial \boldsymbol{x}^{(t-k)}} \right) = \gamma^k \frac{\partial \boldsymbol{x}^{(t)}}{\partial \boldsymbol{x}^{(t-k)}}.$$

Speed Clipping

Algorithm 3: Mixed Integrator

Input : Initial state $z^{(0)}$, energy U(x), time steps ϵ_x , ϵ_z , total time T, preconditioners C_x , C_z , Output : Trajectory $x^{(0)}$, ..., $x^{(T)}$ Initialize $x^{(0)} \leftarrow \mathcal{F}(z^{(0)})$; while t < T do $f_x \leftarrow \nabla_x U$; $\Delta x^{(Cart)} \leftarrow CartesianStep(x^{(t)}, f_x, \epsilon_x, C_x)$; $\Delta x^{(Int)} \leftarrow ClippedInternalStep(x + \Delta x^{(Cart)}, f_x, \epsilon_z, C_z)$; $x \leftarrow x + Detrend(\Delta x^{(Cart)} + \Delta x^{(Int)})$; $t \leftarrow t + \epsilon$; end

Limiting Sensitivity to Initial Conditions

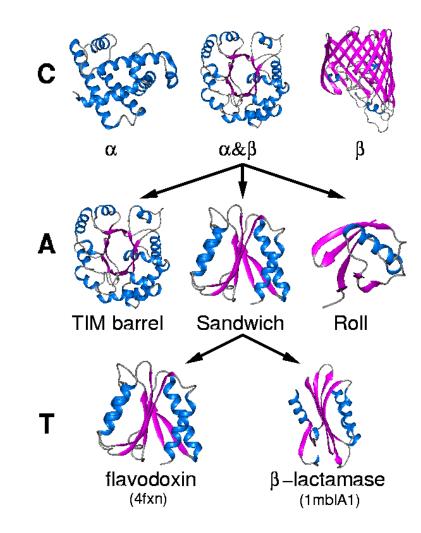


$$|F^{(t)}(\boldsymbol{x}, \theta) - F^{(t)}(\boldsymbol{x} + \Delta \boldsymbol{x}, \theta)| \le |\Delta \boldsymbol{x}|$$

$$\mathcal{L}_{Lyapunov} = \max\left(0, \log \frac{|F(\boldsymbol{x}^{(t)}) - F(\boldsymbol{x}^{(t)} + \boldsymbol{\delta})|}{|\boldsymbol{\delta}|}\right)$$

Data & Metadata

Dataset: CATH -- hierarchy of protein structure



Generalization levels Class **A**rchitecture **T**opology **H**omologous Training

Data Split

- Train: 35k folds
- Validation: 21k folds
- Test: 10k folds
- Testing generalization:
 - H validation: superfamilies excluded from train
 - T validation: topologies excluded from train
 - A validation: secondary structures excluded from train

Guesswork

figure Figure 12. We note that the validation set was not explicitly used to tune hyperparameters due to the large cost of training (2 months on 2 M40 GPUs), but we did keep track of validation statistics during training.

So... how did we do?

A scary question

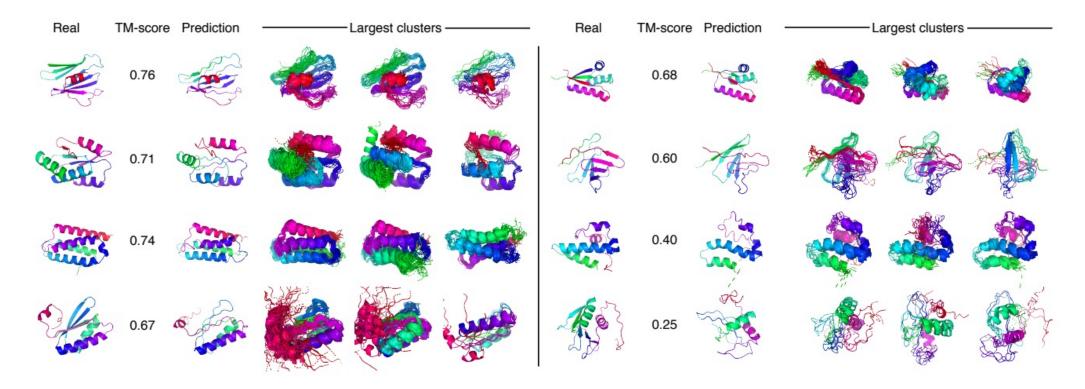
One answer

Table 1: Test set performance across different levels of generalization

Model	# params	Total	С	Α	Т	Н
NEMO (ours, profile)	21.3m	0.366	0.274	0.361	0.331	0.431
NEMO (ours, sequence-only)	19.1m	0.248	0.198	0.245	0.254	0.263
RNN baseline model (profile)						
2x100	5.9m	0.293	0.213	0.230	0.247	0.388
2x300 (avg. of 3)	8.8m	0.335	0.229	0.282	0.278	0.446
2x500	13.7m	0.347	0.222	0.272	0.286	0.477
2x700	21.4m	0.309	0.223	0.259	0.261	0.403
Number of structures		10381	1537	1705	3198	3941

Confidence

Uncertainty measured by "clusters" – similar structures sampled in distribution



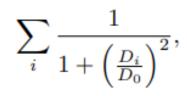
Time



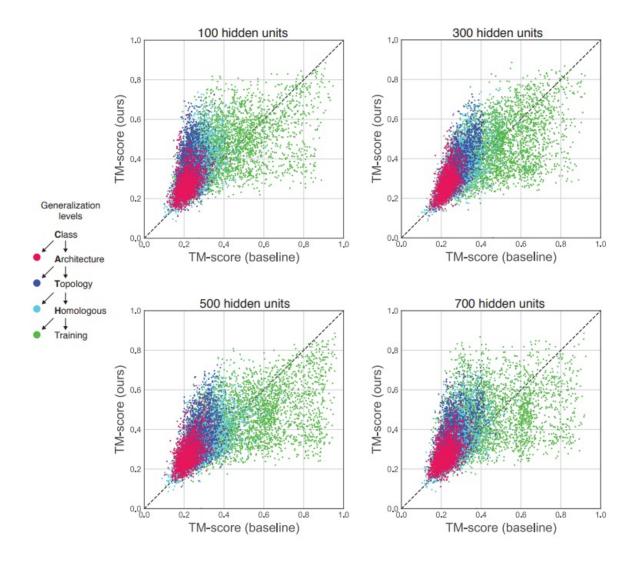
One measurement metric

• TM-Score

- Scored from 0 to 1
- >0.5 is considered "good"
- Best possible score across all possible positions:
 - Found by optimizing (with autograd throughout)



Baselines



loss.backward()

Any questions?