Parallel Sequences

COS 326
Speaker: Andrew Appel
Princeton University

Credits:
Guy Blelloch, Bob Harper (CMU), Dan Licata (Wesleyan)
Programming with shared mutable data is very hard!

How can we leverage
• pure functions
• immutable data
• function composition
to write large-scale parallel programs?

Fujitsu A64FX (48 ARM cores)
What if you had a really big job to do?

Example: Create an index of every web page on the planet.
 – Google does that regularly!
 – There are billions of them!

Example: Search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need 1000s of computers, but:
 – how do we distribute work across all those computers?
 – you definitely can't use shared-memory parallelism because the computers don't share memory!
 – when you use 1 computer, you just hope it doesn't fail. If it does, you go to the store, buy a new one and restart the job.
 – when you use 1000s of computers at a time, failures become the norm. what to do when 1 of 1000 computers fail? Start over?
Big Jobs ---+ Better Abstractions

Need high-level interfaces to shield application programmers from the complex details. Complex implementations solve the problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter
COMPLEXITY OF PARALLEL ALGORITHMS
let x = 1 + 2 in
3 + x

dependence:
x = 1 + 2 \textit{happens before} 3 + x
Execution of dependency diagrams: A processor can only begin executing the computation associated with a block when the computations of all of its predecessor blocks have been completed.
Visualizing Computational Costs

step 1: execute first block

\[x = 1 + 2 \] \[\text{cost} = 1 \]

\[3 + x \] \[\text{cost} = 1 \]

Cost so far: 0
step 1: execute first block

\[x = 1 + 2 \]
\[3 + x \]

Cost so far: 1
step 2: execute second block because all of its predecessors have been completed

Cost so far: 1
step 2: execute second block because all of its predecessors have been completed

Cost so far: 1 + 1
let x = 1 + 2 in
3 + x

\[
\begin{align*}
\text{x = 1 + 2} & \quad \text{cost = 1} \\
\text{3 + x} & \quad \text{cost = 1} \\
\text{total cost} & = 1 + 1 \\
& = 2
\end{align*}
\]
Visualizing Computational Costs

(1 + 2 || f 3)

parallel pair:
compute both left and right-hand sides independently
return pair of values
(easy to implement using futures)
Suppose we have 1 processor. How much time does this computation take?

\[(1 + 2 \parallel f \ 3)\]
Suppose we have 1 processor. How much time does this computation take?
Schedule A-B-C-D: 1 + 1 + 7 + 1
Suppose we have 1 processor. How much time does this computation take? Schedule A-C-B-D: 1 + 1 + 7 + 1
Suppose we have 2 processors. How much time does this computation take?
Suppose we have 2 processors. How much time does this computation take? Cost so far: 1
Suppose we have 2 processors. How much time does this computation take? Cost so far: 1 + max(1, 7)
Suppose we have 2 processors. How much time does this computation take? Cost so far: $1 + \max(1,7) + 1$
Suppose we have 2 processors. How much time does this computation take? Total cost: $1 + \max(1,7) + 1$. We say the schedule we used was: A-CB-D
Suppose we have 3 processors. How much time does this computation take?
Suppose we have **3 processors**. How much time does this computation take? Schedule A-BC-D: \(1 + \max(1, 7) + 1 = 9\)
Suppose we have infinite processors. How much time does this computation take?
Schedule A-BC-D: $1 + \max(1,7) + 1 = 9$
Understanding the complexity of a parallel program is a little more complex than a sequential program

- the number of processors has a significant effect

One way to *approximate* the cost is to consider a parallel algorithm independently of the machine it runs on is to consider *two* metrics:

- **Work**: The cost of executing a program with just 1 processor.
- **Span**: The cost of executing a program with an infinite number of processors

Always good to minimize work

- Every instruction executed consumes energy
- Minimize span as a second consideration
- Communication costs are also crucial (we are ignoring them)
Parallelism

The parallelism of an algorithm is an estimate of the maximum number of processors an algorithm can profit from.

