Welcome!

• Introductions:
 • What is your year / background / research interests?
 • What do you want to learn from this class?
 • Fun fact?

• About me:
 • Second time teaching this class — as always, feedback is welcome!
 • Interested in machine learning for structural biology, cryo-EM methods, and 3D computer vision:
 • We will explore this new research area, its various subfields and connections to other topics in computer science throughout this semester
Course logistics

- Website: https://www.cs.princeton.edu/courses/archive/fall23/cos597N/
- Instructor: Ellen Zhong (she/her)
- Office hours: **Wednesdays 4:00-5:00p**, CS 314, via Calendly or by appointment

- Class meetings: **Thursdays 3:00-5:00p**
 - Aside from today, all classes will involve a group discussion of assigned papers
 - Attendance is required — contact me in advance if there are extenuating circumstances

- We will mostly use **slack** for communication and to share helpful resources or related papers, or #random! I will create a slack channel after this meeting and add everyone.
Course Design

• Goals of this course:
 • Learn about machine learning methods applied to problems in structural biology
 • Learn how to critically read and evaluate papers
 • Learn how to pose research problems and practice oral and written scientific communication skills
 • *Bonus:* Exposure to relevant basic and applied ML research in industry from guest speakers

• There are two components of this class:
 • Weekly in-class presentations and discussions on assigned papers
 • Final project

• [Syllabus](#) for more details
Prerequisites

• This is an advanced, interdisciplinary paper reading class.
• You should have exposure/working knowledge of machine learning concepts and deep learning architectures.
 • I will provide supplementary reading/primers. Add any helpful resources you find to the #resources channel in slack!
• No prior knowledge of biology is required, however, students should expect to develop a sufficient understanding of each application area to evaluate new developments.

• **Key prerequisite:** Interest in achieving a deep understanding of both ML algorithms and structural biology problems
 • Interested in “AI for science”? A key ability is to be able to read and understand papers from both communities
Grading

• Participation (30%)
• Presentation (30%)
• Final project (40%)

• Participation
 • One of the primary ways of learning and engaging with the material
 • Examples: Posing or answering questions, explaining background material, sharing reflections

• Grades are not the goal of this graduate-level seminar
 • The goal is to learn about this research area and engage with your peers!
 • A highly interdisciplinary area — everyone brings a unique perspective.
Additional logistics

- Any important course announcements will be communicated through email
- I will be updating the course website, not Canvas

- We will leave a week open in the latter half of the semester for any late-breaking work!
- There will be a few guest lecturers during the semester, either guiding the discussions (if I am out of town) or giving a presentation.
- Any other questions?

- Full syllabus [here](https://www.cs.princeton.edu/courses/archive/fall23/cos597N/)
Rest of this class

- An introduction to structural biology through the lens of biology, chemistry, physics, and computer science
- Recent breakthroughs in structural biology from machine learning (AlphaFold2)
- An overview of topics in this course
- Discussion on paper reading strategies
An introduction to structural biology

1. Motivation: What is structural biology? What are proteins? Why should you care?

2. Background: History of structural biology and protein structure 101

3. Current moment in machine learning for structural biology
The central dogma of molecular biology

DNA sequence
ATGCACTTTGAGCAGGGAAAGAAA...

RNA sequence
AUGCACUUUGAGCAGGGAAAGAAA...

Protein sequence
MSTAGKVIKCKAAVLWELKKPF...

Human genome:
* Contains around 3 billion base pairs
* Encodes ~20k genes

Proteins are the final product of the genetic information flow

Modern molecular biology research: how is life implemented by our genetic code?
Structural biology: The study of proteins and other biomolecules through their 3D structure

DNA sequence
ATGCACTTGGAGCAGGGAAGAAA...

RNA sequence
AUGCACUUGAGCAGGGAAGAAA...

Protein sequence
MSTAGKVIKCKAAVLWELKKPF...

Cell Biology By The Numbers. Illustration by David Goodsell.
Structural biology: The study of proteins and other biomolecules through their 3D structure

DNA sequence
ATGCACTTTGAGCAGGGAAGAAAA...

RNA sequence
AUGCACUUGAGCAGGGAAGAAAA...

Protein sequence
MSTAGKVIKCKAAVLWELKKPF...

Protein folding
All essential biological processes are carried out by proteins and protein complexes

- Fundamental molecules of life
- Medicine and health
- Nanotech and biotech

Trastuzumab (antibody)
What are proteins?

