Poly-HO
(Polymorphic, Higher-Order Programming)

COS 326
Andrew Appel
Princeton University
A Few More Thoughts on Types & Lists
Java has a paucity of types

- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs
- There is no type ...

OCaml has many more types

- use option when things may be null
- do not use option when things are not null
- OCaml types describe data structures more precisely
 - programmers have fewer cases to worry about
 - entire classes of errors just go away
 - type checking and pattern analysis help prevent programmers from ever forgetting about a case
Java has a paucity of types
- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs

OCaml has many more types
- Use Option when things may be null
- Don't use Option when things are not null
- OCaml types describe data structures more precisely
 - Programmers have fewer cases to worry about
 - Entire classes of errors just go away
 - Type checking and pattern analysis help prevent programmers from ever forgetting about a case

Summary of Java Pair Rant

SCORE: OCAML 1, JAVA 0
Java has a paucity of types

- but at least when you forget something, it *throws an exception* instead of *silently going off the trolley*!

If you forget to check for null pointer in a C program,

- no type-check error at compile time
- no exception at run time
- it might crash right away (that would be best), or
- it might permit a buffer-overflow (or similar) vulnerability
- so the hackers pwn you!
Java has a paucity of types

– but at least when you forget something, it throws an exception instead of going off the trolley!

If you forget to check for null pointer in a C program,

– no type-check error at compile time
– no exception at run time
– it might crash right away (that would be best), or
– it might permit a buffer overrun (or similar) vulnerability
– so the hackers pwn you!

SCORE:
OCAML 1, JAVA 0, C -1
MORE THOUGHTS ON LISTS
The (Single) List Programming Paradigm

• Recall that a list is either:

 – [] (the empty list)
 – v :: vs (a value v followed by a *previously constructed list vs*)

• Some examples:

```plaintext
let l0 = [];;; (* length is 0 *)
let l1 = 1::l0;; (* length is 1 *)
let l2 = 2::l1;; (* length is 2 *)
let l3 = 3::l2;; (* length is 3 *)
...
```
Consider the following picture. How long is the linked structure?
Can we build a value with type `int list` to represent it?
• How long is it? **Infinitely long?**
• Can we build a value with type `int list` to represent it? **No!**
 – all values with type `int list` have finite length
The List Type

• Is it a good thing that the type list does not contain any infinitely long lists? Yes!

• A terminating list-processing scheme:

```
let rec f (xs : int list) : int =
  match xs with
  [] -> ... do something not recursive ...
  | hd::tail -> ... f tail ...
```

terminates because f only called recursively on smaller lists
let rec loop (xs : int list) : int =
 match xs with
 [] -> 0
 | hd::tail -> hd + loop (0::tail)

Does this program terminate?
Does this program terminate? **No!** Why not? We call `loop` recursively on `(0::tail)`. This list is the same size as the original list -- not smaller.
ML has a *strong type system*

- ML *types say a lot* about the set of values that inhabit them

In this case, the tail of the list is *always* shorter than the whole list

This makes it easy to write functions that terminate; *it would be harder if you had to consider more cases*, such as the case that the tail of a list might loop back on itself. *Moreover OCaml hits you over the head to tell you what the only 2 cases are!*

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. *ML is better than other languages because it gives you control* over the values you want to program with, via types!
Rant #2: Imperative lists

• One week from today, ask yourself: Which is easier:
 – Programming with immutable lists in ML?
 – Programming with pointers and mutable cells in C/Java?
 – I guarantee you are going to say ML.

• there are so many more cases to worry about in C/Java.
• so many more things that can go wrong.

SCORE: OCAML 2, JAVA 0
C: why bother?
Do not believe his lies.
let rec xs : int list = 0 :: xs
let rec xs : int list = 0 :: xs

C: why bother?

SCORE: OCAML 1.8, JAVA 0
Poly-HO!

polymorphic, higher-order programming
• Save some software-engineering effort:
 Never write the same code twice.

“Ooh, I get it! I’ll write the code once, copy-paste it somewhere else . . . that way, I didn’t write the same code twice”

 – What’s wrong with that?
 • find and fix a bug in one copy, have to fix in all of them.
 • decide to change the functionality, have to track down all of the places where it gets used.