- parallelism = work / span

If work = span then parallelism = 1.
- We can only use 1 processor
- It's a sequential algorithm

If span = ½ work then parallelism = 2
- We can use up to 2 processors

If work = 100, span = 1
- All operations are independent & can be executed in parallel
- We can use up to 100 processors

Related concept: “speedup”
How much faster is the n-processor version in practice, not just in theory
Series-parallel graphs arise from execution of functional programs with parallel pairs. Also known as well-structured, nested parallelism.
let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)
In general, a series-parallel graph has a source and a sink and is:

- a single node, or
- two series-parallel graphs in sequence, or
- two series-parallel graphs in parallel
However: The results about greedy schedulers (next few slides) do apply to DAG schedules as well as series-parallel schedules!
Work and Span of Acyclic Graphs

Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from source to sink.
Work and Span of Acyclic Graphs

Let's assume each node costs 1.

Work: sum the nodes.

Span: longest path from source to sink.

work = 10
span = 5
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D

A
B G
C D
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J
F

Scheduling
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
I J
Scheduling

Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
I
J
F
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
F
H I
J

Let's assume each node costs 1.
Let's assume we have 2 processors.
How do we schedule computation?

Option 1:
A
B G
C D
E H
H I
I
J
E J
F
F

Scheduling
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H H I
H I
J E J
J F
F
Let's assume each node costs 1.

Let's assume we have 2 processors. How do we schedule computation?

Option 1:
A
B G
C D
E H
H I
I
J
F

Conclusion:
How you schedule jobs can have an impact on performance.
Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!
Greedy Schedulers

Greedy schedulers will schedule some task to a processor as soon as that processor is free.

– Doesn't sound so smart!

Properties (for p processors):

– $T(p) < \frac{\text{work}}{p} + \text{span}$
 • won't be worse than dividing up the data perfectly between processors, except for the last little bit, which causes you to add the span on top of the perfect division

– $T(p) \geq \max(\frac{\text{work}}{p}, \text{span})$
 • can't do better than perfect division between processors ($\frac{\text{work}}{p}$)
 • can't be faster than span
Greedy Schedulers

Properties (for p processors):
\[
\max(\frac{\text{work}}{p}, \text{span}) \leq T(p) < \frac{\text{work}}{p} + \text{span}
\]

Consequences:
– as span gets small relative to work/p
 • \(\frac{\text{work}}{p} + \text{span} \Rightarrow \frac{\text{work}}{p}\)
 • \(\max(\frac{\text{work}}{p}, \text{span}) \Rightarrow \frac{\text{work}}{p}\)
 • so \(T(p) \Rightarrow \frac{\text{work}}{p}\) greedy schedulers converge to the optimum!

– if span approaches the work
 • \(\frac{\text{work}}{p} + \text{span} \Rightarrow \text{span}\)
 • \(\max(\frac{\text{work}}{p}, \text{span}) \Rightarrow \text{span}\)
 • so \(T(p) \Rightarrow \text{span}\) greedy schedulers converge to the optimum!
Even though greedy schedulers are simple to implement, they can be effective in building a parallel programming system.

This *supports* the idea that *work and span* are useful ways to reason about the cost of parallel programs.
PARALLEL SEQUENCES
Parallel Sequences

Parallel sequences

\[< e_0, e_1, e_2, ..., e_{n-1} > \]

Operations:
- creation (called \textit{tabulate})
- indexing an element in constant span
- map
- scan -- like a fold: \[<u, u + e_0, u + e_0 + e_1, ...> \] log n span!