- A linear sequence of amino acids polymerized in a chain
- An alphabet of twenty possible amino acids
 - Common backbone but different side chains
- Various non-covalent interactions and other forces drive folding of the chain into a globular 3D structure*

* There have been many different paradigms for thinking about protein folding. See Afinsen’s hypothesis, Dill et al. 2008, The Protein Folding Problem
Primary, secondary, and tertiary structure

- Ribbon diagram for visual interpretation of structure, developed by Jane Richardson in the late 1970s - early 1980s
- See her keynote at MLSB 2021 @ NeurIPS for a historical overview

https://stories.duke.edu/sciences-mother-of-ribbon-diagrams-celebrates-50-years-at-duke
Different choices in visualizing and representing 3D structure

Atomic model
- Full atom representation
- Backbone representation

Density volume
- Isosurface contour
Many proteins are enzymes that catalyze chemical reactions

- The precise structural arrangement of amino acid residues creates the opportunity to bind and catalyze chemical reactions
- Catalysis is carried out at an active site or binding site
- What are some examples of enzymes?

Polypeptides can be cleaved either chemically or enzymatically. Enzymes that catalyse the hydrolytic cleavage of peptide bonds are called proteases.

https://www.nature.com/scitable/content/protease-mechanisms-14462487
Proteins form large macromolecular machines

RNA polymerase

ATP synthase

https://pdb101.rcsb.org/
Proteins form large, dynamic macromolecular machines

Spliceosome splicing cycle

https://en.wikipedia.org/wiki/Spliceosome

Zhong et al, Nature Methods 2021

cryoDRGN trajectory of the pre-catalytic spliceosome

MD simulation of SARS CoV-2 Spike
How do we model structural variability?

Molecules can move, bind and unbind

\[\Omega = \{3D \text{ structures}\} \]

\[\bullet \ V: \mathbb{R}^3 \rightarrow \mathbb{R} \]

- \{low-energy states\}
- \{accessible states of a given complex\}
- Low-energy states = “Conformational space” = \textbf{Discrete} union of \textbf{continuous} subspaces
 - Compositional heterogeneity
 - Conformational heterogeneity
Experimental approaches for protein structure determination

- The first protein structure by Linus Pauling, Robert Corey, and Herman Branson in 1951
- NMR spectroscopy
- X-ray crystallography
- Cryo-electron microscopy (cryo-EM)
 - 2017 Nobel prize in Chemistry
 - Opened up new areas of structural biology through recent technological advances
 - New computational challenges and opportunities

Abdella et al, Science 2021
Different levels of “accuracy”: from *in silico* to *in vitro* to *in situ*

Protein structure prediction

- MSA embedding
- Sequence-residue edges
- Genetics search & embed
- Protein sequence
- Embed & outer sum
- Residue-residue edges
- Structure module
- Confidence score
- 3D structure

Experimental 3D structure determination

- From crystals
- Directly in the cell i.e. the “native” environment
- From purified solutions (cryo-EM)
What is the protein folding problem?

- The protein folding problem is the question of how a protein's amino acid sequence dictates its three-dimensional atomic structure.
- Emerged as a “problem” in the 1960s
- The “protein folding problem” consists of three closely related puzzles:
 - (a) What is the folding code? (Thermodynamics)
 - (b) What is the folding process or mechanism? (Kinetics)
 - (c) The computational problem of can we predict the native structure of a protein from its amino acid sequence
- From Dill et al, Annual Review of Biophysics, 2008
Recap: Understanding protein structure through different lenses

- (Biology) — Protein function (and dysfunction), genomic and cellular contexts
- (Chemistry) — Amino acids, pKa, biological catalysts
- (Physics) — Statistical mechanics, the Boltzmann distribution, and free energy landscapes
- In this class, our goal is to explore a computer science perspective on problems in structural biology
Motivations for this course

- Structural biology poses a rich set of algorithmic challenges and scientific opportunities
- A **new** and **rapidly-evolving** field
 - 1st NeurIPS workshop on MLSB (2020)
 - “...structural biology... has emerged as an area of great promise for machine learning"
 - 2nd NeurIPS workshop on MLSB (2021)
 - “Structural biology ... is a field on the cusp of transformation.... recent machine-learning based modeling approaches have shown that it will become routine to predict and reason about structure at proteome scales with unprecedented atomic resolution.”
In only a few years, structural biology... has been transformed by breakthroughs from machine learning algorithms. Machine learning models are now routinely being used by experimentalists:

- to **predict structures** that can help answer real biological questions (e.g. AlphaFold),
- accelerate the experimental process of **structure determination** (e.g. computer vision algorithms for cryo-electron microscopy), and
- have become a new industry standard for **bioengineering new protein therapeutics** (e.g. large language models for protein design).