• Instead, a better practice:
 – factor out the common bits into a reusable procedure.
 – even better: use someone else’s (well-tested, well-documented, and well-maintained) procedure.
Factoring Code in OCaml

Consider these definitions:

```ocaml
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```
Factoring Code in OCaml

Consider these definitions:

```ocaml
let rec inc_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd+1)::(inc_all tl)

let rec square_all (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (hd*hd)::(square_all tl)
```

The code is almost identical – factor it out!
A *higher-order* function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)
```
A **higher-order** function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
```

Uses of the function:

```ocaml
let inc x = x+1
let inc_all xs = map inc xs
```
A **higher-order** function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
```

Uses of the function:

```ocaml
let inc x = x+1
let inc_all xs = map inc xs

let square y = y*y
let square_all xs = map square xs
```

Writing little functions like `inc` just so we call `map` is a pain.
A higher-order function captures the recursion pattern:

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | []    -> []
  | hd::tl -> (f hd)::(map f tl);
```

Uses of the function:

```ocaml
let inc_all xs = map (fun x -> x + 1) xs
let square_all xs = map (fun y -> y * y) xs
```

We can use an anonymous function instead.

Originally, Alonzo Church wrote this function using \(\lambda \) instead of `fun`:

\((\lambda x. \ x+1)\) or
\((\lambda x. \ x^2)\)
let rec sum (xs:int list) : int =
match xs with
| [] -> 0
| hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
match xs with
| [] -> 1
| hd::tl -> hd * (prod tl)

Goal: Create a function called `reduce` that when supplied with a few arguments can implement both `sum` and `prod`. Define `sum2` and `prod2` using `reduce`.

(Try it)

Goal: If you finish early, use `map` and `reduce` together to find the sum of the squares of the elements of a list.

(Try it)
Another example

```ocaml
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd + (sum tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd * (prod tl)
```
Another example

```ocaml
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> hd OP (RECURSIVE CALL ON tl)
```
Another example

```haskell
let rec sum (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)

let rec prod (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (RECURSIVE CALL ON tl)
```
let add x y = x + y
let mul x y = x * y

let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce add 0 xs
let prod xs = reduce mul 1 xs
Using Anonymous Functions

```ocaml
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs
```
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (fun x y -> x+y) 0 xs
let prod xs = reduce (fun x y -> x*y) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
 match xs with
 | [] -> b
 | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
match xs with
| [] -> b
| hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs
Using Anonymous Functions

```ocaml
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =
  match xs with
  | [] -> b
  | hd::tl -> f hd (reduce f b tl)

let sum xs = reduce (+) 0 xs
let prod xs = reduce (*) 1 xs

let sum_of_squares xs = sum (map (fun x -> x * x) xs)
let pairify xs = map (fun x -> (x,x)) xs

wrong  -- creates a comment! ug. OCaml -0.1

what does work is: ( * )
```
More on Anonymous Functions

Function declarations:

```plaintext
let square x = x*x
let add x y = x+y
```

are *syntactic sugar* for:

```plaintext
let square = (fun x -> x*x)
let add = (fun x y -> x+y)
```

In other words, *functions are values* we can bind to a variable, just like 3 or “moo” or true.

Functions are 2nd class no more!
One argument, one result

Simplifying further:

\[
\text{let add = (fun x y -> x+y)}
\]

is shorthand for:

\[
\text{let add = (fun x -> (fun y -> x+y))}
\]

That is, add is a function which:

- when given a value x, *returns a function* \((\text{fun y -> x+y})\) which:
 - when given a value y, returns \(x+y\).
curry: verb

(1) to prepare or flavor with hot-tasting spices

(2) to encode a multi-argument function using nested, higher-order functions.

\[
\text{fun } x \rightarrow (\text{fun } y \rightarrow x+y) \quad (* \text{ curried } *)
\]

\[
\text{fun } x \ y \rightarrow x + y \quad (* \text{ curried } *)
\]

\[
\text{fun } (x, y) \rightarrow x+y \quad (* \text{ uncurried } *)
\]
Curried Functions

Named after the logician **Haskell B. Curry** (1950s).

– was trying to find minimal logics that are powerful enough to encode traditional logics.

– much easier to prove something about a logic with 3 connectives than one with 20.

– the ideas translate directly to math (set & category theory) as well as to computer science.

– Actually, **Moses Schönfinkel** did some of this in 1924
 • thankfully, we don't have to talk about *Schönfinkelled* functions
What’s so good about Currying?

In addition to simplifying the language, currying functions so that they only take one argument leads to two major wins:

1. We can *partially apply* a function.
2. We can more easily *compose* functions.
Curried functions allow defs of new, *partially applied* functions:

```ocaml
let add = (fun x -> (fun y -> x+y))
```

Equivalent to writing:

```ocaml
let inc = add 1
```

which is equivalent to writing:

```ocaml
let inc = (fun y -> 1+y)
```

also:

```ocaml
let inc2 = add 2
let inc3 = add 3
```
SIMPLE REASONING ABOUT HIGHER-ORDER FUNCTIONS
We can factor this program

```
let square_all ys =
    match ys with
    | [] -> []
    | hd::tl -> (square hd)::(square_all tl)
```

into this program:

```
let square_all = map square
```

assuming we already have a definition of map
Goal: Rewrite definitions so my program is simpler, easier to understand, more concise, ...

Question: What are the reasoning principles for rewriting programs without breaking them? For reasoning about the behavior of programs? About the equivalence of two programs?

I want some rules that never fail.
Simple Equational Reasoning

Rewrite 1 (Function de-sugaring):

\[
\text{let } f \ x = \text{body} \quad \Rightarrow \quad \text{let } f = (\text{fun } \ x \ \rightarrow \ \text{body})
\]

Rewrite 2 (Substitution):

\[
(\text{fun } \ x \ \rightarrow \ \ldots \ \ x \ \ldots) \ \text{arg} \quad \Rightarrow \quad \ldots \ \text{arg} \ \ldots
\]

Rewrite 3 (Eta-expansion):

\[
\text{let } f = \text{def} \quad \Rightarrow \quad \text{let } f \ x = (\text{def}) \ x
\]

if \(\text{arg} \) is a value or, when executed, will always terminate without effect and produce a value

roughly: all occurrences of \(x \) replaced by \(\text{arg} \) (though getting this exactly right is shockingly difficult)

if \(f \) has a function type

chose name \(x \) wisely so it does not shadow other names used in \(\text{def} \)
Let’s use these rules
to prove that these two functions are equivalent
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))

let square_all =
 map square
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))
)

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
) square
)
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)))

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
) square)
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))
)

let square_all =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)
) square
)
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))
)

let square_all =
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)
)
Expanding map square

```ocaml
let rec map = (fun f -> (fun xs ->
         match xs with
         | [] -> []
         | hd::tl -> (f hd)::(map f tl)))

let square_all ys = (fun xs ->
         match xs with
         | [] -> []
         | hd::tl -> (square hd)::(map square tl))
```

add argument via eta-expansion
let rec map =
 (fun f ->
 (fun xs ->
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl))))

let square_all ys =

match ys with
| [] -> []
| hd::tl -> (square hd)::(map square tl)
So Far

```ocaml
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
  match ys with
  | [] -> []
  | hd::tl -> (square hd)::(map square tl)
```

proof by simple rewriting unrolls definition once
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let square_all xs = map square xs

let square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)

let rec square_all ys =
 match ys with
 | [] -> []
 | hd::tl -> (square hd)::(square_all tl)

proof by simple rewriting unrolls definition once

proof by induction eliminates recursive function map
We saw this:

```ocaml
let rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);

let square_all = map square
```

Is equivalent to this:

```ocaml
let square_all ys =
    match ys with
    | [] -> []
    | hd::tl -> (square hd)::(map square tl)
```

Morals of the story:
1. OCaml’s **HOT** (higher-order, typed) functions capture recursion patterns
2. we can figure out what is going on by **equational reasoning**.
3. ... but we typically need to do **proofs by induction** to reason about recursive (inductive) functions
POLY-HO!

αβ
Here’s an annoying thing

```ocaml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);
```

What if I want to increment a list of floats?
Alas, I can’t just call this map. It works on ints!
Here’s an annoying thing

What if I want to increment a list of floats? Alas, I can’t just call this map. It works on ints!

```ml
let rec map (f:int->int) (xs:int list) : int list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl);

let rec mapfloat (f:float->float) (xs:float list) :
  float list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(mapfloat f tl);
```
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

let ints = map (fun x -> x + 1) [1; 2; 3; 4]

let floats = map (fun x -> x +. 2.0) [3.1415; 2.718]

let strings = map String.uppercase ["sarah"; "joe"]
let rec map f xs =
 match xs with
 | [] -> []
 | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
Type of the undecorated map?

