
Assignment #5
Due: 6:00pm Wednesday 25 October 2023

Upload at: https://www.gradescope.com/courses/606160/assignments/3456405

Assignments in COS 302 should be done individually. See the course syllabus for the collaboration policy.

Remember to append your Colab PDF as explained in the first homework, with all outputs visible.
When you print to PDF it may be helpful to scale at 95% or so to get everything on the page.

Problem 1 (20pts)
We sometimes need to introduce norms for matrices. This comes up when we want to talk about the magnitude
of a matrix, or when we need a notion of distance between matrices. One important matrix norm is the Frobenius
norm, which can be written in several ways for a matrix A ∈ Rm×n:

| |A| |F =

󰁹󰁸󰁷 m󳕗
i=1

n󳕗
j=1

A2
i,j =

󰁳
trace(AT A)

(A) Show that the Frobenius norm is also the square root of the sum of the squared singular values.

(B) Assume that A is square and invertible, with a very small Frobenius norm. What kind of value would you
expect to get for the Frobenius norm of A−1?

1

https://www.gradescope.com/courses/606160/assignments/3456405
https://www.cs.princeton.edu/courses/archive/fall23/cos302/files/syllabus.pdf

Problem 2 (25pts)
In general, computing the determinant of an n × n matrix scales as n3 in computational cost. When the matrix is
highly structured, however, it can sometimes be possible to take advantage of that structure to save computation
for quantities such as the determinant. One example of such structure is in tridiagonal matrices, which look like
this:

T =

󰀵󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a1 b1 0 0 · · · 0
c1 a2 b2 0 0

0 c2 a3
. . .

...

0 0
. bn−2 0

... cn−2 an−1 bn−1
0 0 · · · 0 cn−1 an

󰀶󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸
Such matrices can come up when simulating a physical system with local structure, e.g., a spring-mass system.

(A) We would like to compute the determinant of the matrix T above, which we are assuming is invertible.
Let dm denote the determinant of the upper left m ×m submatrix. So, d1 = a1 and dn = |T | (computing the
whole determinant). Use expansion by minors to compute dn in terms of dn−1, dn−2, and any of the ai , bi ,
or ci . If necessary you can take d0 = 1 and di = 0 for i < 0. Carefully show how you arrived at your
answer.

(B) Based on this recurrence relation, how would you expect the computational cost to scale for computing the
determinant of a tridiagonal matrix?

2

http://mathworld.wolfram.com/DeterminantExpansionbyMinors.html

Problem 3 (23pts)
In this problem, you’ll look at singular value decomposition as a way to find a low-rank approximation to a matrix.

(A) Upload any (tasteful) image you want to Colab. Note that life is a little easier if you put it in your Google
drive and access it from there so you don’t have to constantly re-upload it every time you come back after
a break. Load the image as a NumPy array. There are various ways to do this, but the easiest may be to
use imread from matplotlib. There is a useful tutorial here also. Once you have a NumPy array, look at
its shape: it is probably width × height × 3 or something to that effect, with the third dimension usually
reflecting red, green, and blue channels. Make the image grayscale by taking the mean across this third
dimension. This should make it into a width × height array. Use imshow as in previous homeworks to
render the grayscale image.

(B) Import numpy.linalg and use the svd function to compute the singular value decomposition of the
image matrix. This will return three things: a U matrix, a vector containing the singular values, and a VT

matrix. Print the shapes of these arrays, and then figure out how to “reassemble” these three arrays with
multiplication to reconstruct the image. Render the reconstruction and verify that it looks like the original
image.

(C) Plot the cumulative sum of the singular values. Sum them from largest to smallest.

(D) Create three different low-rank approximations to your image. Create one of rank 5, one of rank 10, and
one of rank 25. (Hint: you can do this by reconstructing the image matrix as above, but with zeros for all
the singular values with index larger than the rank of your approximation. Render each of the three images.

(E) Create three new matrices, each with the pixel-wise squared difference between the original image and the
low-rank approximation. Render these as images and qualitatively describe what kind of visual structure
seems to be lost in the low-rank approximations.

3

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.imread.html
https://matplotlib.org/tutorials/introductory/images.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html

Problem 4 (30pts)
In this problem you will use SVD to model a text corpus, a small subset of New York Times articles. You will use
a “bag of words” representation in which documents are represented by the counts of words, usually excluding
very common “stop words” like the and and. Download nyt.pkl.gz and upload it to your Google drive so you
don’t have to upload it every time you open the Colab; it’s a fairly big file. Here’s some code to get you going:

impo r t p i c k l e a s pk l
impo r t numpy as np
impo r t g z i p

f i l e n a m e = ’ d r i v e /My Dr ive /COS 302 / ny t . pk l . gz ’
w i th gz i p . open (f i l ename , ’ rb ’) a s fh :

ny t = pk l . l o ad (fh)
documents = ny t [’ docs ’]
vocab = ny t [’ vocab ’]

C r e a t e r e v e r s e lookup t a b l e .
v o c a b _ i n d i c e s = d i c t ([(w, i) f o r (i , w) i n enumera t e (vocab)])

M = l e n (documents)
N = l e n (vocab)
p r i n t (’%d documents , %d words ’ % (M,N))

coun t_mat = np . z e r o s ((M,N))
f o r mm, doc i n enumera t e (documents) :

f o r word , coun t i n doc . i t ems () :
coun t_mat [mm, v o c a b _ i n d i c e s [word]] = coun t

(A) Typically, raw counts don’t lead to discovery of interesting structure. Instead, it is common to use something
like TF-IDF, which stands for term frequency-inverse document frequency. Term frequency is the number
of times word n appeared in document m, divided by the total number of words in document m.

tfm,n =
times word n appears in doc m

total # of words in doc m

Transform count_mat from the code above into a term frequency matrix.

(B) Inverse document frequency is typically the natural log of the number of documents, divided by the number
of documents in which word m appears. (The plus-one ensures that you’re not dividing by zero.)

idfn = log
total # of documents

1 + # of documents with word n

Compute the idf vector from count_mat.

(C) Now compute the TF-IDF matrix by multiplying (broadcasting) tfm,n and idfn. Usenumpy.linalg.svd
to take the SVD of this TF-IDF matrix; it may take a minute since the matrix is relatively large. Plot the
singular values in decreasing order.

(D) The right singular vectors (columns of the V matrix) will ideally represent interesting topical dimensions.
For each of the top 20 right singular vectors: identify the words in the vocabulary that have the largest entries
in the vector and print them. That will probably mean looping over the first 20 right singular vectors, doing
an appropriate argsort and then finding that entry in the vocab variable. Do you see any interesting
qualitative structure in these groups of words?

4

https://www.cs.princeton.edu/courses/archive/fall23/cos302/files/nyt.pkl.gz
https://en.wikipedia.org/wiki/Tf-idf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html

Problem 5 (2pts)
Approximately how many hours did this assignment take you to complete?

My notebook URL: https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

Changelog

• 2 October 2023 – Initial F23 version.

5

https://colab.research.google.com/XXXXXXXXXXXXXXXXXXXXXXX