More info: mlsb.io
Let’s talk about AlphaFold2

DeepMind’s protein-folding AI has solved a 50-year-old grand challenge of biology

Recycling iteration 1, block 46
Secondary structure assigned from the final prediction

AI has cracked a problem that stumped biologists for 50 years. It’s a huge deal.
92.4 GDT

AlphaFold performance at CASP14
AlphaFold at CASP14

• CASP¹: Biannual community-wide blinded competition on ~100 newly solved proteins

• CASP14 press release: “Artificial intelligence solution to a 50-year-old science challenge could ‘revolutionise’ medical research”

• 92.4 median GDT
 • (global distance test, 0-100)
 • 1.6 Å RMSD error
 • Above >90 GDT considered within experimental error

Mohammed AlQuraishi’s blog post, “AlphaFold2 @ CASP14: “It feels like one’s child has left home.”
Inside the AlphaFold system

Input sequence
MRKPRTPFTT...

Statistical machine

3D structure
Inside the AlphaFold system

Input sequence
MRKPRTPFETT...

Templates

MSA
MRKPRTPFETT...
MRKPRTSFETT...
MRKPATPFETT...
MRKPATPFST...
MRKPRTPFITS...

Statistical machine

3D structure
Inside the AlphaFold system

Input sequence
MRKPRTPFTT...

Templates

MSA
MRKPRTPFTT...
MRKPRSPFTT...
MRKPATPFTT...
MRKPATPFST...
MRKPRTPFTS...
...

Trunk
“Evoformer”

Latent

Head
“Structure Module”

3D structure
Inside the AlphaFold system

Embedding
- MSA
- Genetic search
- Pairing
- Templates

Trunk
- sequence-residue edges
- Attention
- Update pairs
- Update seqs
- residue-residue edges

Heads
- Confidence score
- Structure module
- Pairwise distances

DeepMind CASP14 public presentation
A broad liberation of 3D structure

Before: ~100k unique structures — After: >350k predictions today, all ~100M UniProt sequences

Tunyasuvunakool et al, 2021
A broad liberation of 3D structure

Before: ~100k unique structures — After: >350k predictions today, all ~100M UniProt sequences

• Whole proteome coverage for humans and 20 other model organisms
• Predicted Local Distance Difference Test score (pLDDT) as a well-calibrated measure of confidence
• State-of-the-art predictor of disorder?

Tunyasuvunakool et al, 2021
A broad liberation of 3D structure

Before: ~100k unique structures — After: >350k predictions today, all ~100M UniProt sequences

- Whole proteome coverage for humans and 20 other model organisms
- Predicted Local Distance Difference Test score (pLDDT) as a well-calibrated measure of confidence
- State-of-the-art predictor of disorder?

Coverage Statistics (pulled from Akdel et al, biorXiv)

- Confident predictions (pLDDT > 0.7):
 - 27% for P. falciparum
 - 77% for E. coli
- Highly confident predictions (pLDDT > 0.9) for 25% of all residues
- ~25% of residues of the proteomes covered with novel and confident predictions
Scope and limitations

- Machine learning (defn.): Learning patterns from data
- The protein sequence to structure prediction problem is underspecified

CASP target T1024

A homotrimeric complex

Ligands/ions

Jumper et al, 2021
Outlook for the post-AlphaFold era

• “Discovery” of performant neural network architectures for reasoning over protein sequences and structures
Outlook for the post-AlphaFold era

• “Discovery” of performant neural network architectures for reasoning over protein sequences and structures
• Many interesting problems remain
 • Multiple conformations and dynamics
 • Protein design
 • Interactions with DNA/RNA/small molecules
Outlook for the post-AlphaFold era

• “Discovery” of performant neural network architectures for reasoning over protein sequences and structures
• Many interesting problems remain
 • Multiple conformations and dynamics
 • Protein design
 • Interactions with DNA/RNA/small molecules
• Protein structure prediction vs. protein structure determination
 • Close the loop? Deliberate experimental design?
Overview of selected topics

- Weeks 2-3: Protein structure prediction, AlphaFold2
- Week 4: Cryo-EM reconstruction — cryoDRGN
- Week 5: Atomic modeling — ModelAngelo
- Week 6: Protein design I: Inverse folding
- Week 8: Protein design II: Generative modeling of sequence and structure
- Week 9: Protein language modeling
- Week 10: Physics-based modeling — MD simulation, Boltzmann Generators
- Week 11: Geometric deep learning and drug discovery
- Week 13: Structural bioinformatics
- Week 14: Wildcard
The first two papers

- The protein structure prediction component of the *protein folding problem*
- Looking for volunteers to present next week
Paper reading strategies

• Biology journal papers vs. ML conference papers
• What are your current practices?

• Additional consideration when reading papers:
 • What is the historical/social context of this work?
 • (How) did this paper impact the field / other research? Who is citing this work? Why?
 • Think about the differences between carrying out the research and writing the paper. Usually somewhat decoupled.
 • For more ideas on different “roles” in paper reading, see https://colinraffel.com/blog/role-playing-seminar.html