```ocaml
let rec map f xs =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)

map : ('a -> 'b) -> 'a list -> 'b list
```

Read as:

- for any types 'a and 'b,
- if you give map a function from 'a to 'b,
- it will return a function
 - which when given a list of 'a values
 - returns a list of 'b values.
We can say this explicitly

```ocaml
let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
  match xs with
  | [] -> []
  | hd::tl -> (f hd)::(map f tl)
```

map : ('a -> 'b) -> 'a list -> 'b list

The OCaml compiler is smart enough to figure out that this is the *most general* type that you can assign to the code. (technical term: *principal type*)

We say map is *polymorphic* in the types 'a and 'b – just a fancy way to say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added after the fact and more complicated due to subtyping)
let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list =
 match (xs,ys) with
 | ([],_) -> ys
 | (_,[]) -> xs
 | (x::xst, y::yst) ->
 if lt x y then x::(merge lt xst ys)
 else y::(merge lt xs yst)

let rec split (xs:'a list)(ys:'a list)(zs:'a list) : 'a list * 'a list =
 match xs with
 | [] -> (ys, zs)
 | x::rest -> split rest zs (x::ys)

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =
 match xs with
 | ([] | _::[]) -> xs
 | _ -> let (first,second) = split xs [] [] in
 merge lt (mergesort lt first) (mergesort lt second)
More realistic polymorphic functions

```ocaml
let str_sort = mergesort (fun x y -> String.compare x y < 0)
```

```ocaml
let int_sort = mergesort (<)
let int_sort_down = mergesort (>)
```

```ocaml
mergesort (fun x y -> String.compare x y < 0) ["Hi"; "Bi"]
  == ["Bi"; "Hi"]
```

```ocaml
mergesort (<) [3; 2; 7; 1]
  == [1; 2; 3; 7]
```

```ocaml
mergesort (>) [2; 3; 42]
  == [42; 3; 2]
```
Another Interesting Function

let comp f g x = f (g x)

let mystery = comp (add 1) square

let comp = fun f -> (fun g -> (fun x -> f (g x)))

let mystery = comp (add 1) square

let mystery =
(fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square

let mystery = fun x -> (add 1) (square x)

let mystery x = add 1 (square x)
let comp f g x = f (g x)

let mystery = comp (add 1) square

(f ◦ g)(x) = f(g(x))

mystery = (add 1) ◦ square

mystery(x) = (add 1) ◦ (square x)
What is the type of comp?

let comp f g x = f (g x)

let comp (f: 'b->'c) (g: 'a->'b) (x: 'a) : 'c = f (g x)

comp : ('b -> 'c) -> ('a -> 'b) -> ('a -> 'c)
What does this program do?

\[
\text{map } f \ (\text{map } g \ [x_1; \ x_2; \ \ldots; \ x_n])
\]

For each element of the list \(x_1, x_2, x_3 \ldots x_n\), it executes \(g\), creating:

\[
\text{map } f \ ([g \ x_1; \ g \ x_2; \ \ldots; \ g \ x_n])
\]

Then for each element of the list \([g \ x_1, g \ x_2, g \ x_3 \ldots g \ x_n]\), it executes \(f\), creating:

\[
[f \ (g \ x_1); \ f \ (g \ x_2); \ \ldots; \ f \ (g \ x_n)]
\]
What does this program do?

\[\text{map } f (\text{map } g~) \]

\[\text{map } f \]

\[\text{reclaimed by garbage collector} \]
What does this program do?

\[
\text{map } f \ (\text{map } g \ [x_1; x_2; \ldots; x_n])
\]

For each element of the list \(x_1, x_2, x_3 \ldots x_n\), it executes \(g\), creating:

\[
\text{map } f \ ([g \ x_1; g \ x_2; \ldots; g \ x_n])
\]

Then for each element of the list \([g \ x_1, g \ x_2, g \ x_3 \ldots g \ x_n]\), it executes \(f\), creating:

\[
[f \ (g \ x_1); f \ (g \ x_2); \ldots; f \ (g \ x_n)]
\]

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)

\[
\text{map } (\text{comp } f \ g) \ [x_1; x_2; \ldots; x_n]
\]
This kind of optimization has a name: deforestation (because it eliminates intermediate lists and, um, trees...)
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
How about reduce?