Languages:
- Nesl [Blelloch]
- Data-parallel Haskell
tabulate : (int -> 'a) -> int -> 'a seq

\[
\text{tabulate } f \ n \ \equiv \ <f \ 0, \ f \ 1, \ \ldots, \ f \ (n-1)>
\]

work = O(n) \quad \quad \text{span} = O(1)
Parallel Sequences: Selected Operations

`tabulate : (int -> 'a) -> int -> 'a seq`

`tabulate f n == <f 0, f 1, ..., f (n-1)>`
`work = O(n) span = O(1)`

`nth : 'a seq -> int -> 'a`

`nth <e0, e1, ..., e(n-1)> i == ei`
`work = O(1) span = O(1)`
Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

\[\text{tabulate } f \ n \ = \ <f \ 0, \ f \ 1, \ ..., \ f \ (n-1)> \]
\[\text{work} = O(n) \quad \text{span} = O(1) \]

nth : 'a seq -> int -> 'a

\[\text{nth } <e_0, \ e_1, \ ..., \ e(n-1)> \ i \ = \ e_i \]
\[\text{work} = O(1) \quad \text{span} = O(1) \]

length : 'a seq -> int

\[\text{length } <e_0, \ e_1, \ ..., \ e(n-1)> \ = \ n \]
\[\text{work} = O(1) \quad \text{span} = O(1) \]
Write a function that creates the sequence \(<0, ..., n-1>\) with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\).

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabulate (f(n))</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>1(\text{th}) of (s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(s)'s length</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Write a function that creates the sequence \(<0, \ldots, n-1>\) with Span = \(O(1)\) and Work = \(O(n)\).

(* create \(n = <0, 1, \ldots, n-1>\) *)

let create n =

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate (f n)</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>nth (i\ s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length (s)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Write a function that creates the sequence $<0, \ldots, n-1>$ with Span = $O(1)$ and Work = $O(n)$.

(* create n == <0, 1, \ldots, n-1> *)
let create n =
 tabulate (fun i -> i) n

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, ..., v_{n-1}>\), maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work)

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate (f)</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>nth (i) (s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length (s)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, ..., v_{n-1}>\), maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work)

\[
(* \ \text{map} \ f \ <v_0, ..., v_{n-1}> \ == \ <f \ v_0, ..., f \ v_{n-1}> \ *)
\]

let map f s =

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}>\), maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work)

\[
(* \text{map } f <v_0, \ldots, v_{n-1}> == <f v_0, \ldots, f v_{n-1}> *)
\]

\[
\text{let map } f \ s =
\]

\[
\text{ tabulate (fun } i \rightarrow f (\text{nth } s \ i)) \ (\text{length } s)
\]

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate (f) (n)</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>nth (i) (s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length (s)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence <v₀, ..., vₙ₋₁>, reverses the sequence. with Span = O(1) and Work = O(n)

Operations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example Problems

Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}>\), reverses the sequence. with Span = O(1) and Work = O(n)

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)

let reverse s =

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}>\), reverses the sequence. with Span = O(1) and Work = O(n)

(* reverse \(<v_0, \ldots, v_{n-1}> == <v_{n-1}, \ldots, v_0> *\)*)

let reverse s =
 let n = length s in
 tabulate (fun i -> nth s (n-i-1)) n

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A Parallel Sequence API

<table>
<thead>
<tr>
<th>Function</th>
<th>Type</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>type 'a seq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tabulate : (int -> 'a) -> int -> 'a seq</td>
<td></td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>length : 'a seq -> int</td>
<td></td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>nth : 'a seq -> int -> 'a</td>
<td></td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>append : 'a seq -> 'a seq -> 'a seq</td>
<td></td>
<td>O(N+M)</td>
<td>O(1)</td>
</tr>
<tr>
<td>split : 'a seq -> int -> 'a seq * 'a seq</td>
<td></td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

For efficient implementations, see this paper by Andrew Tao ’24:
https://icfp23.sigplan.org/details/ocaml-2023-papers/2/Parallel-Sequences-in-Multicore-OCaml
Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
sum: 0
```

```
7 4 3 9 8
```
Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

sum: 0 → 7

7 4 3 9 8

sum:
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
let sum_all (l:int list) = reduce (+) 0 l
```

```
sum: 0 7 11 14 23 31
```

```
7 4 3 9 8
```
Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
let sum_all (l:int list) = reduce (+) 0 l
```

Key to parallelization: Notice that because sum is an associative operator, we do not have to add the elements strictly left-to-right:

```
((((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)
```

add on processor 1

add on processor 2
The key is **associativity**:

\[
((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) + v2) + ((v3 + v4) + v5)
\]

Add on processor 1: \((((init + v1) + v2) + v3) + v4\)
Add on processor 2: \(((v3 + v4) + v5)\)

Commutativity not needed!

Commutativity allows us to reorder the elements:

\[
v1 + v2 == v2 + v1
\]

But we don't have to reorder elements to obtain a significant speedup; we just have to reorder the execution of the operations.
Parallel Sum

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1

2 7 4 3 9 8 2 1
Parallel Sum

36

16 + 20

9 + 7 + 17 + 3

2 + 7 + 4 + 3 + 9 + 8 + 2 + 1
let rec psum (s : int seq) : int =
 match length s with
 | 0 -> 0
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (a1, a2) = both psum s1
 psum s2 in
 a1 + a2

let both f x g y =
 let ff = future f x in
 let gv = g y in
 (force ff, gv)
If \(\text{op} \) is associative and the base case has the properties:
\[
\text{op base } X == X \quad \text{and} \quad \text{op } X \text{ base } == X
\]
then the parallel reduce is equivalent to the sequential left-to-right fold.
let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match length s with
 | 0 -> base
 | 1 -> nth s 0
 | n ->
 let (s1, s2) = split (n/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2
let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match length s with
 | 0 -> base
 | 1 -> nth s 0
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

let sum s = reduce (+) 0 s
let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =

match length s with
 0 -> base
| 1 -> inject (nth s 0)
| n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both
 (mapreduce inject combine base) s1
 (mapreduce inject combine base) s2 in
 combine n1 n2
let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =

match length s with
 | 0 -> base
 | 1 -> inject (nth s 0)
 | n ->
 let (s1,s2) = split (n/2) s in
 let (n1, n2) = both
 (mapreduce inject combine base) s1
 (mapreduce inject combine base) s2 in
 combine n1 n2

let average s =
 let (count, total) =
 mapreduce (fun x -> (1,x))
 (fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
 (0,0) s in
 if count = 0 then 0 else total / count
DON’T PARALLELIZE AT TOO FINE A GRAIN
Parallel Reduce with Sequential Cut-off

When data is small, the overhead of parallelization isn't worth it. Revert to the sequential version!

```ocaml
let SHORT = 1000

let rec reduce (f: 'a -> 'a -> 'a) (base: 'a) (s: 'a seq) =
    if length s < SHORT
    then sequential_reduce f base s
    else let (s1, s2) = split ((length s)/2) s in
        let (n1, n2) = both (reduce f base) s1 (reduce f base) s2 in
        f n1 n2

let sequential_reduce f base (s: 'a seq) =
    let rec g i x =
        if i<0 then x else g (i-1) (f (nth a i) x)
    in g (length s - 1)
```
BALANCED PARENTHESSES
The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:

- balanced: ()()()()
- not balanced: (
- not balanced:)(
- not balanced: ()())

We will try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

type paren = L | R (* L(eft) or R(ight) paren *)
let balanced (ps : paren seq) : bool = ...

First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

0 1

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1 2

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

| 0 | 1 | 2 | 1 |

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

Warning! This solution does not generalize to a parallel map/reduce!
First, a sequential approach

Fold from left to right, keep track of
of unmatched left parens

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1!!</td>
<td></td>
</tr>
</tbody>
</table>

too many right parens indicates no match
First, a sequential approach

if you reach the end of the sequence, you should have no unmatched left parens
Easily Coded Using a Fold

```
let rec fold f b s =
  let rec aux n accum =
    if n >= length s then
      accum
    else
      aux (n+1) (f (nth s n) accum)
  in
  aux 0 b
```
Easily Coded Using a Fold

(* check to see if we have too many unmatched R parens

so_far : number of unmatched parens so far
 or None if we have seen too many R parens
*)

let check (p:paren) (so_far:int option) : int option =
 match (p, so_far) with
 (_, None) -> None
 | (L, Some c) -> Some (c+1)
 | (R, Some 0) -> None (* violation detected *)
 | (R, Some c) -> Some (c-1)
Easily Coded Using a Fold