```ocaml
let rec reduce f u (xs: 'a list) =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?
let rec reduce f u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

f is called so it must be a function of two arguments.
let rec reduce (f:? -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
How about reduce?

```ocaml
let rec reduce (f: ? -> ? -> ?) u (xs: 'a list) =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?

Furthermore, hd came from xs, so f must take an 'a value as its first argument.
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The second argument to f must have the same type as the result of reduce. Let’s call it 'b.
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

The result of f must have the same type as the result of reduce overall: 'b.
How about reduce?

```ocaml
let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?
How about reduce?

```ocaml
let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)
```

What’s the most general type of reduce?

If `xs` is empty, then `reduce` returns `u`. So `u`’s type must be `'b`.
let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

reduce returns the result of f. So f’s result type must be 'b.
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?
let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

What’s the most general type of reduce?

('a -> 'b -> 'b) -> 'b -> 'a list -> 'b
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =
 match xs with
 | [] -> 0
 | hd::tl ->
 (fun x y -> 1+y) hd (reduce (fun ...) 0 tl)
What does this do?

```
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl);

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl ->
    (fun x y -> 1+y) hd (reduce (fun ... ) 0 tl)
```
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl);;

let mystery0 = reduce (fun x y -> 1+y) 0;;

let rec mystery0 xs =
 match xs with
 | [] -> 0
 | hd::tl ->
 (fun y -> 1+y) (reduce (fun ...) 0 tl)
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =
 match xs with
 | [] -> 0
 | hd::tl -> 1 + reduce (fun ...) 0 tl
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =
 match xs with
 | [] -> 0
 | hd::tl -> 1 + mystery0 tl
What does this do?

```ocaml
let rec reduce f u xs =
  match xs with
  | [] -> u
  | hd::tl -> f hd (reduce f u tl)

let mystery0 = reduce (fun x y -> 1+y) 0

let rec mystery0 xs =
  match xs with
  | [] -> 0
  | hd::tl -> 1 + mystery0 tl List Length!
```
What does this do?

```ocaml
let rec reduce f u xs = 
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl)

let mystery1 = reduce (fun x y -> x::y) []
```
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery1 = reduce (fun x y -> x::y) []

let rec mystery1 xs =
 match xs with
 | [] -> []
 | hd::tl -> hd::(mystery1 tl)

 Copy!
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery2 g =
 reduce (fun a b -> (g a)::b) []
let rec reduce f u xs =
 match xs with
 | [] -> u
 | hd::tl -> f hd (reduce f u tl)

let mystery2 g =
 reduce (fun a b -> (g a)::b) []

let rec mystery2 g xs =
 match xs with
 | [] -> []
 | hd::tl -> (g hd)::(mystery2 g tl) map!
Map and Reduce

We coded `map` in terms of `reduce`:
- ie: we showed we can compute `map f xs` using a call to `reduce ? ? ?` just by passing the right arguments in place of ? ? ?

Can we code `reduce` in terms of `map`?
Map and Reduce

```ocaml
val map : ('a -> 'b) -> 'a list -> 'b list

val reduce : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

let reduce f u xs = ... map (...) (...) ...
    (use only: map, f, u, xs; don’t use rec)

reduce (+) 0 [1;2;3] = ... map (...) (...) ...
```
Some Other Combinators: List Module

https://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list
List.mapi f [a0; ...; an] == [f 0 a0; ... ; f n an]

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
List.map2 f [a0; ...; an] [b0; ...; bn] == [f a0 b0 ; ... ; f an bn]

val iter : ('a -> unit) -> 'a list -> unit
List.iter f [a0; ...; an] == f a0; ... ; f an
Map and reduce are two higher-order functions that capture very, very common recursion patterns.

Reduce is especially powerful:
- related to the “visitor pattern” of OO languages like Java.
- can implement most list-processing functions using it, including things like copy, append, filter, reverse, map, etc.

We can write clear, terse, reusable code by exploiting:
- higher-order functions
- anonymous functions
- first-class functions
- polymorphism
Using map, write a function that takes a list of pairs of integers, and produces a list of the sums of the pairs.
 – e.g., list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
 – Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces their quotient if it exists.
 – e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
 – Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters out all of the None’s.
 – e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
 – Why can’t we directly use filter? How would you generalize filter so that you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of numbers.
 – e.g., sum_squares = [3,5,2] = 38