```
let fold f base s = ...

let check so_far s = ...

let balanced (s: paren seq) : bool =
  match fold check (Some 0) s with
  Some 0 -> true
  | (None | Some n) -> false
```

That was easy enough. But the “check” function is not associative, that means it can’t be used in a parallel “reduce”.

That’s what I was warning about!
Key insights

- if you find () in a sequence, you can delete it without changing the balance
Key insights

- if you find () in a sequence, you can delete it without changing the balance

- if you have deleted all of the pairs (), you are left with:

 •))) ... j ...))) ((((... k ... (((
Key insights

– if you find (in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... (())) ... x ...))) (((... y ... (((
Parallel Version

Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if x ≥ k then))) ... j ...)))))) ... x − k ...))) (((... y ... (((
Parallel Version

Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if \(x \geq k \) then))) ... j ...)))))) ... x \(-\) k ...))) (((... y ... (((

– if \(x \leq k \) then))) ... j ...))) (((... k \(-\) x ... ((((((... y ... (((
let rec matcher s =
 match length s with
 0 -> (0, 0)
| 1 -> (match nth s 0 with
 | L -> (0, 1)
 | R -> (1, 0))
| n ->
 let (left, right) = split (n/2) s in
 let ((j, k), (x, y)) = both matcher left matcher right in
 if x > k
 then (j + (x - k), y)
 else (j, (k - x) + y)
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =
 match matcher s with
 | (0, 0) -> true
 | (j,k) -> false
let rec matcher s =
 match length s with
 0 -> (0, 0)
 | 1 -> (match nth s 0 with
 | L -> (0, 1)
 | R -> (1, 0))
 | n ->
 let (left, right) = split (n/2) s in
 let ((j, k), (x, y)) = both matcher left matcher right in
 if x > k
 then (j + (x - k), y)
 else (j, (k - x) + y)

This looks just like mapreduce!
let rec mapreduce(inject: 'a -> 'b)
 (combine: 'b -> 'b -> 'b)
 (base: 'b)
 (s: 'a seq) = ...

let inject paren =
 match paren with
 | L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x - k), y)
 else (j, (k - x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false
let rec mapreduce(inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) = ...

let inject paren =
 match paren with
 | L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x - k), y)
 else (j, (k - x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false
Using a Parallel Fold

```ocaml
define mapreduce (inject : 'a -> 'b) (combine : 'b -> 'b -> 'b) (base : 'b) (s : 'a seq) = ...
define inject paren =
  match paren with
    | L -> (0, 1)
    | R -> (1, 0)
define combine (j,k) (x,y) =
  if x > k then (j + (x - k), y)
  else (j, (k - x) + y)
define balanced s =
  match mapreduce inject combine (0,0) s with
    | (0, 0) -> true
    | (i,j) -> false
```

For correctness, check the associativity of `combine`

also check: `combine base (i,j) == (i, j)`
Parallel complexity can be described in terms of work and span.

Folds and reduces are easily coded as parallel divide-and-conquer algorithms with $O(n)$ work and $O(\log n)$ span.

The map-reduce paradigm, inspired by functional programming, is a winner when it comes to big-data processing (more about that in the next lecture).
Sanity checks

let combine \((j,k)\) \((x,y)\) =
 if \(x > k\) then \((j + (x - k), y)\)
 else \((j, (k - x) + y)\)

base = \((0,0)\)

check the associativity of combine

also check: combine base \((i,j)\) == \((i, j)\)

Prove for yourself:

combine (combine \((j,k)\) \((x,y)\)) \((a,b)\) = combine \((j,k)\) (combine \((x,y)\)(a,b))

combine \((j,k)\) \((0,0)\) = \((j,k)\)

combine \((0,0)\) \((j,k)\) = \((j,k)\)